Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 września 2025 22:25
  • Data zakończenia: 12 września 2025 22:35

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W barach są skalowane

A. manometry
B. przepływomierze
C. prędkościomierze
D. wiskozymetry
Manometry to urządzenia pomiarowe, które służą do określania ciśnienia w różnych systemach. W kontekście barów, manometry są szczególnie ważne w kontrolowaniu ciśnienia gazów i cieczy, co jest kluczowe w wielu procesach przemysłowych oraz w instalacjach hydraulicznych i pneumatycznych. Przykładowo, w przemyśle gazowym manometry umożliwiają monitorowanie ciśnienia w zbiornikach, co jest niezbędne dla zapewnienia bezpieczeństwa i efektywności systemu. W praktyce, manometry są również używane w medycynie, na przykład do pomiaru ciśnienia krwi, co ilustruje ich wszechstronność. Standardy branżowe, takie jak ISO 5171, określają parametry, które manometry muszą spełniać, aby zapewnić wiarygodność i dokładność pomiarów. Ponadto, manometry różnią się rodzajem zastosowanego medium, mogą być stosowane w warunkach wysokotemperaturowych lub w środowiskach agresywnych chemicznie, co dodatkowo podkreśla ich znaczenie w szerokiej gamie aplikacji.

Pytanie 2

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Wakuometr
B. Dynamometr
C. Pirometr
D. Wariometr
Wakuometr to urządzenie pomiarowe, które służy do pomiaru podciśnienia, czyli ciśnienia mniejszego niż ciśnienie atmosferyczne. Wakuometry są kluczowe w wielu branżach, takich jak przemysł chemiczny, farmaceutyczny czy spożywczy, gdzie kontrola ciśnienia odgrywa fundamentalną rolę w procesach technologicznych. Na przykład, w systemach próżniowych stosowanych do pakowania żywności, wakuometry pomagają monitorować poziom podciśnienia, co jest niezbędne dla zapewnienia odpowiedniej jakości i trwałości produktów. W kontekście medycyny, wakuometr może być używany do pomiaru ciśnienia w systemach laboratoryjnych, gdzie precyzyjna kontrola ciśnienia jest niezbędna do uzyskania wiarygodnych wyników. Praktyczna znajomość wakuometrów i ich zasad działania jest również istotna w kontekście bezpieczeństwa, ponieważ niewłaściwe pomiary podciśnienia mogą prowadzić do poważnych awarii technicznych. Zgodność z normami takimi jak ISO 9001, które podkreślają znaczenie precyzyjnych pomiarów w procesach produkcyjnych, jest kluczowa dla zapewnienia wysokiej jakości i niezawodności urządzeń pomiarowych.

Pytanie 3

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Tłokowy pierścień uszczelniający
B. Sprężynę zaworu zwrotnego
C. Zawór bezpieczeństwa
D. Filtr oleju
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 4

Montaż realizowany według zasady całkowitej zamienności polega na

A. tym, że pewien odsetek elementów składowych ma wyższe tolerancje wymiarowe, co obniża koszty produkcji części
B. tym, że wymagana precyzja wymiaru montażowego osiągana jest przez dopasowanie jednego z elementów składowych poprzez obróbkę jej powierzchni w trakcie montażu
C. montażu elementów składowych wykonanych z dużą precyzją, czyli o bardzo małych tolerancjach wymiarowych
D. podziale obrobionych komponentów tworzących zespół według ich rzeczywistych wymiarów
Zrozumienie zasady całkowitej zamienności w montażu jest fundamentalne dla uzyskania wysokiej jakości produktów. Wiele osób błędnie interpretuje, że montaż może opierać się na tolerancjach wymiarowych, które są zbyt szerokie, co jest odzwierciedlone w jednym z podejść, które sugeruje, że pewien procent części składowych może mieć większe tolerancje, co prowadzi do obniżenia kosztów wykonania. W rzeczywistości, taka strategia może skutkować problemami z kompatybilnością i wymiennością elementów, co narusza zasadę całkowitej zamienności. Niewłaściwe podejście do podziału obrobionych części według ich rzeczywistych wymiarów, jak sugeruje inna odpowiedź, również nie jest zgodne z najlepszymi praktykami w obszarze montażu. Każda część powinna być projektowana z myślą o tym, aby pasować do innych w zespole bez dodatkowej obróbki. Zasada ta zakłada, że części muszą być produkowane zgodnie z określonymi normami tolerancyjnymi, co zapewnia ich wymienność. Kolejna niepoprawna koncepcja dotyczy uzyskiwania wymagań dotyczących wymiarów montażowych poprzez dopasowanie jednej z części w czasie montażu. Takie podejście jest niewłaściwe, ponieważ wprowadza niepotrzebny czas i koszty oraz ryzyko błędów montażowych. Kluczowym elementem skutecznego montażu jest standaryzacja wymiarów, co pozwala na uniknięcie sytuacji wymagających dostosowań. Zrozumienie wymagań stawianych przez zasady całkowitej zamienności oraz ich zastosowanie w praktyce to krok ku zwiększeniu efektywności produkcji oraz jakości finalnych wyrobów.

Pytanie 5

Który z zaworów pozwala na przepływ czynnika roboczego tylko w jednym kierunku?

