Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 11 września 2025 21:55
  • Data zakończenia: 11 września 2025 22:09

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Opady śniegu mogą prowadzić do znacznego obniżenia jakości odbioru sygnału

A. radiowego naziemnego
B. telewizji kablowej
C. telewizji satelitarnej
D. telewizyjnego naziemnego
Telewizja kablowa, telewizyjna naziemna oraz radiowa naziemna operują na zupełnie innych zasadach dystrybucji sygnału, co czyni je mniej wrażliwymi na warunki atmosferyczne takie jak opady śniegu. W przypadku telewizji kablowej, sygnał transmitowany jest przez kable, co eliminuje wpływ warunków atmosferycznych na jakość obrazu. Użytkownicy telewizji kablowej nie doświadczają zatem tych samych problemów z jakością sygnału, gdyż sygnał jest dostarczany bezpośrednio przez infrastrukturę kablową, która nie jest podatna na zakłócenia atmosferyczne. Podobnie, telewizja naziemna korzysta z fal radiowych, które również są mniej narażone na problemy związane z opadami śniegu, ponieważ sygnały te mogą być odbierane przez anteny zamontowane w pomieszczeniach lub na dachach budynków, co pozwala na lepszą odporność na zakłócenia. Radiowa telewizja naziemna przesyła sygnał w inny sposób, co sprawia, że opady śniegu nie mają tak drastycznego wpływu na jakość odbioru. Typowe błędy myślowe, które mogą prowadzić do nieprawidłowych wniosków, obejmują mylenie różnych technologii transmisji oraz ich specyfikacji, a także niedostateczne zrozumienie, w jaki sposób czynniki zewnętrzne wpływają na sygnały radiowe i telewizyjne. W rzeczywistości, dla technologii kablowych i naziemnych, warunki atmosferyczne mają znikomą lub żadną rolę w jakości sygnału, co jest sprzeczne z doświadczeniami użytkowników telewizji satelitarnej.

Pytanie 2

Jakie urządzenie należy zastosować do gaszenia pożarów w miejscach, gdzie działają urządzenia elektryczne?

A. hydronetki wodnej
B. gaśnicy pianowej
C. gaśnicy proszkowej
D. koca azbestowego
Gaśnica proszkowa jest najlepszym środkiem gaśniczym do zwalczania pożarów w pomieszczeniach, w których znajdują się urządzenia elektryczne. Działa na zasadzie rozpraszania proszku gaśniczego, który skutecznie tłumi ogień, jednocześnie nie przewodząc prądu. To sprawia, że można jej używać w sytuacjach, gdzie niebezpieczeństwo porażenia prądem jest realne, co jest kluczowe w przypadku pożarów wywołanych przez urządzenia elektryczne. Zgodnie z normami, takimi jak PN-EN 2, gaśnice proszkowe klasy B i C są zalecane do gaszenia pożarów, które mogą pojawić się w pomieszczeniach biurowych czy warsztatach. Dodatkowym atutem jest ich wszechstronność, ponieważ mogą być stosowane do gaszenia pożarów cieczy łatwopalnych, gazów oraz urządzeń elektrycznych do napięcia 1000V. W praktyce, wybór gaśnicy proszkowej przyczynia się do szybkiego i skutecznego opanowania sytuacji, co może uratować życie oraz mienie. Warto również podkreślić, że regularne szkolenia dotyczące obsługi gaśnic i procedur bezpieczeństwa powinny być częścią każdej organizacji, aby zapewnić gotowość na ewentualne sytuacje awaryjne.

Pytanie 3

Aby oczyścić soczewkę lasera w napędzie CD, należy zastosować

A. wodę destylowaną
B. benzynę ekstrakcyjną
C. izopropanol
D. denaturat
Izopropanol jest powszechnie używanym rozpuszczalnikiem do czyszczenia soczewek lasera w napędach CD, ponieważ skutecznie usuwa zanieczyszczenia, takie jak pył, odciski palców czy inne substancje organiczne, nie pozostawiając resztek. W przeciwieństwie do innych substancji, izopropanol szybko paruje, co minimalizuje ryzyko uszkodzenia wrażliwych komponentów podzespołów. W przemyśle elektronicznym i serwisach zajmujących się naprawą sprzętu audio-wideo, izopropanol jest standardem w procesach konserwacyjnych. Zaleca się stosować roztwór o stężeniu co najmniej 91%, aby zapewnić maksymalną efektywność w usuwaniu zanieczyszczeń. Przykładowo, podczas konserwacji napędu, należy nawilżyć bawełnianą szmatkę izopropanolem i delikatnie przetrzeć soczewkę, co nie tylko przywróci jej czystość, ale również poprawi jakość odczytu danych. Dobrą praktyką jest unikanie nadmiaru cieczy oraz stosowanie odpowiednich narzędzi, aby nie uszkodzić delikatnych komponentów napędu.

Pytanie 4

W układzie elektronicznym uległa uszkodzeniu dioda prostownicza o następujących parametrach: Urm=200 V, lfav=1 A. Dobierz z tabeli parametry diody, którą należy zastosować, aby naprawić układ.

Maksymalne
napięcie wsteczne.
URM [V]
Maksymalny
średni prąd przewodzenia.
IFAV [A]
A.10001
B.1000,8
C.1003
D.3000,5
A. C.
B. B.
C. A.
D. D.
Odpowiedź A jest prawidłowa, ponieważ dioda prostownicza, którą wybrano, ma parametry URM=1000 V i IFAV=1 A, co przewyższa wymagania uszkodzonej diody o parametrach URM=200 V i IFAV=1 A. Wybór diody o wyższych parametrach jest zgodny z najlepszymi praktykami w dziedzinie elektroniki, gdzie zawsze należy stosować komponenty z odpowiednim marginesem bezpieczeństwa. W przypadku diod prostowniczych, ważne jest, aby napięcie wsteczne (URM) było wyższe niż maksymalne napięcie, które może wystąpić w obwodzie, aby uniknąć uszkodzenia diody. Ponadto, prąd przewodzenia (IFAV) powinien być co najmniej równy prądowi, który przepływa przez diodę w normalnych warunkach pracy. Wybierając komponenty, warto także zwrócić uwagę na parametry dynamiczne diody, takie jak czas przełączania oraz współczynnik temperatury, co ma znaczenie w aplikacjach, gdzie dioda pracuje w zmiennych warunkach. Selekcja odpowiednich komponentów na podstawie ich specyfikacji jest kluczowa dla niezawodności i trwałości układów elektronicznych.

Pytanie 5

Jakie substancje stosuje się do wytrawiania płytek PCB?

