Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 25 kwietnia 2025 22:23
  • Data zakończenia: 25 kwietnia 2025 22:51

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W standardowym układzie destylacyjnym, który ma ukośną chłodnicę, wykorzystuje się chłodnicę

A. kulistą
B. palcową
C. spiralną
D. prostą
Destylacja to proces rozdzielania składników mieszaniny na podstawie różnicy w temperaturach wrzenia. W zestawie z chłodnicą prostą stosuje się ją ze względu na jej efektywność w chłodzeniu pary, co jest kluczowe dla skutecznego kondensowania substancji. Chłodnica prosta składa się z jednego, prostego odcinka, co zapewnia wystarczająco dużą powierzchnię wymiany ciepła. Dzięki temu, para może skutecznie skraplać się w chłodnicy, co prowadzi do uzyskania czystego destylatu. W praktycznych zastosowaniach, chłodnice proste są często wykorzystywane w laboratoriach chemicznych, a także w przemyśle, gdzie konieczne jest osiągnięcie wysokiego stopnia czystości produktów. Warto również zauważyć, że zgodnie z dobrą praktyką laboratoryjną, wybór rodzaju chłodnicy powinien być dostosowany do specyfiki przeprowadzanego procesu, co podkreśla znaczenie znajomości właściwości różnych typów chłodnic w kontekście ich zastosowania w destylacji.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

W karcie charakterystyki pewnej substancji znajduje się piktogram dotyczący transportu. Jest to substancja z grupy szkodliwych dla zdrowia

Ilustracja do pytania
A. cieczy.
B. płynów.
C. gazów.
D. ciał stałych.
Wybór odpowiedzi związanej z gazami, cieczami czy innymi substancjami może być mylący, ponieważ nie uwzględnia specyfiki klasyfikacji materiałów niebezpiecznych. Piktogramy informujące o substancjach szkodliwych dla zdrowia, choć mogą dotyczyć różnych stanów skupienia, w tym gazów i cieczy, w tym przypadku odnoszą się bezpośrednio do ciał stałych. Zrozumienie, dlaczego substancje stałe zostały wyróżnione, jest kluczowe. Wiele osób może błędnie zakładać, że wszystkie substancje szkodliwe dotyczą również cieczy, co jest mylne, gdyż klasyfikacja musi uwzględniać konkretne właściwości fizyczne substancji. Ponadto, niektóre substancje w postaci gazów mogą być szkodliwe, ale ich klasyfikacja jest inna i ma odrębne wymagania dotyczące transportu. Dlatego ważne jest, aby przyjmować podejście holistyczne, uwzględniając właściwości fizyczne oraz chemiczne substancji. Warto także zaznaczyć, że niewłaściwa klasyfikacja może prowadzić do poważnych konsekwencji zdrowotnych oraz prawnych, co czyni tę tematykę niezwykle istotną. Zrozumienie klasyfikacji materiałów niebezpiecznych i ich odpowiedniego transportu jest kluczowe w branżach związanych z chemią, farmaceutyką czy inżynierią środowiska.

Pytanie 4

Zgodnie z zasadami BHP w laboratorium, po zakończeniu pracy z odczynnikami chemicznymi należy:

A. Wszystkie nieużyte odczynniki pozostawić na stole roboczym.
B. Wylać pozostałości odczynników do zlewu niezależnie od ich rodzaju.
C. Zostawić otwarte pojemniki i natychmiast opuścić laboratorium.
D. Zamknąć szczelnie pojemniki z odczynnikami, posegregować odpady chemiczne zgodnie z instrukcjami i dokładnie umyć stanowisko pracy.
Pozostawianie otwartych pojemników z odczynnikami w laboratorium to poważne naruszenie zasad BHP. Może prowadzić do ulatniania się szkodliwych oparów, zwiększa ryzyko przypadkowego rozlania lub skażenia, a także utrudnia późniejszą identyfikację substancji – zwłaszcza jeśli opakowania się przestawią lub pomylą. Wylewanie pozostałości chemikaliów do zlewu jest nie tylko nieodpowiedzialne, ale często wręcz nielegalne. Związki chemiczne mogą zanieczyszczać środowisko wodne, niszczyć instalacje kanalizacyjne i stwarzać zagrożenie dla osób obsługujących systemy kanalizacyjne. To typowy błąd osób początkujących, które nie zdają sobie sprawy z długofalowych skutków takich działań. Zostawianie nieużytych odczynników na stole to kolejna niebezpieczna praktyka – grozi przypadkowym spożyciem, kontaktem skórnym lub nawet niekontrolowaną reakcją chemiczną, szczególnie gdy na stanowisku pojawi się inny pracownik. Z mojego doświadczenia wynika, że takie postępowanie wynika zwykle z pośpiechu lub niewiedzy, ale niestety może prowadzić do bardzo poważnych konsekwencji zdrowotnych i prawnych. W laboratorium wszystko musi być na swoim miejscu, a odpowiedzialność za utrzymanie porządku spoczywa na każdym użytkowniku. To nie są zasady „dla zasady” – one realnie chronią ludzi i środowisko. Dlatego zawsze trzeba pamiętać o właściwym zamykaniu, segregacji odpadów i czystości, nawet jeśli wydaje się to czasochłonne czy niepotrzebne.

Pytanie 5

Na podstawie danych zawartych w tabeli określ, do oznaczania którego parametru próbka musi być utrwalona w niskim pH.