A. Przelotowy
B. Odcinający
C. Zwrotny
D. Rozdzielający
Zawór zwrotny jest kluczowym elementem w systemach hydraulicznych i pneumatycznych, który umożliwia przepływ czynnika roboczego tylko w jednym, określonym kierunku. Działa on na zasadzie automatycznego zamykania, gdy ciśnienie w przeciwnym kierunku przekracza określony poziom. Dzięki temu zapobiega to cofaniu się płynów, co jest szczególnie ważne w układach, gdzie nieprzerwany przepływ w jednym kierunku jest krytyczny dla działania systemu. Przykładem zastosowania zaworu zwrotnego mogą być systemy hydrauliczne w maszynach budowlanych, gdzie konieczne jest, aby olej hydrauliczny nie wracał do zbiornika, gdy siłownik jest pod obciążeniem. Zawory zwrotne są również stosowane w instalacjach wodociągowych, aby zapobiegać cofaniu się wody, co mogłoby prowadzić do zanieczyszczenia systemu. W praktyce, dobór odpowiedniego zaworu zwrotnego powinien być zgodny z normą PN-EN ISO 4414, która definiuje zasady użytkowania urządzeń pneumatycznych, oraz z normą PN-EN 982, dotyczącą systemów hydraulicznych. Zrozumienie działania zaworów zwrotnych i ich zastosowania jest kluczowe dla inżynierów i techników pracujących w dziedzinach hydrauliki i pneumatyki.

Pytanie 6

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
B. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
C. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
D. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
Odpowiedź jest poprawna, ponieważ parametry zaworu pneumatycznego rozdzielającego rzeczywiście odnoszą się do jego konstrukcji i specyfikacji. 'Gl/8' wskazuje na przyłącze walcowe, co jest standardowym typem przyłącza w wielu zastosowaniach przemysłowych, pozwalającym na łatwe podłączenie do systemu pneumatycznego. '550 Nl/min' określa nominalny przepływ powietrza, co jest kluczowym parametrem przy doborze zaworu do systemu; oznacza to, że zawór jest w stanie przepuścić 550 litrów powietrza na minutę przy nominalnych warunkach. '12 V AC' oznacza napięcie cewki zaworu, wskazując, że jest to napięcie zmienne, co jest typowe dla wielu aplikacji w automatyce, gdzie zasilanie zmienne jest powszechnie stosowane. '3 VA' to moc pozorna cewki, co jest istotnym parametrem przy doborze odpowiednich elementów do zasilania zaworu. Znajomość tych parametrów pozwala na prawidłowy dobór i eksploatację zaworów pneumatycznych, co jest niezbędne dla efektywności systemów automatyki przemysłowej. Przykładem zastosowania może być automatyzacja procesów produkcyjnych, gdzie precyzyjnie dobrane zawory zapewniają optymalną pracę siłowników pneumatycznych oraz efektywność energetyczną całego systemu.

Pytanie 7

Jakim skrótem literowym określa się język drabinkowy?

A. STL
B. IL
C. FBD
D. LD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 8

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
B. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
C. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
D. iloczyn prędkości cieczy oraz czasu jej przepływu.
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 9

Podsystem mechatroniczny prasy hydraulicznej został wyposażony w terminal HMI. To urządzenie nie pozwala jedynie

A. na załączanie i wyłączanie pracy prasy
B. na wizualizację przebiegu pracy prasy
C. na pomiar parametrów procesowych prasy
D. na odczyt wartości zmierzonych parametrów
Każda z błędnych odpowiedzi pokazuje różne nieporozumienia, jeśli chodzi o rolę HMI w systemie mechatronicznym prasy hydraulicznej. Odczytywanie zmierzonych parametrów, włączanie i wyłączanie prasy oraz wizualizacja pracy to funkcje, które są ważne dla interfejsów HMI. Problemem jest to, że mylimy HMI z urządzeniem pomiarowym. Tak naprawdę HMI jest jak pośrednik, który pokazuje dane z innych czujników, jak te od ciśnienia czy temperatury. Typowo myśli się, że interfejs użytkownika może sam mierzyć procesy, co jest dużym błędem. Takie myślenie może prowadzić do nieporozumień w danych i złego zarządzania procesem produkcyjnym. W rzeczywistości, pomiar parametrów wymaga użycia specjalnych urządzeń pomiarowych, które integruje się z systemem HMI, by pokazać wyniki w przejrzysty sposób. Dobrą praktyką jest regularne kalibrowanie czujników i upewnienie się, że odczyty są dobrze widoczne na interfejsie HMI, żeby wspierać operatorów w podejmowaniu decyzji.

Pytanie 10

Czynniki zagrażające zdrowiu ludzi, związane z użyciem urządzeń hydraulicznych, są w głównej mierze spowodowane przez

A. wysokie temperatury płynów.
B. wibracje oraz hałas.
C. duże przepływy prądów.
D. wysokie ciśnienia płynów oraz ogromne siły.
Odpowiedź dotycząca wysokich ciśnień cieczy i dużych sił jako zagrożeń dla zdrowia człowieka w kontekście urządzeń hydraulicznych jest poprawna. Urządzenia hydrauliczne działają na zasadzie wykorzystania ciśnienia cieczy do przenoszenia sił i momentów, co czyni je niezwykle efektywnymi w wielu zastosowaniach przemysłowych. Wysokie ciśnienie w układach hydraulicznych, które może osiągać wartości kilkuset barów, stwarza ryzyko nie tylko uszkodzenia samych urządzeń, ale również poważnych wypadków, jeśli system ulegnie awarii. Przykładem może być wybuch węża hydraulicznego, który może prowadzić do niebezpiecznych sytuacji, takich jak obrażenia ciała pracowników. Dlatego w branży hydraulicznej istnieją ścisłe normy bezpieczeństwa, takie jak ISO 4413, które określają wymagania dotyczące hydraulicznych systemów zasilania, aby minimalizować ryzyko związane z wysokim ciśnieniem i siłami. Użytkownicy urządzeń hydraulicznych powinni być odpowiednio przeszkoleni, a urządzenia poddawane regularnym inspekcjom, aby zapewnić ich bezpieczeństwo i sprawność działania.