A. nadsiarczan sodowy
B. alkohol izopropylowy
C. pasta lutownicza
D. topnik
Pasta lutownicza to materiał stosowany w procesie lutowania, a nie wytrawiania. Jej głównym zadaniem jest ułatwienie połączeń między elementami elektronicznymi a płytkami PCB poprzez obniżenie temperatury topnienia lutowia. Zastosowanie pasty lutowniczej w kontekście wytrawiania jest mylne, ponieważ nie ma ona właściwości chemicznych, które umożliwiałyby efektywne usunięcie warstwy miedzi. Topnik również nie jest odpowiednim środkiem do wytrawiania. Jest on stosowany w lutowaniu w celu poprawy przyczepności lutowia do powierzchni, jednak nie ma on zdolności do rozpuszczania miedzi. Natomiast alkohol izopropylowy jest stosowany głównie do czyszczenia elementów elektronicznych, usuwania zanieczyszczeń lub kalafonii po lutowaniu, a nie do procesu wytrawiania. Często zdarza się, że nieprecyzyjne rozumienie ról różnych substancji prowadzi do błędnych wniosków, co jest typowe wśród osób dopiero uczących się technologii PCB. Ważne jest, aby podczas nauki zagłębiać się w specyfikę zastosowań chemikaliów oraz procesów technologicznych, aby uniknąć mylenia ich funkcji oraz zapewnić zgodność z najlepszymi praktykami w branży elektroniki.

Pytanie 6

Przełącznik satelitarny pozwala na podłączenie

A. dwóch transponderów do jednej anteny satelitarnej
B. dwóch konwerterów do jednego tunera
C. jednego konwertera do dwóch tunerów
D. jednego transpondera do dwóch anten satelitarnych
Wybór opcji, która sugeruje podłączenie dwóch transponderów do jednej anteny satelitarnej, jest błędny. Transpondery są komponentami znajdującymi się bezpośrednio na satelitach, które odbierają sygnały radiowe z Ziemi i przesyłają je z powrotem. Antena satelitarna nie może obsługiwać dwóch transponderów jednocześnie, ponieważ transpondery działają na różnych częstotliwościach i mają swoje unikalne parametry sygnałowe. Podobna pomyłka występuje w przypadku opcji, która mówi o podłączeniu jednego konwertera do dwóch tunerów. Tuner to urządzenie, które odbiera sygnał od konwertera, a jeden konwerter jest w stanie obsługiwać tylko jeden tuner w danym momencie, chyba że użyje się specjalnych rozwiązań, jak multiswitch. Z kolei możliwość podłączenia jednego transpondera do dwóch anten satelitarnych jest technicznie nieosiągalna, ponieważ transponder nie wysyła sygnału w sposób, który pozwalałby na jednoczesne odbieranie przez różne anteny. Kluczowe jest zrozumienie, że każdy komponent w systemie satelitarnym ma swoje specyficzne zadania i ograniczenia, a ich błędne zestawienie może prowadzić do degradacji jakości sygnału lub całkowitej jego utraty. Takie pomyłki mogą wynikać z niepełnego zrozumienia funkcji poszczególnych elementów systemu satelitarnego.

Pytanie 7

Objawem zużycia głowicy laserowej w odtwarzaczu CD będzie

A. obniżenie prądu lasera
B. spadek obrotów silnika
C. wzrost obrotów silnika
D. wzrost prądu lasera
Zmniejszenie obrotów silnika, zmniejszenie prądu lasera oraz zwiększenie obrotów silnika są mylnymi interpretacjami symptomów związanych z zużyciem głowicy laserowej. Zmniejszenie obrotów silnika w odtwarzaczu CD zwykle jest związane z problemami z mechaniką napędu lub zasilaniem, a nie bezpośrednio z głowicą laserową. Gdy silnik nie może osiągnąć odpowiednich obrotów, może to wpłynąć na jakość odczytu, jednak nie jest to objaw zużycia głowicy. Z kolei zmniejszenie prądu lasera wskazuje na problem z jego wydajnością, co może oznaczać, że laser nie jest w stanie poprawnie skanować płyty, ale nie jest to symptom zużycia, a raczej efekt ewentualnej awarii. Zwiększenie obrotów silnika również nie jest powiązane z zużyciem lasera; może to sugerować, że napęd próbuje nadrobić straty wynikające z niewłaściwego odczytu, co jest symptomem problemów mechanicznych. Do typowych błędów myślowych prowadzących do takich niepoprawnych wniosków należy sądzenie, że wszystkie zmiany w parametrach pracy urządzenia są bezpośrednio związane z głowicą laserową. Kluczowe jest zrozumienie, że wiele komponentów urządzeń elektronicznych współpracuje ze sobą i zmiana jednego z parametrów może wynikać z różnych przyczyn, dlatego diagnostyka powinna być kompleksowa.

Pytanie 8

Co obejmuje schemat montażu?

A. spis elementów zamiennych oraz zasady użytkowania urządzenia
B. schematy blokowe ilustrujące współdziałanie części
C. rysunki złożeniowe całości produktów z określonymi warunkami technicznymi
D. metodę łączenia komponentów w urządzeniu oraz ich kolejność montażu
Wskazanie, że schemat montażowy zawiera wykaz części zamiennych oraz zasady eksploatacji urządzenia jest mylące, ponieważ te elementy są związane z dokumentacją eksploatacyjną, a nie z bezpośrednim procesem montażu. Wykaz części zamiennych jest istotny, ale jego miejsce znajduje się w dokumentacji serwisowej, która ma na celu ułatwienie użytkownikom dostępu do niezbędnych komponentów w przypadku awarii. Zasady eksploatacji dotyczą użytkowania urządzenia, a nie jego montażu, co prowadzi do błędnego zrozumienia celu schematu montażowego. Kolejny aspekt to schematy blokowe, które ilustrują współdziałanie elementów, ale nie dostarczają informacji o ich fizycznym połączeniu ani o kolejności montażu, co jest kluczowe dla zastosowań praktycznych. Rysunki złożeniowe, chociaż również ważne, skupiają się na przedstawieniu całości wyrobu, a nie na detalach montażu, co czyni je niewłaściwymi w kontekście tego pytania. Powszechny błąd myślowy polega na myleniu dokumentacji montażowej z innymi formami dokumentacji technicznej, co może prowadzić do nieefektywnego montażu oraz zwiększenia ryzyka awarii w trakcie eksploatacji.

Pytanie 9

Uszkodzony przewód koncentryczny w systemie monitoringu można zastąpić stosując połączenie

A. skrętką komputerową i symetryzatorem
B. kablem antenowym o impedancji 300 Ω
C. skrętką komputerową z transformatorami pasywnymi
D. linką miedzianą o dużej średnicy
Skrętka komputerowa z transformatorami pasywnymi jest odpowiednim rozwiązaniem do zastąpienia uszkodzonego przewodu koncentrycznego w systemie dozorowym, ponieważ pozwala na przesył sygnału w sposób, który minimalizuje straty i zakłócenia. Dzięki zastosowaniu transformatorów pasywnych, sygnał z kamery lub innego źródła jest konwertowany na sygnał różnicowy, co zwiększa odporność na zakłócenia elektromagnetyczne. Przykładem takiego zastosowania jest integracja systemów CCTV z istniejącą infrastrukturą sieciową, gdzie wykorzystuje się skrętkę do przesyłania sygnału wideo na dużą odległość. W praktyce, stosując skrętkę komputerową, należy przestrzegać norm określonych w standardzie TIA/EIA-568, które określają wymagania dla okablowania strukturalnego. Użycie skrętki z transformatorami pasywnymi wpisuje się zatem w dobre praktyki branżowe, zapewniając nie tylko wydajność, ale i elastyczność w instalacji.