Oznaczany parametrRodzaj naczynia do przechowywaniaSposób utrwalaniaDopuszczalny czas przechowywania
barwaszklane lub polietylenowe- schłodzenie do temperatury 2-5°C24 h
fosforany ogólneszklane lub polietylenowe- zakwaszenie kwasem siarkowym(VI)
- schłodzenie do temperatury 2-5°C
4 h
48 h
BZTszklane- schłodzenie do temperatury 2-5°C
- przechowywanie w ciemności
24 h
azot azotanowy(V)szklane lub polietylenowe- schłodzenie do temperatury 2-5°C
- dodanie 2 cm3 chloroformu do 1 dm3 próbki
24 h
48 h
A. Fosforanów ogólnych.
B. BZT.
C. Barwy.
D. Azotu azotanowego(V).
Analizując niepoprawne odpowiedzi, należy wskazać, że barwy, BZT oraz azot azotanowy(V) nie wymagają zakwaszenia próbki do analizy, co jest kluczowe dla zrozumienia procesu ich oznaczania. Barwy w wodzie są zazwyczaj mierzone za pomocą spektrofotometrii, a więc są one niezależne od pH próbki. W przypadku Biologicznego Zapotrzebowania Tlenu (BZT), próbki są zwykle inkubowane w neutralnym pH, aby zapewnić odpowiednie warunki do rozwoju mikroorganizmów, co jest istotne dla wiarygodności wyników. Azot azotanowy(V), na ogół oznaczany metodami kolorimetrycznymi lub spektroskopowymi, również nie wymaga zakwaszenia; wręcz przeciwnie - zbyt niskie pH może prowadzić do jego konwersji do formy, która nie będzie odpowiednia do analizy. Typowy błąd myślowy związany z tymi odpowiedziami może wynikać z braku zrozumienia specyfiki analizy chemicznych parametrów wody. Każdy z tych parametrów wymaga odmiennych warunków próbki, co jest kluczowe w procesach analitycznych. Niezrozumienie roli pH w analizach chemicznych może prowadzić do niewłaściwych praktyk laboratoryjnych i błędnych wyników, a w konsekwencji do fałszywych wniosków o stanie jakości wód. Dlatego ważne jest, aby zrozumieć, że kontrola pH jest istotna tylko w przypadku niektórych analiz, jak w przypadku fosforanów ogólnych, a nie w kontekście pozostałych parametrów.

Pytanie 6

Wapno palone uzyskuje się poprzez prażenie wapienia według równania: CaCO3 → CaO + CO2. Ile kilogramów wapienia należy zastosować, aby w efekcie jego prażenia otrzymać 7 kg wapna palonego, jeśli wydajność reakcji wynosi 50%?
Masy molowe: MCa = 40 g/mol, MC = 12 g/mol, MO = 16 g/mol.

A. 50,0 kg
B. 12,5 kg
C. 25,0 kg
D. 37,5 kg
Wybór niewłaściwej odpowiedzi często wynika z błędnego zrozumienia zachodzących procesów chemicznych oraz pomieszania koncepcji wydajności reakcji i ilości reagentu. Przykładowo, podanie 50 kg wapnia palonego jako odpowiedzi może sugerować, że respondenci nie uwzględnili wydajności reakcji. W rzeczywistości, wydajność 50% oznacza, że tylko połowa teoretycznie uzyskanych produktów reakcji jest pozyskiwana. Z tego powodu, aby uzyskać 7 kg wapna palonego, najpierw należałoby obliczyć, ile CaCO3 jest potrzebne, przy założeniu, że 100% wydajność dostarczyłaby 14 kg. Następnie, uwzględniając wydajność, trzeba pomyśleć o tym, że do uzyskania takiej ilości trzeba podwoić ilość węglanu wapnia. Osoby dokonujące obliczeń mogą również popełnić błąd w obliczeniach mas molowych, co może prowadzić do mylnych wyników. Kolejnym typowym błędem jest ignorowanie jednostek miary, gdzie niektórzy mogą skupić się tylko na samych liczbach, zapominając, że kilogramy i gramy to różne jednostki. Zrozumienie tego aspektu jest kluczowe w praktycznych zastosowaniach chemii, gdzie precyzyjne pomiary są niezbędne dla uzyskania pożądanych efektów reakcji chemicznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Proces wydobywania składnika z cieczy lub ciała stałego w mieszance wieloskładnikowej poprzez jego rozpuszczenie w odpowiednim rozpuszczalniku to

A. destylacja
B. saturacja
C. ekstrakcja
D. dekantacja
Ekstrakcja to proces inżynierii chemicznej, który polega na wydobywaniu jednego lub więcej składników z mieszaniny za pomocą odpowiedniego rozpuszczalnika. Kluczowym aspektem ekstrakcji jest wybór właściwego rozpuszczalnika, który powinien selektywnie rozpuszczać substancje pożądane, pozostawiając inne składniki nietknięte. Przykładowo, w przemyśle farmaceutycznym wykorzystuje się ekstrakcję do oddzielania aktywnych składników z roślin, co pozwala na produkcję leków. W branży spożywczej ekstrakcja jest stosowana do uzyskiwania olejków eterycznych z roślin, co znajduje zastosowanie w aromaterapii i produkcji żywności. Dobór rozpuszczalnika może być determinowany przez takie czynniki jak rozpuszczalność składników, pH oraz temperatura. Dobre praktyki w ekstrakcji obejmują także optymalizację warunków procesu, co może znacząco zwiększyć wydajność i jakość uzyskiwanych produktów. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie kontrolowania procesów, aby zapewnić ich efektywność i zgodność z wymaganiami jakościowymi.