Pytanie 11

Elektrozawór typu normalnie zamknięty o parametrach 230V AC, 50Hz, DN 3/8" FAF 61 mm, nie aktywuje się po podaniu napięcia znamionowego. Przystępując do serwisu elektrozaworu, trzeba najpierw wyłączyć napięcie zasilające, a następnie, w pierwszej kolejności

A. wymienić membranę
B. zmierzyć rezystancję cewki
C. wymienić uszczelkę
D. zwiększyć napięcie zasilania i podać je na cewkę elektrozaworu
Mierzenie rezystancji cewki elektrozaworu jest kluczowym krokiem w diagnostyce problemów z jego działaniem. Cewka, będąca sercem elektrozaworu, generuje pole elektromagnetyczne, które otwiera lub zamyka zawór. Sprawdzenie rezystancji cewki pozwala określić, czy nie występuje uszkodzenie, takie jak przerwanie drutu lub zwarcie. Standardowe wartości rezystancji dla cewki elektrozaworu powinny odpowiadać temu, co podano w specyfikacji producenta. Jeśli wartość ta jest znacznie niższa lub nieodpowiednia, może to wskazywać na uszkodzenie cewki. W praktyce, aby przeprowadzić pomiar, należy użyć multimetru ustawionego na pomiar rezystancji, co jest standardową procedurą w branży. Po potwierdzeniu, że cewka jest sprawna, można kontynuować diagnostykę, sprawdzając inne elementy zaworu, jak membrana lub uszczelki. Właściwe podejście oparte na pomiarze rezystancji cewki jest nie tylko zgodne z najlepszymi praktykami, ale może znacznie przyspieszyć proces naprawy.

Pytanie 12

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Pojemnościowy
C. Ultradźwiękowy
D. Hallotronowy
Czujnik hallotronowy jest specjalistycznym urządzeniem, które wykrywa obecność i natężenie pola magnetycznego. Zasada jego działania opiera się na efekcie Hall'a, który polega na wytwarzaniu napięcia poprzecznego na przewodniku, gdy przepływa przez niego prąd i jest jednocześnie poddany działaniu pola magnetycznego. Dzięki temu czujniki hallotronowe znajdują szerokie zastosowanie w różnych dziedzinach, takich jak motoryzacja (np. w systemach ABS), automatyka przemysłowa oraz urządzenia elektroniczne. Charakteryzują się wysoką czułością i precyzją, co czyni je najlepszym wyborem do pomiarów natężenia pola magnetycznego. Ich instalacja i użytkowanie są zgodne z powszechnie uznawanymi standardami branżowymi, co dodatkowo podnosi ich wartość w zastosowaniach przemysłowych. Warto również zwrócić uwagę na rozwój technologii, gdzie czujniki hallotronowe są integralną częścią nowoczesnych systemów pomiarowych i automatyzacyjnych.

Pytanie 13

W celu zwiększenia wskaźnika lepkości w układzie hydraulicznym oraz zmniejszenia zużycia jego elementów należy użyć oleju o oznaczeniu

DodatkiRodzaj oleju
HHHLHMHVHG
AntyutleniająceTakTakTakTak
Chroniące przed korozjąTakTakTakTak
Polepszające smarnośćTakTakTak
Zmniejszające zużycieTakTakTak
Zwiększające wskaźnik lepkościTak
O szczególnych właściwościach smarującychTak
A. HV
B. HH
C. HM
D. HL
Odpowiedź HV jest poprawna, ponieważ oleje hydrauliczne o oznaczeniu HV (High Viscosity Index) zawierają dodatki, które zwiększają wskaźnik lepkości. Oznacza to, że ich lepkość zmienia się w mniejszym stopniu w zależności od temperatury, co jest kluczowe w zastosowaniach hydraulicznych, gdzie stabilność lepkości w różnych warunkach roboczych jest niezwykle istotna. Użycie oleju o wysokim wskaźniku lepkości zapewnia lepszą ochronę elementów hydraulicznych, co przekłada się na ich dłuższą żywotność i mniejsze zużycie. Przykładem zastosowania oleju HV może być hydraulika stosowana w maszynach budowlanych, gdzie zmienne warunki pracy i temperatura mogą wpływać na wydajność systemu. Praktyki branżowe zalecają stosowanie olejów HV w sytuacjach, gdy urządzenia działają w szerszym zakresie temperatur, co minimalizuje ryzyko ich uszkodzenia i poprawia efektywność działania.

Pytanie 14

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. ochrony ramienia robota przed kolizjami z operatorem
B. przemieszczania obiektu w przestrzeni
C. chronienia ramienia robota przed przeciążeniem
D. chwytania obiektu z odpowiednią siłą
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 15

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. wprowadzania regulacji
B. analizy zużycia styków
C. usuwania kurzu
D. sprawdzania dokręcenia śrub zacisków
Dokonywanie regulacji w układzie stycznikowo-przekaźnikowym nie jest elementem konserwacji, ponieważ tego typu układy mają z góry ustalone parametry pracy, które powinny być stałe i stabilne. Konserwacja polega raczej na zapewnieniu ich prawidłowego działania poprzez kontrolę i ewentualne czyszczenie, a nie na wprowadzaniu jakichkolwiek zmian w ich ustawieniach. Przykładem dobrej praktyki w zakresie konserwacji jest regularne czyszczenie styków styczników, które zapewnia ich dłuższą żywotność oraz minimalizuje ryzyko awarii. W kontekście standardów, normy IEC dotyczące konserwacji urządzeń elektrycznych podkreślają znaczenie utrzymania ich w stanie gotowości, co jest osiągane poprzez systematyczne kontrole i monitorowanie stanu technicznego, a nie przez zmianę parametrów pracy.