Pytanie 10

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. porażenia prądem elektrycznym
B. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
C. wyładowania elektrostatycznego groźnego dla układów typu MOS
D. wpływu pola magnetycznego na organizm ludzki
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.

Pytanie 11

Wyłącznik, który chroni instalację elektryczną przed skutkami przeciążenia, to

A. różnicowoprądowy
B. czasowy
C. podnapięciowy
D. nadprądowy
Różnicowoprądowy wyłącznik jest elementem ochrony przed porażeniem elektrycznym, a nie przeciążeniem. Jego głównym zadaniem jest wykrywanie różnic w prądzie płynącym w przewodach fazowym i neutralnym, co może wskazywać na upływ prądu do ziemi. Zastosowanie tego typu wyłącznika jest kluczowe w miejscach, gdzie istnieje ryzyko kontaktu z wodą lub w przypadku urządzeń przenośnych, ale nie chroni on przed skutkami przeciążenia w instalacji elektrycznej, co może prowadzić do uszkodzenia przewodów. Wyłącznik czasowy nie ma zastosowania w kontekście przeciążenia, ponieważ jego funkcja polega na automatycznym włączaniu lub wyłączaniu obwodów po określonym czasie, co nie wpływa na ochronę przed prądem, który przekracza określoną wartość. Podobnie, wyłącznik podnapięciowy jest używany do ochrony przed spadkami napięcia, a nie przed przeciążeniem. Typowym błędem jest mylenie tych różnych rodzajów wyłączników, co może prowadzić do niewłaściwego doboru zabezpieczeń w instalacjach elektrycznych. Ważne jest zrozumienie, że każdy z tych elementów pełni inną funkcję, a ich zastosowanie wymaga znajomości specyfiki, norm i wymagań dotyczących zabezpieczeń elektrycznych.

Pytanie 12

W przedsiębiorstwie zajmującym się produkcją układów elektronicznych złożono zamówienie na 20 sztuk pilotów telewizyjnych. Cena komponentów potrzebnych do zrealizowania jednego pilota wynosi 30 zł. Koszt pracy pracownika przy wytworzeniu jednego pilota to 10 zł. Jak będzie wyglądać całkowity koszt zamówienia po uwzględnieniu 5% zniżki?

A. 840 zł
B. 760 zł
C. 800 zł
D. 720 zł
Obliczenie całkowitego kosztu zamówienia 20 sztuk pilotów TV wymaga uwzględnienia kosztów elementów oraz kosztów robocizny. Koszt elementów dla jednego pilota wynosi 30 zł, co daje łącznie 600 zł za 20 sztuk (20 x 30 zł). Dodatkowo, koszt wykonania jednego pilota przez pracownika wynosi 10 zł, co przekłada się na 200 zł za 20 pilotów (20 x 10 zł). Zatem łączny koszt produkcji wynosi 800 zł (600 zł + 200 zł). Po zastosowaniu 5% rabatu, który wynosi 40 zł (5% z 800 zł), całkowity koszt zamówienia obniża się do 760 zł (800 zł - 40 zł). Tego rodzaju kalkulacja jest standardową praktyką w branży produkcyjnej, gdzie rabaty są często stosowane przy większych zamówieniach, co może znacznie wpłynąć na ostateczny koszt. Zrozumienie tych obliczeń jest kluczowe dla zarządzania kosztami oraz efektywności finansowej w firmach produkcyjnych.

Pytanie 13

Multiswitch to urządzenie, które pozwala na

A. rozgałęzienie sygnału wideo, aby móc wyświetlić obraz na wielu monitorach
B. łączenie odmiennych sieci komputerowych
C. dystrybucję sygnału telewizyjnego satelitarnego i naziemnego do wielu odbiorników
D. zapisywanie na twardym dysku sygnałów wideo pochodzących z różnych kamer
Multiswitch to super ważne urządzenie w systemach telewizji satelitarnej i naziemnej. Dzięki niemu można rozdzielać sygnał do kilku odbiorników jednocześnie. Jak to działa? Multiswitch dostaje sygnały z różnych źródeł, jak satelity czy anteny naziemne, a potem dzieli to na różne wyjścia. To świetne, bo w domach, gdzie masz kilka telewizorów, każdy może oglądać coś innego. A co więcej, multiswitch dba o to, żeby sygnał był jak najlepszej jakości – tak, żebyś nie miał zakłóceń, co jest całkiem istotne. W większych instalacjach, jak w blokach, multiswitchy można łączyć, co daje jeszcze większą elastyczność. Warto pamiętać, żeby dobierać multiswitch z odpowiednią liczbą wyjść, bo za mało wyjść może prowadzić do problemów z sygnałem. Takie rzeczy są istotne, żeby telewizja działała bez zarzutu.

Pytanie 14

Czujnik kontaktronowy to komponent, który reaguje głównie na zmiany

A. temperatury
B. pola magnetycznego
C. natężenia światła
D. wilgotności
Zauważyłem, że czujniki kontaktronowe to w ogóle nie są te, które służą do wykrywania natężenia oświetlenia. One są inne, bo detekcja pola magnetycznego to zupełnie inna sprawa niż pomiar intensywności światła. Zdecydowanie lepiej w tej roli sprawdzają się fotorezystory czy fotodiody. Odpowiedzi na temat temperatury i wilgoci też mogą być mylące. Czujniki temperatury, takie jak termopary czy termistory, są do pomiaru ciepła, a czujniki wilgotności, jak higrometry, monitorują wilgotność powietrza. Obie te rzeczy działają na różnych zasadach, co nie ma nic wspólnego z kontaktronami. Mylenie tych technologii często wynika z tego, że nie do końca rozumiemy, jak różne czujniki działają i do czego są przeznaczone. Największym błędem jest myślenie, że różne czujniki można używać zamiennie, co potem prowadzi do błędnych wyników i niepoprawnych interpretacji. Ważne jest, żeby zrozumieć, do czego każdy czujnik służy, żeby potem można go odpowiednio wykorzystać.

Pytanie 15

Jak określa się poziom sygnału w gniazdku abonenckim telewizji naziemnej?

