Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik pojazdów samochodowych
  • Kwalifikacja: MOT.05 - Obsługa, diagnozowanie oraz naprawa pojazdów samochodowych
  • Data rozpoczęcia: 30 maja 2025 18:46
  • Data zakończenia: 30 maja 2025 19:02

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas przeglądu okresowego pojazdu samochodowego z silnikiem ZS wykonano czynności ujęte w tabeli. Jaki był koszt wykonania tej usługi, bez materiałów, jeżeli cena roboczogodziny w zakładzie wynosi 80 zł brutto.

Lp.CzynnośćCzas wykonania
w godzinach
1.Wymiana przegubu kulowego napędowego z osłoną gumową1,6
2.Wymiana 1 szt. końcówki drążka kierowniczego0,5
A. 146 zł
B. 200 zł
C. 168 zł
D. 186 zł
Wszystkie niepoprawne odpowiedzi wynikają z błędnych obliczeń lub nieporozumień dotyczących zasad kalkulacji kosztów robocizny. W przypadku podanych opcji, można zauważyć, że odpowiedzi takie jak 186 zł, 146 zł czy 200 zł nie uwzględniają prawidłowego czasu pracy oraz stawki. Na przykład, przyjmując błędne założenie co do czasu potrzebnego na wykonanie usługi, można dojść do niepoprawnych wniosków, takich jak 186 zł, co mogłoby sugerować uwzględnienie zbyt dużej liczby roboczogodzin lub niepoprawną stawkę. Odpowiedzi, które sugerują 146 zł lub 200 zł, mogą wynikać z dodania lub odjęcia niewłaściwych wartości, co prowadzi do nieporozumień w zakresie kalkulacji. Kluczowym błędem jest nieprzestrzeganie standardów obliczeń, które opierają się na prostych zasadach matematycznych. Dobrą praktyką jest zawsze weryfikować każdą wartość, zanim zostanie wprowadzona do końcowego obliczenia, co pozwala uniknąć typowych błędów myślowych. Poprawne obliczenie kosztów robocizny jest istotne nie tylko dla właścicieli zakładów, ale również dla klientów, którzy pragną zrozumieć, za co płacą. Dlatego warto zwracać uwagę na dokładność i rzetelność przy tworzeniu wycen usług.

Pytanie 2

Nie jest parametrem geometrycznym kół

A. kąt nachylenia sworznia zwrotnicy
B. ciśnienie w ogumieniu
C. zbieżność kół
D. kąt wyprzedzenia sworznia zwrotnicy
Ciśnienie w ogumieniu jest istotnym parametrem wpływającym na właściwości jezdne pojazdu, jednak nie jest bezpośrednio związane z geometrią kół. Geometria kół odnosi się do ustawienia i orientacji kół w stosunku do siebie oraz do podwozia pojazdu. W praktyce, poprawne ustawienie geometrii kół, w tym kąt pochylenia sworznika zwrotnicy, zbieżność kół oraz kąt wyprzedzenia sworznika, wpływa na stabilność jazdy, zużycie opon oraz zachowanie pojazdu w zakrętach. Właściwe ciśnienie w ogumieniu ma wpływ na komfort jazdy oraz bezpieczeństwo, ale nie definiuje samej geometrii kół. Dla przykładu, zmniejszone ciśnienie w oponach może prowadzić do zwiększonego oporu toczenia i szybszego zużycia opon, co w dłuższej perspektywie może wpłynąć na geometrię kół, ale nie jest to parametr geometrii jako takiej. Dbanie o odpowiednie ciśnienie opon jest również kluczowe dla zachowania zgodności z normami bezpieczeństwa, co jest potwierdzone w dokumentach takich jak ISO 16232 dotyczących czystości w branży motoryzacyjnej.

Pytanie 3

Zgodnie z informacjami od producenta, właściwa zbieżność kół przednich pojazdu powinna wynosić
1,5 mm ± 1,5 mm. Która z podanych wartości nie mieści się w zakresie tolerancji?