Pytanie 9

Reagenty o najwyższej czystości to reagenty

A. czyste do badań.
B. spektralnie czyste.
C. chemicznie czyste.
D. czyste.
Odpowiedzi "czyste", "czyste do analizy" oraz "chemicznie czyste" są terminami, które mogą wprowadzać w błąd, jeśli są używane zamiennie z określeniem "spektralnie czyste". Odczynniki określane jako "czyste" oznaczają jedynie, że substancja jest wolna od widocznych zanieczyszczeń, jednak nie zapewniają one wystarczającej czystości do zastosowań analitycznych. "Czyste do analizy" sugeruje, że substancja może być użyta w badaniach, ale nie zawsze wskazuje na poziom czystości wymagany do precyzyjnych pomiarów. "Chemicznie czyste" może odnosić się do substancji, które są wystarczająco czyste do ogólnego użytku, jednak w przypadku bardziej zaawansowanych aplikacji, takich jak spektroskopia, konieczna jest wyższa czystość. Prawidłowe zrozumienie tych terminów jest kluczowe, aby uniknąć błędów w interpretacji wyników analizy. Często zdarza się, że użytkownicy nie zdają sobie sprawy z różnicy pomiędzy różnymi stopniami czystości, co może prowadzić do niewłaściwego doboru odczynników i błędnych wyników. W kontekście laboratoriów, zrozumienie tych subtelności jest niezbędne dla zapewnienia jakości wyników i zgodności z normami branżowymi.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Aby rozpuścić próbkę tłuszczu o wadze 5 g, wykorzystuje się 50 cm3 mieszanki 96% alkoholu etylowego oraz eteru dietylowego, połączonych w proporcji objętościowej 1 : 2. Jakie ilości cm3 każdego ze składników są potrzebne do przygotowania 150 cm3 tej mieszanki?

A. 50 cm3 alkoholu etylowego oraz 100 cm3 eteru dietylowego
B. 100 cm3 alkoholu etylowego oraz 50 cm3 eteru dietylowego
C. 100 cm3 alkoholu etylowego oraz 200 cm3 eteru dietylowego
D. 75 cm3 alkoholu etylowego oraz 75 cm3 eteru dietylowego
Odpowiedź 50 cm³ alkoholu etylowego i 100 cm³ eteru dietylowego jest poprawna, ponieważ mieszanka przygotowywana w stosunku objętościowym 1:2 oznacza, że na każdą część alkoholu przypadają dwie części eteru. Aby obliczyć ilość składników w przypadku 150 cm³ całkowitej objętości, stosujemy proporcje. W tym przypadku 1 część alkoholu etylowego i 2 części eteru oznaczają, że 1/3 całkowitej objętości to alkohol, a 2/3 to eter. Zatem, 150 cm³ * 1/3 = 50 cm³ alkoholu etylowego, a 150 cm³ * 2/3 = 100 cm³ eteru dietylowego. Zastosowanie takich proporcji jest zgodne z najlepszymi praktykami w chemii analitycznej, gdzie precyzyjne pomiary są kluczowe dla uzyskania powtarzalnych wyników. Dobrym przykładem zastosowania tej wiedzy jest praca w laboratoriach chemicznych, gdzie często przygotowuje się roztwory o określonych stężeniach i proporcjach, co jest niezbędne w badaniach jakości i ilości substancji chemicznych. Właściwe zrozumienie proporcji i ich zastosowania przyczynia się do skutecznych i bezpiecznych procedur laboratoryjnych.

Pytanie 12

Określ, jakie informacje powinny być zarejestrowane w ewidencji wydania substancji niebezpiecznych, stosowanych w badaniach laboratoryjnych?

A. Data ważności, forma substancji
B. Metoda wydania, imię i nazwisko osoby wydającej
C. Ilości wydane, stan magazynowy, imię i nazwisko osoby, której przekazano substancję
D. Liczba przeprowadzonych prób z użyciem tej substancji, data wydania
Zawarte w niepoprawnych odpowiedziach koncepcje nie spełniają wymogów dotyczących ewidencji rozchodu substancji niebezpiecznych. Termin przydatności i konsystencja substancji, mimo że są ważnymi informacjami dla użytkowników, nie dotyczą bezpośrednio ewidencji rozchodu. Oceniając substancje chemiczne, istotne jest, aby znać ich stan i właściwości, ale dokumentacja rozchodu skupia się na zapisie ich użycia i dostępności. Sposób wydawania oraz nazwisko osoby wydającej, choć mogą być istotnymi elementami, nie dostarczają wystarczających informacji o stanie zapasów ani o ilości substancji wydanej, co jest kluczowe dla zachowania bezpieczeństwa i zarządzania ryzykiem. Z kolei ilość prowadzonych prób przy użyciu danej substancji oraz termin wydania, to dane, które bardziej pasują do dokumentacji działań laboratoryjnych, a nie do ewidencji rozchodu. Tego typu myślenie może prowadzić do nieefektywnego zarządzania substancjami chemicznymi i ewentualnych naruszeń przepisów dotyczących bezpieczeństwa w laboratoriach, co jest krytyczne zarówno w kontekście ochrony zdrowia pracowników, jak i ochrony środowiska. Ewidencja powinna być zgodna z wytycznymi regulacyjnymi, a prawidłowe podejście do dokumentacji jest kluczowe dla każdej instytucji zajmującej się pracą z substancjami niebezpiecznymi.

Pytanie 13

Z partii materiału należy pobrać ogólną próbkę w ilości odpowiadającej promilowi całej partii. Na podstawie podanej informacji określ, ile pierwotnych próbek, każda ważąca 10 g, trzeba pobrać z partii cukru o masie 0,5 t, aby uzyskać reprezentatywną próbkę ogólną?

A. 50
B. 5
C. 100
D. 10
Aby uzyskać reprezentatywną próbkę ogólną z partii cukru o masie 0,5 t (czyli 500 kg), należy zastosować zasadę pobierania próbek o odpowiedniej masie. Zgodnie z normami i wytycznymi, w przypadku materiałów takich jak cukier, zaleca się, aby próbka ogólna stanowiła co najmniej 0,1% całkowitej masy partii. W przypadku 500 kg, 0,1% wynosi 0,5 kg, co odpowiada 500 g. Jeśli każda próbka pierwotna ma masę 10 g, to aby uzyskać 500 g, potrzebujemy 50 próbek (500 g / 10 g = 50). Takie podejście zapewnia, że próbka ogólna będzie odzwierciedlać rzeczywistą homogeniczność partii, co jest kluczowe w kontekście zapewnienia jakości i zgodności z normami bezpieczeństwa żywności. W praktyce, odpowiednie pobieranie próbek ma kluczowe znaczenie w procesach kontroli jakości, analizy i certyfikacji produktów spożywczych.