Pytanie 16

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz
A. napięcie zasilania 24 V DC i prąd pracy 30 mA
B. napięcie zasilania 15 V DC i prąd pracy 0,02 A
C. napięcie zasilania 20 V AC i prąd pracy 0,02 A
D. napięcie zasilania 24 V DC i prąd pracy 0,02 A
Wybór innych wartości napięcia zasilania i prądu pracy wskazuje na brak zrozumienia specyfiki pracy czujników indukcyjnych oraz ich parametrów technicznych. Na przykład, napięcie zasilania 15 V DC jest poniżej standardowego zasilania stosowanego w nowoczesnych systemach automatyki, co może prowadzić do niewłaściwego działania czujnika lub jego całkowitego braku reakcji. Prąd pracy 0,02 A, będący równy 20 mA, również może nie być dostateczny dla niektórych zastosowań, w których wymagane są wyższe wartości prądów, co może skutkować niestabilnością działania urządzenia. W przypadku napięcia 20 V AC, pojawia się dodatkowy problem związany z typem prądu – czujniki indukcyjne zazwyczaj są projektowane do pracy z prądem stałym (DC), a niewłaściwe zasilanie prądem zmiennym (AC) może skutkować ich uszkodzeniem. Odpowiedź z napięciem zasilania 24 V DC i prądem pracy 30 mA jest zgodna z normami IEC oraz najlepszymi praktykami stosowanymi w branży, które zapewniają optymalne warunki pracy czujników oraz ich długotrwałą żywotność. Dodatkowo, stosowanie nieodpowiednich wartości może prowadzić do nieprawidłowych odczytów i błędnych decyzji w automatyzacji procesów, co podkreśla konieczność przemyślanej konfiguracji zasilania w systemach automatyki.

Pytanie 17

Aby przeprowadzić bezdotykowy pomiar bardzo wysokiej temperatury, powinno się użyć

A. pirometru
B. termometru półprzewodnikowego
C. termometru rezystancyjnego
D. termopary
Pirometr to instrument przeznaczony do bezdotykowego pomiaru temperatury, wykorzystujący promieniowanie podczerwone emitowane przez obiekty. Jego działanie opiera się na zasadzie, że wszystkie obiekty emitują promieniowanie w zależności od swojej temperatury. Pirometry są szczególnie przydatne w sytuacjach, gdzie tradycyjne metody pomiaru, takie jak termometry cieczowe czy termopary, są niewłaściwe lub niemożliwe do zastosowania, na przykład w przypadku gorących lub trudno dostępnych powierzchni. W przemyśle metalurgicznym, hutniczym czy w obiektach energetycznych pirometry znajdują szerokie zastosowanie do monitorowania procesów technologicznych oraz do oceny temperatury w piecach. Standardy takie jak ASTM E2877-13 definiują metody i procedury pomiarowe dla pirometrów, co zwiększa ich wiarygodność i precyzję. Dzięki zastosowaniu pirometrów można także uniknąć kontaktu z niebezpiecznymi materiałami oraz zredukować ryzyko uszkodzenia czujników w ekstremalnych warunkach temperaturowych.

Pytanie 18

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 4/2
B. 4/3
C. 5/2
D. 3/2
Zawór rozdzielający 3/2 jest odpowiednim elementem do sterowania siłownikami jednostronnego działania, ponieważ ten typ zaworu ma trzy porty i dwa stany robocze. W konfiguracji 3/2, jeden z portów jest podłączony do źródła zasilania, a dwa pozostałe porty mogą być podłączone do siłownika oraz do otoczenia. W przypadku siłownika jednostronnego działania, który działa w jednym kierunku, zawór 3/2 jest odpowiedni, ponieważ umożliwia wprowadzenie ciśnienia do siłownika, a następnie jego odprowadzenie do atmosfery przy powrocie. Przykładem zastosowania zaworu 3/2 może być system pneumatyczny w maszynach produkcyjnych, gdzie siłowniki są używane do podnoszenia lub opuszczania komponentów. Warto również zauważyć, że w praktyce przemysłowej stosowanie zaworów powinno być zgodne z normami, takimi jak ISO 1219, które definiują symbole i oznaczenia dla urządzeń pneumatycznych, co ułatwia ich identyfikację oraz integrację w systemach automatyki.

Pytanie 19

Rezystancja którego z podanych czujników zmniejsza się w miarę wzrostu temperatury?

A. Termistora NTC
B. Termistora PTC
C. Termopary J
D. Termopary K
Termistory NTC (Negative Temperature Coefficient) to elementy, których rezystancja maleje w miarę wzrostu temperatury. Działa to na zasadzie, że wzrost temperatury powoduje zwiększenie energii kinetycznej nośników ładunku, co prowadzi do większej przewodności elektrycznej. Przykłady zastosowania termistorów NTC obejmują czujniki temperatury w termostatach oraz systemy monitorowania temperatury w elektronice. Są one szczególnie popularne w aplikacjach wymagających precyzyjnego pomiaru temperatury oraz w obwodach zabezpieczających, gdzie mogą ograniczać prąd w przypadku przegrzania. Dobre praktyki branżowe zalecają stosowanie termistorów NTC w systemach, gdzie wymagana jest szybka reakcja na zmiany temperatury, co czyni je idealnym rozwiązaniem dla automatyki przemysłowej i systemów HVAC. Termistory NTC są również zgodne z wieloma standardami dotyczącymi pomiaru temperatury, co podnosi ich wiarygodność jako czujników.

Pytanie 20

Jaką metodę spawania wykorzystuje się z gazem o właściwościach chemicznych aktywnych?