A. dBµΩ
B. dBµV
C. dBmW
D. dBmA
Poprawna odpowiedź to dBµV, co oznacza decybele mikrovoltów. Jest to jednostka miary, która pozwala na określenie poziomu sygnału w systemach telekomunikacyjnych, w tym w telewizji naziemnej. Wartość poziomu sygnału w dBµV jest kluczowa dla oceny jakości odbioru sygnału telewizyjnego, gdyż zbyt niski poziom może prowadzić do zakłóceń w odbiorze, a w rezultacie do utraty jakości obrazu i dźwięku. Z przeprowadzonych badań wynika, że optymalny poziom sygnału w gniazdku abonenckim powinien wynosić od 60 do 80 dBµV, co zapewnia stabilny odbiór sygnału bez zakłóceń. W praktyce, technicy często korzystają z mierników sygnału, które umożliwiają precyzyjne określenie poziomu sygnału w dBµV, co jest niezbędne podczas instalacji i konserwacji systemów antenowych. Zgodnie z normami branżowymi, monitorowanie poziomu sygnału w tej jednostce jest standardem w projektowaniu i eksploatacji infrastruktury telewizyjnej.

Pytanie 16

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. niesymetryczne (unbalanced)
B. sygnalizacyjne YKSwXs
C. symetryczne (balanced)
D. sygnalizacyjne YKSY
Odpowiedź "symetryczne (balanced)" jest poprawna, ponieważ w przypadku połączeń znacznie odległych urządzeń akustycznych ważne jest minimalizowanie zakłóceń elektromagnetycznych oraz strat sygnału. Kable symetryczne są zaprojektowane w taki sposób, że wykorzystują dwa przewody do przesyłania sygnału, co pozwala na zniesienie zakłóceń dzięki różnicy potencjałów między nimi. W praktyce oznacza to, że sygnał przesyłany jest w formie różnicy napięć, co czyni go odpornym na wpływ zewnętrznych źródeł zakłóceń, takich jak inne urządzenia elektroniczne czy linie energetyczne. Przykładem zastosowania kabli symetrycznych są profesjonalne systemy nagłośnieniowe, gdzie długie odległości pomiędzy mikrofonami a mikserami wymagają wysokiej jakości przesyłu dźwięku bez straty jego integralności. W branży audio standardem jest używanie kabli XLR, które są typowymi kablami symetrycznymi, zapewniającymi niezawodność i wysoką jakość dźwięku. Znajomość tych aspektów jest niezbędna dla każdego technika dźwięku, aby zapewnić optymalne działanie systemów akustycznych.

Pytanie 17

Który z wymienionych komponentów obwodów elektronicznych wytwarza sygnał napięciowy pod działaniem pola magnetycznego i znajduje zastosowanie w miernikach pola magnetycznego?

A. Hallotron
B. Kontaktron
C. Warystor
D. Piezorezystor
Kontaktron to element, który działa na zasadzie zjawiska magnetycznego, ale jego zastosowanie jest ograniczone w porównaniu do hallotronu. Kontaktrony są używane głównie jako przełączniki w obwodach, które wykorzystują mechaniczne zamknięcie obwodu w odpowiedzi na obecność pola magnetycznego. W przeciwieństwie do hallotronów, które generują sygnał analogowy, kontaktrony oferują jedynie sygnał cyfrowy, co ogranicza ich funkcjonalność w aplikacjach wymagających precyzyjnego pomiaru. Warystor, natomiast, jest elementem pasywnym, który zabezpiecza obwody przed przepięciami, a nie generuje sygnałów na podstawie pola magnetycznego. Działa na zasadzie zmiany oporu przy określonym napięciu, co również eliminuje jego zastosowanie w kontekście pomiarów pola magnetycznego. Piezorezystor to kolejny ciekawy element, który zmienia opór elektryczny pod wpływem sił mechanicznych, jednak nie ma on związku z polem magnetycznym. Typowym błędem myślowym, który prowadzi do wyboru nieprawidłowych odpowiedzi, jest mylenie funkcji i zasad działania różnych elementów elektronicznych. Zrozumienie, że nie każdy element, który reaguje na zjawiska fizyczne, ma zdolność do generowania sygnału napięciowego pod wpływem pola magnetycznego, jest kluczowe dla poprawnego rozwiązywania zadań z zakresu elektroniki. Dlatego ważne jest, aby przy wyborze odpowiedzi kierować się nie tylko funkcjonalnością, ale także specyfiką zastosowań danego elementu.

Pytanie 18

Nie wolno stosować gaśnicy do gaszenia pożaru w instalacji elektrycznej, gdy jest pod napięciem?

A. śniegowej
B. pianowej
C. proszkowej
D. halonowej
Gaśnica pianowa jest odpowiednia do gaszenia pożarów instalacji elektrycznych, ponieważ nie przewodzi prądu. W przypadku pożaru w instalacji elektrycznej, kluczowym aspektem jest unikanie używania środków gaśniczych, które mogą przewodzić prąd, co może prowadzić do porażenia prądem oraz dodatkowego zagrożenia pożarowego. Standardy ochrony przeciwpożarowej zalecają stosowanie gaśnic pianowych, które tworzą warstwę piany, izolując ogień od tlenu, co skutecznie gasi ogień. Przykładem zastosowania gaśnicy pianowej może być sytuacja, w której dochodzi do zapalenia się przewodów elektrycznych w obiektach przemysłowych. W takich przypadkach, użycie gaśnicy pianowej nie tylko jest zgodne z zasadami bezpieczeństwa, ale również jest skuteczne w ograniczaniu skutków pożaru. Zgodnie z normami, w budynkach użyteczności publicznej oraz w różnych obiektach przemysłowych powinny być dostępne gaśnice pianowe, które są przeszkolone do użycia przez pracowników, co zwiększa bezpieczeństwo w razie zagrożenia.

Pytanie 19

Gdy zachodzi potrzeba połączenia światłowodu ze skrętką, co należy użyć?

A. router
B. konwerter
C. wzmacniak
D. koncentrator
Wzmacniak jest urządzeniem, które służy do zwiększania mocy sygnału, jednak nie jest odpowiedni do konwersji sygnałów między różnymi mediami transmisyjnymi, jak w przypadku światłowodu i skrętki. Użycie wzmacniaka w takim kontekście mogłoby prowadzić do dalszych strat sygnału i zakłóceń, gdyż wzmacniak nie rozwiązuje problemu różnic w technologii przesyłania danych. Router z kolei to urządzenie, które kieruje ruch sieciowy między różnymi sieciami, ale również nie posiada zdolności konwersji między typami kabli. Routery są niezbędne w złożonych sieciach, gdzie konieczne jest zarządzanie ruchem, jednak nie są one przeznaczone do łączenia światłowodu z kablami miedzianymi. Koncentrator to urządzenie, które umożliwia połączenie wielu urządzeń w sieci lokalnej, ale nie jest w stanie przeprowadzać konwersji sygnału. Zastosowanie koncentratora w sytuacji wymagającej połączenia dwóch różnych typów mediów transmisyjnych byłoby niewłaściwe, prowadząc do problemów z komunikacją i transmisją danych. Typowe błędy myślowe, które mogą prowadzić do wyboru tych niewłaściwych urządzeń, obejmują mylenie funkcji wzmacniaka czy routera z funkcjonalnością konwertera, co może wynikać z braku zrozumienia podstawowych różnic w ich działaniu oraz przeznaczeniu.