Pytanie 14

Między wodorotlenkiem baru a chlorkiem amonu dochodzi do spontanicznej reakcji, która powoduje silne schłodzenie mieszaniny oraz wydobycie się charakterystycznego zapachu amoniaku.
Ba(OH)2(s) + 2 NH4Cl(s) → BaCl2(aq) + 2 H2O(c) + 2 NH3(g) Wskaź, które sformułowanie właściwie wyjaśnia to zjawisko.
nieodwracalnie jej równowagę.

A. Reakcja zachodzi spontanicznie, ponieważ jest endotermiczna
B. Reakcja zachodzi spontanicznie, ponieważ jest egzotermiczna
C. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie soli przesuwa nieodwracalnie jej równowagę
D. Reakcja zachodzi spontanicznie mimo endotermiczności, ponieważ wydzielanie gazu przesuwa
Reakcja między wodorotlenkiem baru a chlorkiem amonu jest przykładem reakcji chemicznej, w której zachowanie gazu amoniaku (NH3) odgrywa kluczową rolę. Proces ten jest endotermiczny, co oznacza, że absorbuje ciepło z otoczenia, co prowadzi do obniżenia temperatury mieszaniny. Mimo to, reakcja jest spontaniczna ze względu na wydzielanie gazu. Zgodnie z zasadą Le Chateliera, jeśli w układzie zachodzi reakcja chemiczna, to wszelkie zmiany w warunkach (takie jak ciśnienie, temperatura czy stężenie reagentów) spowodują przesunięcie równowagi w kierunku, który zredukuje te zmiany. Wydzielanie amoniaku do gazu zwiększa objętość układu i powoduje przesunięcie równowagi w kierunku produktów tej reakcji, co sprawia, że staje się ona nieodwracalna. Przykładem zastosowania tej wiedzy może być proces neutralizacji amoniaku w przemyśle chemicznym, gdzie kontroluje się reakcje gazów i ich wpływ na równowagę chemiczną.

Pytanie 15

Substancje chemiczne, które zazwyczaj wykorzystuje się w eksperymentach preparatywnych oraz w jakościowych analizach, charakteryzujące się czystością w przedziale 99-99,9%, nazywa się

A. czystymi
B. czystymi do badań
C. czystymi spektralnie
D. czystymi chemicznie
Wybór innych odpowiedzi może wynikać z błędnego zrozumienia terminów związanych z czystością chemiczną. Odpowiedź 'spektralnie czyste' odnosi się specjalnie do odczynników, które muszą spełniać dodatkowe wymogi dotyczące czystości w kontekście analiz spektroskopowych. W takim przypadku czystość nie wystarcza, aby zapewnić dokładność wyników, ponieważ zanieczyszczenia mogą wpływać na widmo emitowane przez próbkę, co jest kluczowe w spektroskopii. Natomiast odpowiedź 'czyste do analiz' sugeruje, że odczynniki te są przygotowane do konkretnego zastosowania analitycznego, ale niekoniecznie spełniają wymagania dotyczące czystości chemicznej. Z kolei odpowiedź 'chemicznie czyste' jest zbyt ogólna, ponieważ nie określa konkretnego zakresu czystości, który jest szczególnie istotny w analizach laboratoryjnych. Często w praktyce laboratoria posługują się wytycznymi dotyczącymi czystości, które mogą być różne w zależności od zastosowania, a nieprzestrzeganie tych standardów może prowadzić do fałszywych wyników i nieefektywności badań. Dlatego znajomość terminologii i standardów jest kluczowa w pracy laboratoryjnej.

Pytanie 16

Symbol "In" znajduje się na

A. biuretach i oznacza sprzęt kalibrowany "na wlew"
B. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wylew"
C. kolbach miarowych i wskazuje na sprzęt kalibrowany "na wlew"
D. pipetach i oznacza sprzęt kalibrowany "na wylew"
Zauważyłem, że wybrałeś odpowiedź, która nie do końca jest poprawna. Wydaje mi się, że mogłeś się pomylić w kwestii kalibracji sprzętu. Pipety są używane do precyzyjnego przenoszenia cieczy, ale to kolby miarowe mają symbol 'In' i są kalibrowane 'na wlew'. Mylisz je z pipetami, co może wprowadzać w błąd. Kolby miarowe nie są kalibrowane 'na wylew', bo to nie ich przeznaczenie. Dobrze jest zrozumieć, jak różne sprzęty działają, bo to wpływa na wyniki. Prawidłowe stosowanie narzędzi w laboratorium jest kluczowe. Jak się nie zrozumie tych szczegółów, można sobie narobić kłopotów w eksperymentach.

Pytanie 17

Wskaż zbiór substancji, które po rozpuszczeniu w wodzie stają się elektrolitami?