A. MIG
B. MAG
C. SAW
D. TIG
Metoda spawania MAG (Metal Active Gas) wykorzystuje gaz chemicznie aktywny, najczęściej w postaci mieszanki argonu z dwutlenkiem węgla lub innymi gazami, co pozwala na uzyskanie wysokiej jakości spoiny. W przeciwieństwie do MIG (Metal Inert Gas), gdzie stosuje się gazy obojętne, takie jak argon, w MAG aktywne gazy wpływają na proces spawania, co przyczynia się do lepszego wtopienia materiału oraz zwiększenia odporności na niepożądane zjawiska, takie jak utlenianie. Przykładem zastosowania technologii MAG jest spawanie wszelkiego rodzaju konstrukcji stalowych, takich jak ramy budynków, kontenery i elementy maszyn. Dobre praktyki w tej metodzie obejmują dobór odpowiednich parametrów spawania, jak prędkość, napięcie i natężenie prądu, co jest zgodne z normami EN ISO 4063. Dzięki temu proces staje się bardziej efektywny i kontrolowany, co jest niezwykle ważne w przemyśle metalowym.

Pytanie 21

W aplikacjach sterujących, wykonywanych przy użyciu sterownika PLC, do zapisywania sygnałów impulsowych oraz ich konwersji na sygnały trwałe (włączanie z samopodtrzymaniem) wykorzystuje się moduły

A. rejestrów licznikowych
B. filtrów komparatorowych
C. przerzutników
D. zegarów czasowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerzutniki są podstawowymi elementami w systemach automatyki, które umożliwiają przechowywanie i przetwarzanie sygnałów impulsowych na sygnały długotrwałe. Działają poprzez zmianę swojego stanu na podstawie sygnałów wejściowych, co pozwala na samopodtrzymanie stanu wyjściowego. Na przykład, w aplikacjach przemysłowych, przerzutniki D mogą być używane do włączania silników na określony czas po otrzymaniu impulsu startowego, co jest szczególnie przydatne w systemach transportowych czy w procesach produkcyjnych. W kontekście standardów branżowych, przerzutniki często występują w projektach zgodnych z normami IEC 61131-3, które definiują programowanie PLC, co zapewnia ich szeroką zastosowalność i kompatybilność. Warto również zauważyć, że przerzutniki są kluczowymi elementami w tworzeniu bardziej złożonych systemów automatyki, takich jak sekwencjonery czy sygnalizatory. Zapewniają one stabilność działania systemu oraz pozwalają na elastyczne zarządzanie procesami, co czyni je niezastąpionymi w nowoczesnej automatyce przemysłowej.

Pytanie 22

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. lampy UV i szczypce
B. obcinacze i odsysacz
C. obcinacze i szczypce
D. lampy UV i odsysacz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'obcinacze i szczypce' jest prawidłowa, ponieważ obydwa te narzędzia są niezbędne w procesie lutowania na płytkach drukowanych. Obcinacze służą do precyzyjnego przycinania nadmiaru nogi elementów elektronicznych po ich zamontowaniu, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności płytki. Z kolei szczypce umożliwiają odpowiednie chwytanie i manipulowanie drobnymi komponentami, co jest ważne podczas montażu oraz lutowania w trudno dostępnych miejscach. Zastosowanie tych narzędzi jest zgodne z dobrymi praktykami w inżynierii elektronicznej, które podkreślają znaczenie precyzyjnego i estetycznego wykonania połączeń lutowanych, co przekłada się na niezawodność i długowieczność urządzeń elektronicznych. Warto również pamiętać o standardach IPC, które definiują zalecenia dotyczące lutowania i obróbki komponentów na płytkach, co czyni użycie obcinaczy i szczypców kluczowym elementem w procesie produkcji elektroniki.

Pytanie 23

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. rozbijanie kropli oleju strumieniem sprężonego powietrza
C. rozchodzenie się mgły olejowej w instalacji
D. spływ kondensatu wodnego do najniższego punktu instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 24

Który z elementów tyrystora ma funkcję sterowania?

A. Katoda
B. Źródło
C. Anoda
D. Bramka

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Bramka tyrystora, znana również jako terminal bramkowy, odgrywa kluczową rolę w jego działaniu, pełniąc funkcję sterującą. W momencie dostarczenia sygnału sterującego na bramkę, dochodzi do zainicjowania przewodzenia prądu pomiędzy anodą a katodą. Tyrystory są szeroko stosowane w aplikacjach wymagających precyzyjnego zarządzania dużymi prądami i napięciami, takich jak prostowniki, regulatory mocy oraz układy przełączające. Dzięki możliwości sterowania prądem za pomocą niskiego napięcia na bramce, tyrystory pozwalają na zdalne zarządzanie obciążeniem bez konieczności stosowania skomplikowanych układów mechanicznych. W praktyce, tyrystory z bramką są kluczowe w systemach automatyki przemysłowej, gdzie stabilna i efektywna kontrola mocy jest niezbędna do zapewnienia prawidłowego funkcjonowania maszyn.

Pytanie 25

Jak można zmierzyć prędkość przepływu gazu?

A. z wykorzystaniem impulsatora fotoelektrycznego
B. za pomocą zwężki Venturiego
C. używając czujnika termoelektrycznego
D. przy pomocy pirometru radiacyjnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwężka Venturiego jest urządzeniem pomiarowym, które wykorzystuje zjawisko Bernoulliego do pomiaru prędkości przepływu płynów, w tym gazów. Gdy gaz przechodzi przez zwężkę, jego prędkość wzrasta, a ciśnienie spada. Zmiana ciśnienia na wejściu i wyjściu zwężki pozwala na obliczenie prędkości przepływu, korzystając z równań dynamicznych. Zastosowanie zwężki Venturiego jest szerokie, obejmując przemysł chemiczny, energetykę oraz instalacje HVAC. Umożliwia ona nie tylko pomiar prędkości, ale również kontrolę i regulację przepływu mediów. Obliczenia dokonuje się najczęściej w oparciu o prawo Bernoulliego oraz równanie ciągłości, co czyni zwężkę skutecznym narzędziem w wielu zastosowaniach inżynieryjnych. Przykładem mogą być systemy wentylacyjne, gdzie precyzyjny pomiar przepływu gazu jest kluczowy dla efektywności energetycznej i jakości powietrza.