Pytanie 20

Ile żył jest potrzebnych do podłączenia unifonu, jeśli bramofon działa w systemie domofonowym 4+N?

A. 10
B. 4
C. 5
D. 8
Wybór niewłaściwej liczby żył do podłączenia unifonu w systemie domofonowym 4+N często wynika z niepełnego zrozumienia zasad działania tego typu instalacji. System 4+N oznacza, że dla efektywnej pracy systemu oraz utrzymania jakości sygnału wymagane są cztery żyły do przesyłania dźwięku oraz zasilania, a dodatkowa żyła N pełni funkcję neutralną. W przypadku wyboru odpowiedzi 4, mylone jest pojęcie liczby przewodów sygnalizacyjnych z wymaganiami zasilania, co może prowadzić do problemów z funkcjonowaniem całego systemu. Odpowiedzi takie jak 10 czy 8 wskazują na nadmiar przewodów, co jest niezgodne z zasadą prostoty i efektywności w instalacjach elektronicznych. Przy projektowaniu systemów domofonowych, warto trzymać się sprawdzonych schematów i standardów, które podkreślają, że każdy dodatkowy przewód wprowadza nie tylko niepotrzebne komplikacje, ale także zwiększa koszty instalacji oraz ryzyko błędów. Dlatego kluczowe jest zrozumienie, że liczba żył w systemie jest ściśle określona przez jego specyfikację, a nie intuicję czy domysły. Właściwe zastosowanie i zrozumienie architektury systemu zapewnia jego optymalne działanie oraz łatwiejszą diagnostykę w przypadku awarii.

Pytanie 21

Skrót CCTV odnosi się do telewizji

A. przemysłowej
B. satelitarnej
C. naziemnej
D. kablowej
Odpowiedzi takie jak kablowa, naziemna czy satelitarna odnoszą się do różnych technologii transmisji sygnału telewizyjnego, które są całkowicie odrębne od pojęcia CCTV. Telewizja kablowa, na przykład, polega na przesyłaniu sygnału przez sieci kablowe, co pozwala na odbieranie wielu kanałów telewizyjnych, ale nie obejmuje systemów monitoringu. Telewizja naziemna to system, który korzysta z sygnałów radiowych przesyłanych z nadajników do anten, umożliwiający odbieranie programów telewizyjnych przez odbiorniki telewizyjne, jednak również nie ma związku z zamkniętymi obiegami, charakterystycznymi dla CCTV. Telewizja satelitarna działa na zasadzie przesyłania sygnałów z satelitów do anten satelitarnych, co również służy do oglądania programów telewizyjnych, a nie monitorowania przestrzeni. Pojęcia te mogą być mylące, gdyż wszystkie odnoszą się do różnych metod transmisji treści audiowizualnych, co może prowadzić do błędnych wniosków o ich funkcjonalności. Zrozumienie różnic pomiędzy tymi systemami jest kluczowe, aby uniknąć nieporozumień dotyczących ich zastosowania i technologii. W kontekście monitoringu, CCTV jest wyspecjalizowanym systemem, który ma na celu zwiększenie bezpieczeństwa i nadzoru, a nie dostarczanie treści rozrywkowych, co wyróżnia go na tle innych form telewizji.

Pytanie 22

U osoby, która została porażona prądem elektrycznym, występuje zatrzymanie akcji serca oraz brak oddechu. W trakcie udzielania pierwszej pomocy należy wykonać masaż serca oraz sztuczne oddychanie w następującym tempie

A. 2 oddechy przy 5 uciskach na serce
B. 5 oddechów przy 5 uciskach na serce
C. 2 oddechy przy 30 uciskach na serce
D. 5 oddechów przy 30 uciskach na serce
Odpowiedź '2 oddechy na 30 ucisków na serce' jest zgodna z aktualnymi wytycznymi dotyczącymi resuscytacji krążeniowo-oddechowej (RKO) w przypadku dorosłych. Zgodnie z wytycznymi American Heart Association oraz Europejskiej Rady Resuscytacji, stosuje się stosunek 30 ucisków klatki piersiowej do 2 oddechów ratunkowych. Uciskanie serca ma na celu zapewnienie krążenia krwi w organizmie, a sztuczne oddychanie dostarcza tlen do płuc osoby poszkodowanej. Taki schemat działania jest niezbędny, aby zminimalizować ryzyko uszkodzenia mózgu i innych organów spowodowanego brakiem tlenu. Przykładem praktycznym może być sytuacja, w której świadek zdarzenia musi szybko zareagować, aby podjąć RKO, co znacząco zwiększa szanse na przeżycie osoby poszkodowanej. Warto również pamiętać o tym, że po wykonaniu 30 ucisków, należy upewnić się, że drogi oddechowe są drożne przed podaniem oddechów ratunkowych, co jest kluczowe dla skuteczności resuscytacji.

Pytanie 23

Kiedy instalacja systemu monitoringu realizowana jest przy użyciu przewodu współosiowego zakończonego złączami typu F, do podłączenia kamery analogowej należy użyć złącza typu

A. F/IEC męski
B. F/BNC
C. F/IEC żeński
D. F/chinch
Odpowiedź F/BNC jest poprawna, ponieważ złącze BNC (Bayonet Neill-Concelman) jest standardowym złączem stosowanym w kamerach analogowych. Kiedy instalacja monitoringu wykorzystuje przewody współosiowe, zakończone końcówkami typu F, konieczne jest zastosowanie odpowiedniej przejściówki, aby umożliwić podłączenie kamery. Złącza BNC zapewniają solidne połączenie oraz łatwość w instalacji, co jest kluczowe w systemach monitoringu, gdzie niezawodność i jakość sygnału są priorytetem. Dodatkowo, złącza te charakteryzują się niskimi stratami sygnału, co pozwala na przesyłanie obrazów w wysokiej rozdzielczości. Przykładowo, w systemach CCTV, gdzie wykorzystywane są kamery analogowe, złącza BNC są powszechnie stosowane, ponieważ umożliwiają kompatybilność z wieloma modelami kamer. Wspierają one również standardy przesyłu sygnału wideo, co jest istotne w kontekście zapewnienia wysokiej jakości obrazu oraz stabilności połączeń w systemach monitorujących.

Pytanie 24

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. direktory
B. dipole
C. symetryzatory
D. fidery
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 25

Aby zrealizować nierozłączne połączenie włókien światłowodowych, jakie urządzenie jest niezbędne?