A. Chlorek sodu, wodorotlenek sodu, kwas siarkowy(VI)
B. Cukier, sól stołowa, ocet
C. Glukoza, kwas azotowy(V), wodorotlenek wapnia
D. Kwas solny, gliceryna, tlenek siarki(VI)
Wybór substancji, które nie są elektrolitami, może prowadzić do licznych nieporozumień, dlatego warto zrozumieć, dlaczego odpowiedzi te są błędne. Cukier, sól kuchenna i ocet wydają się być substancjami rozpuszczalnymi w wodzie, jednak tylko sól kuchenna może być uznana za elektrolit. Cukier (sacharoza) rozpuszcza się w wodzie, tworząc roztwór, ale nie dissocjuje na jony, co oznacza, że nie przewodzi prądu elektrycznego. Takie substancje są nazywane substancjami nieelektrolitycznymi. Podobnie, gliceryna i tlenek siarki(VI) nie są elektrolitami - gliceryna jest organicznym alkoholem, który również nie dissocjuje w wodzie na jony, a tlenek siarki(VI) reaguje z wodą, tworząc kwas siarkowy, ale w swojej pierwotnej formie nie jest elektrolitem. W przypadku glukozy, jej rozpuszczenie w wodzie prowadzi do powstania roztworu, który nie wykazuje przewodnictwa elektrycznego, ponieważ glukoza również nie dissocjuje na jony. Niewłaściwe postrzeganie substancji jako elektrolitów może wynikać z błędnego rozumienia ich właściwości chemicznych oraz różnicy między substancjami, które po rozpuszczeniu w wodzie prowadzą do powstania naładowanych cząsteczek, a tymi, które tego nie robią. Kluczowe jest zrozumienie mechanizmów dysocjacji oraz właściwości chemicznych różnych substancji, aby uniknąć takich nieporozumień w chemii i pokrewnych dziedzinach.

Pytanie 18

W wyniku analizy sitowej próbki stałej otrzymano frakcję o średnicy ziaren 12 – 30 mm. Jaką masę powinna mieć prawidłowo pobrana próbka pierwotna?

Tabela. Wielkość próbki pierwotnej w zależności od wielkości ziarna
Średnica ziaren lub kawałków [mm]do 11 - 1011 - 50ponad 50
Pierwotna próbka (minimum) [g]10020010002500
A. 200 g
B. 1000 g
C. 100 g
D. 2500 g
Odpowiedź '1000 g' jest prawidłowa, ponieważ zgodnie z normami analizy sitowej, dla ziaren o średnicy od 11 do 50 mm minimalna masa próbki pierwotnej powinna wynosić 1000 g. W przypadku analizy sitowej, w której badana jest frakcja ziaren, odpowiednia masa próbki jest kluczowa dla uzyskania wiarygodnych wyników. Zbyt mała próbka może prowadzić do błędnych wyników, zniekształcając charakterystykę frakcji ziarna. W praktyce, przy analizach takich jak ocena uziarnienia materiałów budowlanych czy surowców mineralnych, stosowanie się do odpowiednich standardów jest istotne dla zapewnienia jakości wyników. Przykładowo, w laboratoriach stosuje się normy PN-EN ISO 17892 dla gruntów, które również wskazują na konieczność stosowania odpowiednich mas próbki w zależności od rodzaju analizowanego materiału. Dlatego, jeśli analizowana frakcja mieści się w określonym przedziale średnic ziaren, należy zawsze upewnić się, że masa próbki odpowiada wymaganiom, aby uniknąć błędów w analizie.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Materiały wykorzystywane w laboratoriach, mogące prowadzić do powstawania mieszanin wybuchowych, powinny być przechowywane

A. w izolowanych pomieszczeniach magazynów ogólnych
B. na otwartym powietrzu pod dachem
C. w specjalnie wydzielonych piwnicach murowanych
D. w różnych punktach laboratorium
Przechowywanie materiałów tworzących mieszaniny wybuchowe w dowolnych miejscach laboratorium jest podejściem nieodpowiedzialnym oraz niezgodnym z obowiązującymi standardami bezpieczeństwa. Takie praktyki mogą prowadzić do niekontrolowanych reakcji chemicznych, które stwarzają realne zagrożenie zarówno dla pracowników, jak i dla infrastruktury laboratorium. Magazynowanie tych substancji w pomieszczeniach ogólnych, w których znajdują się inne materiały, zwiększa ryzyko ich przypadkowego wymieszania lub uwolnienia. Ponadto, pomieszczenia nieizolowane nie są odpowiednio wentylowane, co może prowadzić do akumulacji wybuchowych par. Również przechowywanie chemikaliów na wolnym powietrzu pod dachem wiąże się z ryzykiem ich ekspozycji na czynniki atmosferyczne, co może prowadzić do degradacji materiałów lub ich reakcji z wilgocią. Wydzielone piwnice murowane, jeśli nie są wyposażone w odpowiednie systemy zabezpieczeń i wentylacji, mogą nie spełniać wymogów bezpieczeństwa. Kluczowe jest przestrzeganie zasad magazynowania określonych w przepisach, takich jak Kodeks Pracy i regulacje dotyczące substancji niebezpiecznych, aby zminimalizować ryzyko i zapewnić bezpieczne środowisko pracy.

Pytanie 22

Na diagramie przedstawiającym proces pobierania prób środowiskowych do analizy literą Y oznaczono próbkę

A. wtórną
B. laboratoryjną
C. do analizy
D. ogólną
Próbka oznaczona literą Y na schemacie postępowania przy pobieraniu próbek środowiskowych jest próbą laboratoryjną. Próbki laboratoryjne są kluczowe w analizie, ponieważ są one przeznaczone do dalszych, szczegółowych badań w warunkach kontrolowanych. Zbierając próbki w terenie, istotne jest, aby były one odpowiednio oznaczone i sklasyfikowane, aby zapewnić ich właściwą identyfikację i analizę w laboratorium. Przykładem zastosowania próbek laboratoryjnych może być analiza jakości wody, gdzie próbki pobierane z różnych źródeł muszą być odpowiednio przygotowane, aby zachować ich właściwości fizykochemiczne. Zgodnie z wytycznymi ISO 5667 dotyczącymi pobierania próbek wód, ważne jest, aby próbki laboratoryjne były zbierane w określony sposób, aby uniknąć kontaminacji i zapewnić reprezentatywność wyników. Właściwe postępowanie z próbkami laboratoryjnymi jest kluczowe dla uzyskania wiarygodnych wyników analitycznych i zachowania dokładności pomiarów.

Pytanie 23

W jakiej standardowej temperaturze są kalibrowane szklane naczynia pomiarowe?