Pytanie 26

Pamięć EPROM (ang. Erasable Programmable Read-Only Memory) to typ pamięci cyfrowej realizowanej w formie układu scalonego, którą można

A. tylko odczytywać
B. kasować za pomocą promieniowania ultrafioletowego
C. programować i usuwać elektrycznie
D. bezpowrotnie stracić po odłączeniu zasilania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pamięć EPROM, czyli Erasable Programmable Read-Only Memory, to dosyć ciekawy typ pamięci. Charakteryzuje się tym, że można w niej skasować dane przy użyciu promieniowania ultrafioletowego. To znaczy, że jak chcemy pozbyć się zapisanych informacji, to wystawiamy chip EPROM na odpowiednie źródło UV i tak to działa. Takie pamięci są bardzo przydatne w sytuacjach, gdzie trzeba często programować i kasować, na przykład w prototypach układów elektronicznych oraz podczas testowania. Osobiście uważam, że EPROM to dobry wybór w elektronice użytkowej i w systemach wbudowanych, bo rzeczywiście lubimy mieć elastyczność w programowaniu. Ważne jest też to, że po zakończonym programowaniu i kasowaniu, dane zostają w pamięci, aż do momentu, kiedy ponownie je skasujemy. To sprawia, że EPROM jest świetnym rozwiązaniem dla systemów, które muszą mieć stabilne dane.

Pytanie 27

W systemie mechatronicznym interfejs komunikacyjny ma na celu łączenie

A. silnika z pompą hydrauliczną
B. grupy siłowników z modułem rozszerzającym
C. programatora ze sterownikiem
D. programatora z siłownikiem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Interfejs komunikacyjny w systemie mechatronicznym pełni kluczową rolę w umożliwieniu wymiany informacji pomiędzy różnymi komponentami systemu. W przypadku poprawnej odpowiedzi, czyli połączenia sterownika z programatorem, mamy do czynienia z fundamentalnym aspektem integracji i automatyzacji. Sterownik, jako serce systemu mechatronicznego, interpretuje dane z czujników i generuje sygnały sterujące do różnych elementów wykonawczych, takich jak siłowniki czy pompy. Programator natomiast dostarcza odpowiednie algorytmy i logikę działania, co pozwala na precyzyjne sterowanie procesami. Przykładem zastosowania może być system automatyzacji w zakładzie produkcyjnym, gdzie sterownik komunikuje się z programatorem, aby precyzyjnie kontrolować cykl pracy maszyn. Tego typu komunikacja opiera się na standardach, takich jak CAN, Modbus czy Profibus, które zapewniają niezawodność i skalowalność systemów mechatronicznych. Przy odpowiedniej konfiguracji interfejsu komunikacyjnego możliwe jest również zdalne monitorowanie i diagnostyka, co podnosi efektywność operacyjną.

Pytanie 28

Do którego urządzenia odnoszą się przedstawione w ramce informacje?

Stała wydajności (wydatek)
Cechy: objętość robocza 3,29 cm3/obr.,
prędkość obrotowa do 4800 obr./min.,
ciśnienie do 175 bar.
Zastosowanie: w hydraulicznych maszynach mobilnych i przemysłowych.
Zalecany napęd: bezpośredni współosiowy ze sprzęgłem elastycznym.
Wykorzystanie: jako urządzenie pomocnicze lub w instalacjach o niewielkich przepływach.
A. Chłodnicy oleju hydraulicznego.
B. Pompy hydraulicznej.
C. Hydroakumulatora.
D. Silnika pneumatycznego.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pompa hydrauliczna jest kluczowym elementem w wielu systemach hydraulicznych, a informacje przedstawione w ramce doskonale odzwierciedlają jej charakterystykę. Pompy hydrauliczne charakteryzują się stałą wydajnością oraz możliwością regulacji ciśnienia roboczego, co jest niezbędne w aplikacjach przemysłowych i mobilnych. Zastosowanie pomp hydraulicznych jest szerokie, od układów sterowania w maszynach budowlanych, po systemy hydrauliczne w przemyśle motoryzacyjnym. W przypadku pomp z napędem współosiowym, elastyczne sprzęgła umożliwiają redukcję drgań oraz zwiększają żywotność układów. Zgodnie z najlepszymi praktykami branżowymi, dobór odpowiedniej pompy hydraulicznej powinien być oparty na analizie parametrów, takich jak objętość robocza, prędkość obrotowa oraz wymagane ciśnienie robocze, co pozwala na optymalne funkcjonowanie całego systemu hydraulicznego.

Pytanie 29

Ile urządzeń sieciowych można maksymalnie podłączyć do sterownika, wykorzystując jeden dodatkowy moduł CSM 1277 o parametrach podanych w tabeli?

WłaściwościCSM 1277 switch
Typ interfejsuEthernet / Profinet
Ilość interfejsów4 x RJ45
Szybkość transmisji danych10/100 Mbit/s
Typ switchaniezarządzalny
Zasilanie24 V DC
Max. długość kabla bez wzmacniacza100 m
Straty mocy1,6 W
Stopień ochronyIP 20
A. 1 urządzenie.
B. 4 urządzenia.
C. 2 urządzenia.
D. 3 urządzenia.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje, że maksymalnie można podłączyć 3 urządzenia sieciowe do sterownika za pomocą dodatkowego modułu CSM 1277. Moduł ten wyposażony jest w 4 interfejsy RJ45, z których jeden jest przeznaczony do połączenia z sterownikiem. To oznacza, że pozostają 3 wolne interfejsy, które mogą być wykorzystane do podłączenia dodatkowych urządzeń. W praktyce, takie podejście umożliwia rozbudowę systemu w sieciach przemysłowych, gdzie często zachodzi potrzeba podłączenia różnych urządzeń, jak czujniki, kamery czy komputerowe systemy kontroli. Wiedza na temat liczby dostępnych interfejsów jest kluczowa w projektowaniu architektury sieci, co pozwala na optymalne wykorzystanie zasobów i zwiększenie efektywności działania systemu. W kontekście branżowym, takie rozwiązania muszą być zgodne z normami, jak na przykład IEC 61158, które regulują komunikację w systemach automatyki. Dlatego też, prawidłowe zrozumienie parametrów technicznych urządzeń jest niezbędne do ich efektywnego wdrażania.