A. zgrzewarka.
B. lutownica.
C. klamry.
D. spawarka.
Zaciskacz, lutownica oraz zgrzewarka to narzędzia, które są stosowane w innych kontekstach i nie nadają się do wykonywania połączeń włókien światłowodowych. Zaciskacz jest używany w przypadku kabli miedzianych, gdzie kluczowe jest dokładne zaciśnięcie złączy, jednak nie potrafi on łączyć włókien optycznych w sposób gwarantujący ich integralność. W odniesieniu do lutownicy, użycie tego narzędzia w kontekście włókien światłowodowych jest całkowicie niewłaściwe, ponieważ lutowanie polega na łączeniu metali przez topnienie, co nie ma zastosowania w przypadku delikatnych włókien szklanych. Lutownica może uszkodzić włókna i prowadzić do znacznych strat sygnału. Zgrzewarka, z drugiej strony, jest zazwyczaj używana do łączenia elementów termoplastycznych, a nie do spawania włókien optycznych. Użycie zgrzewarki w tym kontekście może doprowadzić do uszkodzenia włókien poprzez niewłaściwe zastosowanie ciepła. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z mylenia aplikacji narzędzi oraz braku zrozumienia specyfiki technologii światłowodowej. Kluczowe jest, aby przy pracy z włóknami optycznymi korzystać ze specjalistycznych narzędzi, które są zgodne z obowiązującymi standardami branżowymi, co pozwoli na uzyskanie wysokiej jakości połączeń.

Pytanie 26

Aby połączyć dwa styki alarmowe z dwóch czujników PIR typu NC w jedno wejście centrali, należy je podłączyć

A. szeregowo
B. równolegle
C. w gwiazdę
D. w trójkąt
Odpowiedź "szeregowo" to strzał w dziesiątkę. Jak masz czujki PIR typu NC, to muszą być połączone w taki sposób, aby alarm załączał się, gdy którakolwiek czujka wyczuje ruch. Łączenie ich szeregowo to świetny pomysł, bo wtedy sygnał przechodzi przez wszystkie czujki, co sprawia, że system jest bardziej niezawodny. W praktyce, jak jedna czujka wykryje ruch, to obwód się przerywa i alarm się włącza. Fajnie też, że przy takim połączeniu łatwiej znaleźć ewentualne usterki, bo szybko wiesz, która czujka nie działa. No i oszczędność miejsca w szafce rozdzielczej to zawsze na plus – łatwiej utrzymać porządek.

Pytanie 27

W trakcie serwisowania, dotyczącego wylutowywania komponentów elektronicznych w wzmacniaczu dźwiękowym, pracownik powinien mieć

A. fartuch bawełniany
B. buty na izolowanej podeszwie
C. okulary ochronne
D. rękawice ochronne
Na pierwszy rzut oka można sądzić, że okulary ochronne, rękawice ochronne i buty na izolowanej podeszwie również mogą być odpowiednimi elementami odzieży ochronnej podczas prac serwisowych. Jednak ich zastosowanie nie jest wystarczające w kontekście wylutowywania podzespołów elektronicznych. Okulary ochronne są ważne do ochrony oczu przed odpryskami i substancjami chemicznymi, jednak nie chronią one całego ciała przed zanieczyszczeniem oraz niepełnym zabezpieczeniem odzieży. Rękawice ochronne mogą być niezbędne, gdy pracujemy z substancjami niebezpiecznymi, jednak w przypadku wylutowywania, ich stosowanie może być niewygodne i obniżać precyzję manipulacji delikatnymi komponentami. Wiele osób może również mylnie sądzić, że buty na izolowanej podeszwie są wystarczające do ochrony w takim środowisku; owszem, chronią one przed porażeniem prądem, ale nie zabezpieczają w wystarczającym stopniu przed chemikaliami czy odpadami, które mogą być wytwarzane podczas prac serwisowych. Dlatego kluczowe jest zrozumienie, że odpowiedni fartuch bawełniany stanowi najbardziej wszechstronną i skuteczną ochronę, zapewniając jednocześnie komfort i bezpieczeństwo. Efektywna odzież ochronna powinna być zgodna z zaleceniami BHP oraz standardami branżowymi, co w praktyce oznacza, że fartuch bawełniany jest najodpowiedniejszym rozwiązaniem w tym przypadku.

Pytanie 28

Jakim symbolem oznaczany jest parametr głośników wskazujący moc ciągłą (moc znamionową)?

A. PMPO
B. Q
C. RMS
D. S
Zazwyczaj w branży audio można spotkać różne oznaczenia dotyczące mocy głośników, co może prowadzić do nieporozumień. PMPO, czyli Peak Music Power Output, to parametr, który jest często wykorzystywany przez producentów do określenia maksymalnej mocy, jaką głośnik może osiągnąć przez krótki okres czasu. Jednak nie oddaje on rzeczywistej mocy, jaką głośnik może utrzymać w normalnych warunkach użytkowania, co czyni go mniej użytecznym dla konsumentów. Oznaczenie S, które może być mylone z mocą, w rzeczywistości odnosi się do różnych parametrów audio, takich jak impedancja lub inne techniczne aspekty, które nie są bezpośrednio związane z mocą. Podobnie, Q jest terminem używanym w kontekście filtrów audio i nie ma odniesienia do mocy głośników. Użytkownicy często popełniają błąd, zakładając, że wyższa wartość PMPO oznacza lepszą jakość dźwięku, podczas gdy kluczowym wskaźnikiem jest moc RMS, która dostarcza bardziej wiarygodnych informacji o zdolności głośnika do odtwarzania dźwięku w sposób ciągły i stabilny. Wybór głośnika powinien być oparty na analizie parametrów RMS, które są zgodne z najlepszymi praktykami branżowymi oraz standardami jakości, a nie na chwilowych maksymalnych wartościach pomiarowych, które mogą wprowadzać w błąd.

Pytanie 29

Mechanizmem zabezpieczającym przed porażeniem elektrycznym, który automatycznie przerywa zasilanie w przypadku wystąpienia nadmiernego prądu doziemnego, jest

A. wyłącznik różnicowoprądowy
B. zerowanie
C. uziemienie ochronne
D. uziemienie robocze
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które ma na celu automatyczne odłączenie zasilania w przypadku wystąpienia nadmiernego prądu doziemnego. Działa na zasadzie monitorowania różnicy między prądem wpływającym a wpływającym do obwodu. W momencie, gdy ta różnica przekroczy ustalony próg (zazwyczaj 30 mA dla obwodów ochrony), wyłącznik natychmiast przerywa obwód, co znacząco redukuje ryzyko porażenia prądem elektrycznym. RCD jest szczególnie istotny w miejscach, gdzie używane są urządzenia elektryczne w wilgotnym lub mokrym otoczeniu, takich jak łazienki czy kuchnie. W stosunku do standardów, takich jak norma PN-EN 61008, wyłączniki różnicowoprądowe są zalecane do stosowania w instalacjach elektrycznych jako element zwiększający bezpieczeństwo użytkowników. W praktyce montaż RCD może być również wymagany podczas przeglądów technicznych i modernizacji instalacji elektrycznych, co podkreśla jego znaczenie w zapewnieniu bezpieczeństwa elektrycznego.