A. 25°C
B. 20°C
C. 19°C
D. 21°C
Szklane naczynia miarowe, takie jak pipety, kolby czy cylinder miarowy, są kalibrowane w standardowej temperaturze 20°C. Kalibracja w tej temperaturze jest uznawana za normę, ponieważ zmiany temperatury mogą wpływać na objętość cieczy oraz na precyzję pomiarów. Przykładowo, w laboratoriach chemicznych, gdzie dokładność pomiarów jest kluczowa, naczynia miarowe są używane przy tej temperaturze, aby zapewnić wiarygodność wyników eksperymentów. W praktyce oznacza to, że przy pomiarach z użyciem tych naczyń, operatorzy powinni dążyć do utrzymania temperatury 20°C, aby uniknąć błędów wynikających z rozszerzalności cieczy oraz materiałów, z których wykonane są naczynia. Ponadto, zgodnie z międzynarodowymi standardami ISO i zaleceniami PTB (Physikalisch-Technische Bundesanstalt), kalibracja powinna być przeprowadzana w 20°C dla wszystkich podstawowych pomiarów objętości, co wzmacnia znaczenie tej wartości w praktyce laboratoryjnej.

Pytanie 24

Aby pobrać dokładnie 20 cm3 próbkę wody do przeprowadzenia analiz, należy zastosować

A. pipetę jednomiarową o pojemności 10 cm3
B. cylinder miarowy o pojemności 25 cm3
C. pipetę wielomiarową o pojemności 25 cm3
D. pipetę jednomiarową o pojemności 20 cm3
Pipeta jednomiarowa o pojemności 20 cm3 jest najodpowiedniejszym narzędziem do precyzyjnego pobierania próbki wody o objętości 20 cm3. W praktyce laboratoryjnej, pipety jednomiarowe są projektowane tak, aby umożliwić dokładne i powtarzalne pomiary, co jest kluczowe w analizach chemicznych. Wybierając pipetę o pojemności dokładnie odpowiadającej potrzebnej objętości, minimalizujemy ryzyko błędów pomiarowych i podnosimy jakość uzyskiwanych wyników. W kontekście standardów laboratoryjnych, zgodnie z normą ISO 8655, pipety powinny być kalibrowane i okresowo weryfikowane, aby zapewnić ich dokładność. Użycie pipety o odpowiedniej pojemności, jak w tym przypadku, nie tylko zwiększa precyzję, ale także efektywność pracy w laboratorium, co jest istotne w przypadku wielu analiz wymagających rozcieńczeń lub dokładnych pomiarów składników chemicznych.

Pytanie 25

Urządzeniem pomiarowym nie jest

A. termometr
B. pehametr
C. eksykator
D. konduktometr
Eksykator jest urządzeniem, które nie służy do pomiarów, lecz do przechowywania substancji w warunkach obniżonego ciśnienia atmosferycznego lub w atmosferze kontrolowanej. Używany jest w laboratoriach chemicznych do zabezpieczania materiałów wrażliwych na wilgoć, powietrze lub inne czynniki atmosferyczne. Na przykład, eksykator może być stosowany do przechowywania substancji higroskopijnych, takich jak sól kuchenną, aby zapobiec ich nawilżeniu i degradacji. W praktyce, eksykatory często zawierają substancje osuszające, które pomagają utrzymać odpowiednie warunki w ich wnętrzu. W odróżnieniu od konduktometru, pH-metra i termometru, które są zaprojektowane do wykonywania precyzyjnych pomiarów fizykochemicznych, eksykator pełni jedynie funkcję przechowalniczą, co czyni go przyrządem niepomiarowym według standardów metrologicznych.

Pytanie 26

Ogólna próbka, jednostkowa lub pierwotna powinna

A. być tym większa, im bardziej niejednorodny jest skład produktu
B. być tym większa, im bardziej jednorodny jest skład produktu
C. być tym mniejsza, im większa jest niejednorodność składu produktu
D. mieć masę 1-10 kg dla produktów stałych lub objętość 1-10 dm3 dla cieczy
Odpowiedź jest poprawna, ponieważ w przypadku próbek ogólnych, jednostkowych lub pierwotnych, ich wielkość powinna wzrastać w miarę zwiększania się niejednorodności składu produktu. Zgodnie z zasadami statystyki i analizy chemicznej, im większa jest różnorodność składników, tym większa próbka jest potrzebna do uzyskania reprezentatywności wyników analizy. Przykładowo, w przemyśle spożywczym, jeśli surowiec ma zróżnicowany skład (np. mieszanka różnych nasion), to do analizy jakościowej lub ilościowej powinno się pobrać większą próbkę, aby uwzględnić wszystkie warianty składników. Normy takie jak ISO 17025 podkreślają znaczenie reprezentatywności próbek w kontekście uzyskiwania wiarygodnych wyników analitycznych. W praktyce, właściwe podejście do pobierania próbek może znacznie wpłynąć na jakość końcowych danych, co jest kluczowe w kontekście kontroli jakości i zapewnienia zgodności z normami.

Pytanie 27

Skalę wzorców do oznaczenia barwy przygotowano w cylindrach Nesslera o pojemności 100 cm3. Barwa oznaczona w tabeli jako X wynosi

Skala wzorców do barwy
Ilość wzorcowego roztworu podstawowego cm3 (c=500 mg Pt/dm3)01,02,03,0
Barwa w stopniach
mg Pt/dm3
05X15
A. 7
B. 20
C. 5,5
D. 10
Wybór odpowiedzi 10 mg Pt/dm³ jest poprawny, ponieważ oparty jest na założeniach dotyczących liniowej skali wzorców stosowanej do oznaczania barwy. Dla 1,0 cm³ roztworu podstawowego wartość wynosi 5 mg Pt/dm³. Zgodnie z zasadami chemii analitycznej, jeśli zwiększamy objętość roztworu podstawowego, to również proporcjonalnie wzrasta stężenie substancji, co jest zgodne z zasadą zachowania masy. W tym przypadku, dla 2,0 cm³ roztworu podstawowego, barwa będzie podwójna, co prowadzi do uzyskania wartości 10 mg Pt/dm³. Tego rodzaju podejście jest powszechnie stosowane w laboratoriach analitycznych, gdzie precyzyjne oznaczanie stężeń ma kluczowe znaczenie dla wiarygodności wyników. Zastosowanie tej metody w praktyce jest istotne dla analizy chemicznej w różnych dziedzinach, takich jak badania środowiskowe czy kontrola jakości w przemyśle chemicznym.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Do metalowego sprzętu laboratoryjnego używanego w praktykach analitycznych zalicza się