Pytanie 30

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Klejenia
B. Zaginania
C. Zgrzewania
D. Spawania

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaginanie to proces, który polega na deformacji materiału pod wpływem siły mechanicznej, co prowadzi do zmiany jego kształtu. W przypadku tworzyw sztucznych, zaginanie nie jest techniką umożliwiającą trwałe połączenie elementów, ponieważ nie łączy dwóch odrębnych części w jeden element. Zamiast tego, zginanie zmienia kształt jednego elementu, co może być użyteczne w projektowaniu, ale nie umożliwia wykonania trwałego połączenia. Techniki, które rzeczywiście służą do trwałego łączenia, to spawanie, klejenie i zgrzewanie. Spawanie wykorzystuje wysoką temperaturę do stopienia materiałów, co pozwala na ich złączenie, natomiast klejenie polega na zastosowaniu odpowiednich substancji, które wiążą ze sobą różne elementy. Zgrzewanie, podobnie jak spawanie, wykorzystuje ciepło do fuzji materiałów. Przykładem aplikacji zaginania mogą być procesy formowania elementów do zastosowań estetycznych lub funkcjonalnych w przemyśle, gdzie zmiana kształtu jest istotna, ale nie prowadzi do trwałego połączenia z innym elementem.

Pytanie 31

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Szlifowanie
B. Gratowanie
C. Wygładzanie
D. Powiercanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 32

Wartość sygnału binarnego (11100111)2 na wyjściu ośmiobitowego przetwornika A/C w urządzeniu mechatronicznym odpowiada liczbie dziesiętnej

A. (255)10
B. (231)10
C. (230)10
D. (254)10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sygnał binarny (11100111)2 odpowiada liczbie dziesiętnej (231)10 ze względu na konwersję z systemu binarnego na dziesiętny. Aby to przeliczyć, możemy rozłożyć wartość binarną na poszczególne bity: 1*27 + 1*26 + 1*25 + 0*24 + 0*23 + 1*22 + 1*21 + 1*20, co daje 128 + 64 + 32 + 0 + 0 + 4 + 2 + 1 = 231. Tego typu przetwarzanie sygnałów jest kluczowe w systemach mechatronicznych, gdzie przetworniki analogowo-cyfrowe (A/C) umożliwiają digitalizację sygnałów w celu dalszej obróbki. Przykład zastosowania to systemy pomiarowe, gdzie wartości analogowe, takie jak napięcie, są przetwarzane na formę cyfrową umożliwiającą ich analizę przez procesory. Zrozumienie konwersji binarnej jest fundamentalne dla inżynierów zajmujących się automatyką oraz elektroniką, a znajomość tych procesów przyczynia się do poprawnej konstrukcji oraz interpretacji danych w systemach przetwarzania informacji.

Pytanie 33

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. oblać dłoń wodą utlenioną i nałożyć opatrunek
C. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 34

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
B. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
C. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
D. HT - ester syntetyczny, najlepiej ulegający biodegradacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź HFA, czyli emulsja olejowo-wodna, zawierająca ponad 80% wody, jest prawidłowa w kontekście pracy urządzeń hydraulicznych w warunkach zagrożenia pożarowego. Tego rodzaju ciecz hydrauliczna charakteryzuje się znacznie wyższą odpornością na wysokie temperatury i działanie ognia, co jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z otwartym płomieniem. W przypadku wycieku emulsji olejowo-wodnej, woda działa jako czynnik chłodzący, minimalizując ryzyko pożaru. Tego rodzaju cieczy hydrauliczne są szeroko stosowane w przemyśle, gdzie praca z substancjami łatwopalnymi jest powszechna, jak na przykład w rafineriach, piecach przemysłowych czy zakładach chemicznych. Zgodnie z normami, takimi jak NFPA (National Fire Protection Association), stosowanie cieczy o obniżonej palności, takich jak HFA, jest zalecane w środowiskach o wysokim ryzyku pożaru. Dodatkowo, emulsje olejowo-wodne są często używane w zastosowaniach, gdzie wymagane jest smarowanie oraz chłodzenie, co czyni je wszechstronnym rozwiązaniem w hydraulice przemysłowej.

Pytanie 35

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. zwiększenia prędkości obrotowej
B. zmniejszenia prędkości obrotowej
C. spadku rezystancji uzwojeń
D. wzrostu rezystancji uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 36

Jakie narzędzia są potrzebne do dokręcania przewodów hydraulicznych?

A. Szczypiec płaskich
B. Kluczy oczkowych
C. Kluczy płaskich
D. Szczypiec uniwersalnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Klucze płaskie to narzędzia, które są szczególnie zaprojektowane do przykręcania i odkręcania nakrętek oraz śrub o płaskich kształtach. W kontekście przewodów hydraulicznych, klucze płaskie są niezwykle istotne, ponieważ pozwalają na precyzyjne dopasowanie do nakrętek, które często mają ograniczony dostęp. Umożliwiają one właściwe i bezpieczne dokręcenie połączeń, co jest kluczowe dla zachowania szczelności systemu hydraulicznego. Dobrym przykładem zastosowania kluczy płaskich w praktyce jest ich użycie w instalacjach hydraulicznych w maszynach budowlanych, gdzie odpowiednie dokręcenie połączeń może zapobiec wyciekom płynów roboczych. Użycie kluczy płaskich jest zgodne z najlepszymi praktykami inżynieryjnymi, które podkreślają znaczenie stosowania odpowiednich narzędzi do zapewnienia trwałości oraz bezpieczeństwa instalacji hydraulicznych. Warto pamiętać, że stosując klucze płaskie, należy dobierać odpowiedni rozmiar narzędzia do nakrętki, aby uniknąć uszkodzeń zarówno narzędzia, jak i elementów instalacji. W przypadku kluczy płaskich, ich konstrukcja zapewnia odpowiednią dźwignię, co przekłada się na efektywność pracy.