Pytanie 30

Linka charakteryzująca się zwiększoną elastycznością, utworzona z wielu cienkich drucików miedzianych, nosi oznaczenie literowe

A. LgY
B. YDYp
C. DY
D. YDY
Odpowiedź LgY jest poprawna, ponieważ oznaczenie to odnosi się do linki o zwiększonej giętkości, która jest wykonana z wielu drobnych drucików miedzianych. W kontekście zastosowań elektrycznych i elektronicznych, linki te charakteryzują się wysoką elastycznością i odpornością na złamania, co jest kluczowe w przypadku aplikacji, gdzie ruch lub wibracje mogą prowadzić do uszkodzenia materiałów. Przykłady zastosowania obejmują połączenia w instalacjach audio, gdzie jakość przewodzenia sygnału jest istotna, a także w urządzeniach przenośnych, gdzie elastyczność przewodów pozwala na swobodę ruchu. Oznaczenie LgY jest powszechnie stosowane w branży kablowej, a jego zastosowanie jest zgodne z normami IEC 60228, które dotykają klasy przewodników oraz ich właściwości mechanicznych. Przewody LgY są również zgodne z normami jakości ISO, co potwierdza ich przydatność w zastosowaniach o wysokich wymaganiach technicznych.

Pytanie 31

Podstawowym zadaniem zastosowania optoizolacji pomiędzy obwodami elektronicznymi jest

A. zwiększenie wydolności wyjściowej obwodu elektronicznego
B. dopasowanie impedancji obwodów elektronicznych
C. dopasowanie poziomów napięć między obwodami elektronicznymi
D. galwaniczne oddzielenie obwodów elektronicznych
Optoizolacja w układach elektronicznych nie służy dopasowaniu impedancyjnemu, które jest ważne, gdy mówimy o transferze energii w systemach RF czy audio. Dopasowanie impedancji jest kluczowe, żeby zminimalizować straty energii i refleksje sygnału, ale to nie cel optoizolacji. Jak ktoś mówi, że optoizolacja ma na celu dopasowanie napięć między układami, to też nie do końca tak jest. Owszem, napięcia mogą się różnić w różnych układach, ale optoizolacja nie ma za zadanie ich harmonizować, tylko pozwala na niezależne działanie tych układów, bez ryzyka uszkodzenia z powodu różnic w napięciach. Poza tym, zwiększenie obciążalności wyjściowej układu też nie jest celem optoizolacji, bo optoizolator nie zwiększa tej maksymalnej wartości prądu. Mylenie tych pojęć może prowadzić do słabego projektowania układów, gdzie optoizolacja nie działa jak powinna, a to może zwiększać ryzyko awarii. Dlatego dobrze jest zrozumieć, jak działa optoizolacja, żeby skutecznie projektować układy i zapewnić ich niezawodność.

Pytanie 32

Wzrost efektywnej pojemności torów przesyłowych dla kabla UTP wskazuje na

A. zbyt dużą rezystancję pętli
B. przerwanie jednej z żył
C. błędne podłączenie kabla
D. uszkodzenie izolacji
Zbyt duża rezystancja pętli nie jest bezpośrednio związana ze wzrostem pojemności skutecznej torów transmisyjnych. Wysoka rezystancja w rzeczywistości może wskazywać na problemy z przewodnictwem, takie jak korozja lub nieodpowiednie połączenia, ale nie prowadzi do zwiększenia pojemności. Przerwanie jednej z żył również nie jest odpowiedzialne za wzrost pojemności, lecz za całkowite zablokowanie sygnału, co uniemożliwia transmisję danych. Izolacja kabla, która uległa uszkodzeniu, może wprowadzać dodatkowe pojemności w obwodzie, a przerwanie żyły skutkuje brakiem transmisji sygnału. Nieprawidłowe podłączenie kabla może prowadzić do problemów z połączeniem, jednak nie należy mylić tego z pojemnością. Każdy z tych problemów może być mylnie interpretowany jako przyczyna wzrostu pojemności, co prowadzi do błędnych wniosków. Zrozumienie różnicy między rezystancją, pojemnością i ich wpływem na transmisję danych jest kluczowe dla diagnostyki sieci. Właściwe podejście do analizy stanu kabelków wymaga uwzględnienia wszystkich aspektów ich budowy oraz środowiska, w którym funkcjonują, co jest zgodne z najlepszymi praktykami w branży telekomunikacyjnej.

Pytanie 33

Skrót DVB-T odnosi się do telewizji w formacie cyfrowym

A. przemysłowej
B. kablowej
C. naziemnej
D. satelitarnej
Telewizja kablowa to coś zupełnie innego niż DVB-T, bo działa na innej zasadzie. Tu sygnał leci przez sieci kablowe, a nie z nadajników na ziemi, więc różnica jest spora. Ludzie, którzy korzystają z kablówki, często muszą mieć dekodery, które odbierają sygnał z kabli. To wiąże się z dodatkowymi kosztami i czasem brakiem dostępu do niektórych kanałów. Z kolei telewizja satelitarna działa inaczej, bo korzysta z satelitów i anten zainstalowanych na budynkach. Oznaczenie DVB-S mówi, że chodzi tu o telewizję satelitarną, co znów pokazuje, że te technologie są różne. Telewizja przemysłowa to też inna bajka – nie jest to coś, co możemy oglądać jak zwykli konsumenci, bo więcej chodzi o monitoring. Czasem ludzie myślą, że wszystkie technologie telewizyjne są takie same, a to prowadzi do zamieszania. Różnorodność standardów nadawania wymaga od nas zrozumienia ich ról i zastosowania, bo każdy z odbiorców ma inne potrzeby. Czasami błędne przypisanie DVB-T do czegoś innego może wprowadzać w błąd i sprawić, że źle wybierzemy technologię, co jest dość istotne w czasach, gdy telewizja tak szybko się zmienia.