A. eksykator
B. zlewka
C. bagietka
D. statyw
Statyw jest kluczowym elementem wyposażenia w laboratoriach analitycznych, używanym do stabilnego podtrzymywania różnych narzędzi i urządzeń, takich jak probówki czy kolby. Jego głównym celem jest zapewnienie bezpieczeństwa i precyzji podczas przeprowadzania doświadczeń, co jest niezbędne w pracy laboratoryjnej. Użycie statywu minimalizuje ryzyko przypadkowego przewrócenia się substancji chemicznych, co może prowadzić do niebezpiecznych sytuacji. Dobre praktyki laboranckie wskazują, że stabilne mocowanie sprzętu zwiększa dokładność pomiarów i powtarzalność wyników. Ponadto, statyw może być wykorzystywany w połączeniu z innymi narzędziami, takimi jak palniki Bunsena, co pozwala na przeprowadzanie bardziej złożonych eksperymentów. Warto również zauważyć, że w zależności od zastosowania, statywy mogą mieć różne konstrukcje i materiały, co wpływa na ich funkcjonalność i odporność na działanie substancji chemicznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Jak nazywa się proces, w którym następuje wytrącenie ciała stałego z przesyconego roztworu w wyniku spadku temperatury?

A. dekantacja
B. sedymentacja
C. krystalizacja
D. odparowanie
Krystalizacja to proces, w którym substancja stała wydziela się z roztworu, gdy jego stężenie przekracza punkt nasycenia, co może być wynikiem obniżenia temperatury lub odparowania rozpuszczalnika. W praktycznych zastosowaniach, krystalizacja jest kluczowa w przemysłach chemicznym i farmaceutycznym, gdzie czystość i jakość produktu końcowego są niezwykle istotne. Dobrze przeprowadzony proces krystalizacji pozwala na uzyskanie czystych kryształów, które można łatwo oddzielić od roztworu, co jest zgodne z najlepszymi praktykami w zakresie kontroli jakości. Dodatkowo, krystalizacja może być stosowana w technologii separacji i oczyszczania związków chemicznych, gdzie proces ten jest wykorzystywany do wyodrębniania substancji aktywnych z surowców naturalnych. Warto również zauważyć, że krystalizacja jest częścią wielu procesów naturalnych i technologicznych, takich jak formowanie lodu w przyrodzie czy produkcja cukru z soku buraczanego.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Do kolby destylacyjnej wprowadzono 200 cm3 zanieczyszczonego acetonu o gęstości d = 0,9604 g/cm3 oraz czystości 90% masowych. W celu oczyszczenia przeprowadzono proces destylacji, w wyniku czego uzyskano 113,74 g czystego acetonu. Jakie były straty acetonu podczas destylacji?

A. 34,20%
B. 81,77%
C. 65,80%
D. 18,33%
Wybierając inne odpowiedzi, można napotkać kilka typowych pułapek myślowych. Często zdarza się, że studenci mylnie zakładają, iż straty acetonu można obliczyć jako prostą różnicę między masą początkową a masą końcową bez uwzględnienia rzeczywistej zawartości czystego acetonu. W takich przypadkach dochodzi do nieprawidłowego założenia co do ilości czystego acetonu w początkowej próbce. Ponadto, niektóre osoby mogą błędnie oszacować straty, nie uwzględniając gęstości substancji oraz jej czystości, co prowadzi do znacznych odchyleń w obliczeniach. Straty mogą być również źle interpretowane jako różnica objętości, co nie jest adekwatne, gdyż konieczne jest przejście na jednostki masy dla porównania. Aby uniknąć tych błędów, ważne jest, by przy każdej analizie chemicznej szczegółowo zrozumieć, jakie dane są potrzebne do prawidłowego obliczenia. Rekomenduje się także stosowanie standardowych procedur analitycznych oraz dokumentację każdego kroku procesu, co zwiększa transparentność i umożliwia identyfikację potencjalnych błędów. Dobre praktyki w laboratoriach chemicznych zakładają również regularne szkolenie personelu oraz dbałość o dokładność pomiarów, co może znacząco wpłynąć na jakość uzyskiwanych wyników.

Pytanie 34

Na podstawie informacji zawartej na pipecie, została ona skalibrowana na

A. gorąco.
B. wylew.
C. zimno.
D. wlew.
Wybór odpowiedzi 'wlew' jest błędny, ponieważ w kontekście kalibracji pipet nie odnosi się do żadnej standardowej praktyki. Termin 'wlew' sugeruje czynność, a nie precyzyjną miarę objętości, co prowadzi do mylnego wniosku. Podobnie, odpowiedzi 'zimno' i 'gorąco' są również niepoprawne, gdyż odnoszą się do temperatur, które nie mają związku z kalibracją pipet. Kalibracja dotyczy objętości, a nie temperatury cieczy dozowanej przez pipecie. Błąd w myśleniu polega na tym, że użytkownicy mogą nie zrozumieć podstawowych koncepcji związanych z pomiarem i dozowaniem cieczy. W rzeczywistości, pipety są kalibrowane w oparciu o specyfikacje dotyczące objętości, co jest kluczowe dla zapewnienia dokładności i precyzji w pomiarach laboratoryjnych. Nieprawidłowe interpretacje takich terminów mogą prowadzić do poważnych błędów w badaniach, co wpływa na wiarygodność wyników. Dlatego istotne jest, aby pracownicy laboratoriów dobrze rozumieli zasady kalibracji i jej wpływ na jakość rezultatu, a także stosowali się do wytycznych podanych w normach branżowych.