Pytanie 37

Jaka jest objętość oleju w cylindrze siłownika o powierzchni roboczej 20,3 cm2 oraz skoku 200 mm?

A. 40,60 cm3
B. 406,00 cm3
C. 4060,00 cm3
D. 4,06 cm3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 406,00 cm3, co wynika z obliczenia objętości cylindra siłownika hydraulicznego. Wzór na objętość cylindra to V = A * h, gdzie A to powierzchnia podstawy cylindra, a h to jego wysokość lub skok. W tym przypadku powierzchnia wynosi 20,3 cm2, a skok 200 mm, co po przeliczeniu daje 20 cm. Zatem objętość wynosi: V = 20,3 cm2 * 20 cm = 406,00 cm3. Praktyczne zastosowanie tej wiedzy jest nieocenione w hydraulice, gdzie precyzyjne obliczenia objętości pozwalają na właściwe dobranie siłowników do zadań, co wpływa na efektywność systemów mechanicznych. Dobrze dobrany siłownik zapewnia optymalne parametry pracy urządzenia, a także zwiększa trwałość i niezawodność systemów hydraulicznych. W przemyśle, w którym często wykorzystywane są siłowniki, zrozumienie zasad obliczania objętości jest kluczowe dla zapewnienia efektywności energetycznej i bezpieczeństwa pracy maszyn.

Pytanie 38

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej temperatury oleju
B. niskiej ściśliwości oleju
C. wysokiej temperatury oleju
D. wysokiego ciśnienia oleju

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wysoka temperatura oleju hydraulicznego prowadzi do zmniejszenia jego lepkości. Wzrost temperatury powoduje, że cząsteczki oleju zaczynają się poruszać szybciej, co skutkuje łatwiejszym przepływem i zmniejszeniem oporu. Zjawisko to jest szczególnie istotne w systemach hydraulicznych, gdzie odpowiednia lepkość oleju jest kluczowa dla efektywności działania układów. Na przykład, w maszynach budowlanych lub przemysłowych, gdzie olej hydrauliczny pełni rolę siły napędowej, jego właściwa lepkość zapewnia skuteczne przekazywanie mocy i minimalizuje ryzyko awarii elementów układu. W wielu standardach, takich jak ISO 6743-4, określają się wymagania dotyczące lepkości olejów hydraulicznych w zależności od temperatury pracy, co pozwala na dobór odpowiednich produktów do konkretnych zastosowań. W praktyce, monitorowanie temperatury oleju oraz jego lepkości jest kluczowe dla zapewnienia bezpieczeństwa i efektywności działania układów hydraulicznych.

Pytanie 39

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. uszczelnienie przyłącza taśmą teflonową
B. wymiana uszczelki pomiędzy przyłączem a siłownikiem
C. wymiana przyłącza
D. dokręcenie przyłącza kluczem dynamometrycznym

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wydaje mi się, że wybór wymiany przyłącza to naprawdę dobry pomysł, szczególnie gdy zauważasz nieszczelności. Często to zużycie lub uszkodzenia połączeń sprawiają, że te problemy się pojawiają. Przyłącza, zwłaszcza w systemach pneumatycznych, są poddawane różnym czynnikom, jak ciśnienie, wibracje, a nawet korozja, co może wpływać na ich stan. Wymieniając przyłącze, masz pewność, że uzyskasz długotrwałe i solidne uszczelnienie, co jest mega ważne dla prawidłowego działania siłowników pneumatycznych. Z mojego doświadczenia, używanie uszczelnienia taśmą teflonową albo dokręcanie to często tylko chwilowe rozwiązanie, które nie eliminuje sedna problemu nieszczelności. Dlatego lepiej postawić na nowe, certyfikowane przyłącze, które spełnia normy branżowe – to najlepsza droga, żeby zapewnić efektywność i bezpieczeństwo systemu. Regularne sprawdzanie i wymiana krytycznych części to naprawdę dobre praktyki, które mogą uchronić cię przed poważniejszymi awariami i drogimi naprawami w przyszłości.

Pytanie 40

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Przesłanie programu do kontrolera
C. Przetłumaczenie programu na kod binarny
D. Pobranie programu z kontrolera

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Polecenie COMPILE w środowisku do programowania urządzeń mechatronicznych polega na przetłumaczeniu programu na kod binarny, co jest kluczowym krokiem w procesie tworzenia aplikacji dla tych systemów. Tłumaczenie to jest niezbędne, ponieważ mikroprocesory i kontrolery w urządzeniach mechatronicznych operują na poziomie niskiego poziomu, gdzie jedynym zrozumiałym przez nie formacie jest kod binarny. Przykładem zastosowania tej procedury może być programowanie sterowników PLC, gdzie po napisaniu kodu w języku wysokiego poziomu, takim jak ladder diagram czy tekst strukturalny, następuje jego kompilacja do formatu binarnego, który jest następnie interpretowany przez sprzęt. Standardy takie jak IEC 61131-3 definiują różne języki programowania PLC, ale wszystkie wymagają etapu kompilacji. Poprawne przetłumaczenie programu gwarantuje, że algorytmy i logika działania będą realizowane zgodnie z założeniami projektowymi, co jest kluczowe dla funkcjonalności urządzeń mechatronicznych.