Pytanie 34

Awaria telewizora, manifestująca się brakiem możliwości regulacji geometrii, balansu bieli oraz zniknięciem niektórych opcji w menu użytkownika (np. brakiem opcji zmiany systemu odbioru dźwięku) wskazuje na

A. zimnych lub przegrzanych lutach.
B. utracie z pamięci danych.
C. pęknięciu ścieżek łączących.
D. braku kontaktu w złączach typu wysuwanego.
Wybór odpowiedzi dotyczącej pęknięcia ścieżek połączeniowych wskazuje na błędne zrozumienie przyczyn problemów z regulacją geometrii oraz balansu bieli. Pęknięcia w ścieżkach mogą prowadzić do całkowitego braku sygnału, ale niekoniecznie powodują utratę funkcji w menu, jak w przypadku opisanego problemu. Zimne lub przegrzane luty są inną powszechną przyczyną awarii, jednak objawy, które opisano w pytaniu, są bardziej zgodne z uszkodzeniem pamięci niż z problemem lutowniczym. Zimne luty mogą powodować niestabilność w działaniu, ale nie prowadzą do całkowitej utraty danych z pamięci. Brak kontaktu w złączach typu wysuwanego może wprawdzie wpływać na odbiór sygnału, ale również nie powinien wpływać na funkcje w menu. Wybierając błędne odpowiedzi, można wpaść w pułapkę myślenia przyczynowo-skutkowego, gdzie błędnie interpretowane objawy prowadzą do niewłaściwych diagnoz. Kluczowe jest zrozumienie, że problemy z pamięcią mogą być wywołane przez kilka różnych czynników, a ich efekty będą się różnić od symptomów wskazujących na uszkodzenia fizyczne połączeń. Umiejętność poprawnego identyfikowania tych symptomów jest niezbędna w diagnostyce sprzętu RTV.

Pytanie 35

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. war.
C. wat.
D. woltoamper.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 36

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Analogowy na zakresie I = 10 A i RWE = 50 Ω
B. Analogowy na zakresie I = 1 A i RWE = 50 Ω
C. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
D. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 37

Podczas wykonywania prac istnieje ryzyko niedotlenienia organizmu z powodu spadku zawartości tlenu w atmosferze. Jakie środki ochrony dróg oddechowych należy zastosować?

A. filtr krótkoczasowy
B. aparat oddechowy zasilany powietrzem
C. półmaskę
D. maskę pełną
Wybór nieodpowiedniego środka ochrony dróg oddechowych może prowadzić do poważnych konsekwencji zdrowotnych. Maska pełna, mimo że zapewnia osłonę całej twarzy i filtruje powietrze, nie jest wystarczająco skuteczna w przypadku niskiej zawartości tlenu. Działa ona poprzez filtrowanie zanieczyszczeń, co oznacza, że użytkownik nadal będzie oddychał powietrzem, które może być ubogie w tlen, co grozi niedotlenieniem. Półmaski, podobnie jak maski pełne, również nie dostarczają dodatkowego tlenu, a ich użycie w sytuacjach z obniżonym poziomem tego gazu jest szczególnie niebezpieczne. Z kolei filtry krótkoczasowe są przeznaczone do ochrony przed określonymi zanieczyszczeniami powietrza, ale nie są w stanie zapewnić odpowiedniej ilości tlenu. Wybierając niewłaściwe metody ochrony, można łatwo wpaść w pułapkę myślenia, że wystarczy jedynie zablokować toksyczne substancje, co jest błędnym założeniem. Kluczowe jest zrozumienie, że w sytuacjach, gdzie grozi niedotlenienie, należy stosować rozwiązania, które zapewnią dostęp do świeżego powietrza, a nie tylko filtrację. Przykładem takiego rozwiązania są aparaty oddechowe zasilane powietrzem, które są zgodne z normami bezpieczeństwa i pozwalają na skuteczną ochronę zdrowia pracownika.

Pytanie 38

Czujnik akustyczny połączony z systemem alarmowym do wykrywania włamań i napadów służy do identyfikacji

A. otwarcia okna
B. modulacji dźwięku
C. dźwięku ulatniającego się gazu
D. stłuczenia szyby
Odpowiedzi sugerujące inne możliwości, takie jak otwarcie okna, dźwięk ulatniającego się gazu, czy modulację dźwięku, wskazują na nieporozumienie dotyczące funkcji czujek akustycznych. Czujki są zaprojektowane do rozpoznawania specyficznych, głośnych dźwięków, takich jak stłuczenie szyby, które wskazuje na potencjalne włamanie. Otwarcie okna generuje dźwięk, ale nie jest on na ogół na tyle wyraźny ani charakterystyczny, aby czujka akustyczna mogła go skutecznie zidentyfikować. W rzeczywistości systemy bezpieczeństwa często stosują różne rodzaje czujek, aby wykrywać różne formy intruzji, gdzie czujki kontaktowe są bardziej odpowiednie do monitorowania otwarcia okien czy drzwi. Natomiast dźwięk ulatniającego się gazu jest detekowany poprzez czujniki gazu, które działają na zupełnie innej zasadzie; ich celem jest wykrycie obecności niebezpiecznych substancji chemicznych w powietrzu. Wreszcie, modulacja dźwięku odnosi się do zmiany parametrów dźwięku, a nie do jego detekcji. Takie niejasności mogą prowadzić do niewłaściwej interpretacji funkcji urządzeń zabezpieczających. Zrozumienie specyfiki działania czujek akustycznych i ich zastosowania jest kluczowe, aby skutecznie zabezpieczyć obiekt przed zagrożeniem.

Pytanie 39

Czym jest watchdog?

A. typ licznika rejestrującego impulsy zewnętrzne
B. system bezpośredniego dostępu do portów I/O mikroprocesora
C. system bezpośredniego dostępu do pamięci mikroprocesora
D. rodzaj timera kontrolującego działanie mikroprocesora
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 40

Który z parametrów odnosi się do wartości 20 Mpx, podanej w specyfikacji cyfrowego aparatu fotograficznego?

A. Cyfrowe powiększenie obrazu
B. Rozdzielczość matrycy światłoczułej
C. Optyczne powiększenie obrazu
D. Czas reakcji migawki
Odpowiedzi związane z cyfrowym powiększeniem obrazu, optycznym powiększeniem oraz czasem reakcji migawki są mylące i nie oddają istoty pojęcia rozdzielczości matrycy. Cyfrowe powiększenie obrazu odnosi się do procesu, który zachodzi po zrobieniu zdjęcia, w którym obraz jest powiększany w programie graficznym. Powiększenie to nie wpływa na jakość samego zdjęcia, tak jak robi to rozdzielczość matrycy, która determinuje ilość informacji zarejestrowanych w momencie wykonania ujęcia. Optyczne powiększenie obrazu jest związane z użyciem obiektywu i jego zdolnością do zbliżania obiektów, co również nie ma bezpośredniego związku z liczba megapikseli. Czas reakcji migawki z kolei odnosi się do szybkości, z jaką aparat może rejestrować obraz po naciśnięciu spustu migawki. Jest to istotny parametr w kontekście uchwycenia ruchu, ale nie ma związku z rozdzielczością matrycy. Typowe błędy myślowe prowadzące do mylenia tych koncepcji polegają na nieznajomości różnic między parametrami technicznymi aparatu oraz ich wpływem na jakość obrazu. Zrozumienie, że rozdzielczość jest kluczowym czynnikiem dla jakości zdjęć, a inne parametry służą różnym celom, jest istotne dla prawidłowego doboru sprzętu fotograficznego.