Pytanie 35

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol
A. 100%
B. 56,0%
C. 44,6%
D. 4,4%
Wydajność reakcji chemicznych jest kluczowym parametrem oceny efektywności procesów w chemii, a błędne obliczenia mogą prowadzić do mylnych wniosków. Często pojawiają się nieporozumienia związane z teoretyczną masą produktów, co prowadzi do niepoprawnych odpowiedzi. Warto zauważyć, że odpowiedzi sugerujące 100% wydajności są mylące, ponieważ w praktyce niemożliwe jest uzyskanie całkowitej wydajności w reakcji chemicznej. Straty mogą wynikać z wielu czynników, takich jak niepełny rozkład reagentów, nieodpowiednie warunki reakcji czy też straty materiałowe podczas przetwarzania. Ponadto odpowiedzi, które wskazują na zaniżoną wydajność, jak 4,4%, również omijają kluczowy kontekst obliczeń, ponieważ nie uwzględniają rzeczywistej masy produktu oraz teoretycznych podstaw reakcji. Nieporozumienia w obliczeniach mogą być wynikiem typowych błędów myślowych, takich jak zbytnie uproszczenia lub brak zrozumienia, jak przebiegają reakcje chemiczne. Prawidłowe podejście do obliczeń wydajności reakcji wymaga znajomości zarówno teoretycznych podstaw chemii, jak i praktycznych aspektów procesów produkcyjnych, co jest istotne w kontekście zrównoważonego rozwoju przemysłu chemicznego.

Pytanie 36

250 cm3 roztworu kwasu octowego o stężeniu 10% objętościowych zostało rozcieńczone pięciokrotnie. Jakie jest stężenie otrzymanego roztworu?

A. 2,5%
B. 1,25%
C. 2%
D. 5%
Roztwór kwasu octowego o stężeniu 10% objętościowych zawiera 10 g kwasu octowego w 100 cm³ roztworu. W przypadku 250 cm³ tego roztworu mamy 25 g kwasu octowego (10 g/100 cm³ * 250 cm³). Rozcieńczenie pięciokrotne oznacza, że całkowitą objętość roztworu zwiększamy pięciokrotnie, co daje 250 cm³ * 5 = 1250 cm³. Aby obliczyć stężenie, dzielimy masę kwasu octowego przez objętość nowego roztworu: 25 g / 1250 cm³ = 0,02 g/cm³, co odpowiada 2% objętościowych. Praktyczne zastosowanie tej wiedzy znajduje się w laboratoriach chemicznych oraz w przemyśle, gdzie precyzyjne przygotowywanie roztworów o określonych stężeniach jest kluczowe dla jakości produkcji i bezpieczeństwa. Dobre praktyki wskazują, że zawsze należy dokładnie obliczać ilości reagentów przed ich użyciem, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

Aby przygotować zestaw do filtracji, należy zebrać

A. bagietkę, zlewkę, łapę metalową, statyw metalowy
B. lejek szklany, statyw metalowy, kółko metalowe, zlewkę
C. szkiełko zegarkowe, tryskawkę, kolbę stożkową
D. biuretę, statyw metalowy, zlewkę
Aby przygotować zestaw do sączenia, niezbędne jest skompletowanie odpowiednich narzędzi laboratoryjnych, które umożliwią przeprowadzenie tego procesu w sposób efektywny i bezpieczny. Lejek szklany jest kluczowym elementem, ponieważ jego zadaniem jest kierowanie cieczy do zlewki, co minimalizuje ryzyko rozlania oraz zapewnia precyzyjne dozowanie. Statyw metalowy jest istotny, ponieważ stabilizuje lejek, co jest niezbędne do uzyskania prawidłowego kąta nachylenia, zapewniając tym samym efektywność procesu sączenia. Kółko metalowe, często używane jako podstawa dla lejka, zwiększa stabilność całej konstrukcji, zmniejszając ryzyko przypadkowego przewrócenia się. Zlewka, jako naczynie odbierające substancję, jest niezbędna do zbierania przefiltrowanego płynu. Wszystkie te elementy współpracują, tworząc funkcjonalny zestaw, który spełnia standardy bezpieczeństwa i efektywności w pracach laboratoryjnych.

Pytanie 39

Jakie środki należy zastosować do gaszenia pożaru metali, takich jak magnez, sód czy potas?

A. piasku
B. gaśnicy śniegowej
C. wody
D. gaśnicy pianowej
Użycie piasku do gaszenia pożarów metali, takich jak magnez, sód czy potas, jest zgodne z zaleceniami dotyczącymi bezpieczeństwa przeciwpożarowego. W przypadku pożarów metali, które reagują z wodą, stosowanie wody może prowadzić do niebezpiecznych reakcji chemicznych, a tym samym pogarszać sytuację. Piasek działa jako środek dławienia, ograniczając dostęp tlenu do ognia oraz absorbuje ciepło, co skutecznie gaśnie płomienie. W praktyce, podczas akcji ratunkowej, mogą być używane specjalne pojemniki z piaskiem, które są łatwe do transportu i użycia w nagłych wypadkach. Ważne jest, aby personel odpowiedzialny za bezpieczeństwo w zakładach przemysłowych był odpowiednio przeszkolony w zakresie używania piasku oraz innych aprobowanych środków do gaszenia pożarów metali. Aktualne wytyczne i normy, takie jak NFPA 484 (National Fire Protection Association), jasno określają metody postępowania w przypadku pożarów materiałów metalicznych, co podkreśla znaczenie prawidłowego doboru środka gaśniczego.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.