A. 3 mm
B. 2 mm
C. 1 mm
D. 4 mm
Wartości 1 mm, 2 mm oraz 3 mm mieszczą się w granicach tolerancji określonej przez producenta. Tolerancja 1,5 mm ± 1,5 mm wskazuje, że akceptowalne wartości zbieżności kół przednich mogą wynosić od 0 mm do 3 mm. Wartość 1 mm jest znacznie poniżej dolnej granicy tolerancji, co może powodować nieprawidłowe prowadzenie pojazdu, a także zwiększone zużycie opon. Z kolei wartość 2 mm nadal mieści się w akceptowalnym przedziale, ale może być sygnałem o zbliżaniu się do granic tolerancji, co wymaga dalszej analizy. Typowym błędem myślowym jest przyjmowanie, że wszystkie wartości bliskie granic tolerancji są bezpieczne. Takie podejście może prowadzić do zaniedbań w zakresie regularnej kontroli stanu pojazdu, co w dłuższej perspektywie zwiększa ryzyko awarii. Zbieżność kół ma kluczowe znaczenie dla stabilności i bezpieczeństwa samochodu, dlatego nie należy bagatelizować even niewielkich odchyleń od normy. Wartości zbieżności powinny być regularnie sprawdzane i korygowane w przypadku zauważenia jakichkolwiek nieprawidłowości, aby zapewnić optymalną wydajność pojazdu oraz jego bezpieczeństwo na drodze.

Pytanie 4

Jaki łączny koszt będzie naprawy głowicy silnika, jeśli wymienione zostały 2 zawory dolotowe w cenie 27 zł za sztukę oraz 2 zawory wylotowe po 25 zł za sztukę? Czas dostarczenia jednego zaworu wynosi 20 minut, a stawka za roboczogodzinę to 90 zł?

A. 224 zł
B. 154 zł
C. 204 zł
D. 124 zł
Wybór niepoprawnej odpowiedzi wynika najczęściej z braku uwzględnienia wszystkich kosztów związanych z naprawą silnika. Przykładowo, niektórzy mogą skupić się wyłącznie na kosztach części zamiennych, pomijając istotny element, jakim jest koszt robocizny. Koszt części zamiennych w tej sytuacji wynosi 104 zł, co mogłoby prowadzić do założenia, że całkowity koszt naprawy będzie zbliżony do tej wartości. Jednakże, koszty robocizny są kluczowym elementem wyceny usług w branży mechaniki samochodowej. Nieprawidłowe obliczenia mogą również wynikać z pomijania przeliczenia czasu pracy na godziny, co jest istotne, zwłaszcza w kontekście ustalania stawek za roboczogodzinę. W tej sytuacji, czas potrzebny na dostarczenie zaworów wynosi 80 minut, co po przeliczeniu daje 1,33 godziny. Zignorowanie tego faktu prowadzi do błędnych wniosków dotyczących całkowitych kosztów. Dodatkowo, niektórzy mogą popełniać błąd, sumując tylko koszty zaworów i ignorując czas pracy, co jest typowym błędem poznawczym w analizie kosztów. Kluczowe jest zrozumienie, że zarówno materiały, jak i robocizna muszą być uwzględnione w całkowitym koszcie naprawy, co jest zgodne z najlepszymi praktykami branżowymi w zakresie kalkulacji kosztów usług.

Pytanie 5

Jaką rolę odgrywa synchronizator?

A. Utrzymuje stałą prędkość silnika
B. Włącza sprzęgło
C. Przekazuje moment obrotowy na koła napędowe
D. Płynnie łączy koło biegu z wałem
Synchronizator pełni kluczową rolę w mechanice skrzyni biegów, umożliwiając płynne połączenie koła biegu z wałem napędowym. Jego zadaniem jest eliminowanie różnicy prędkości między tymi elementami, co jest niezbędne do uzyskania gładkiej zmiany biegów. Dzięki synchronizatorom, kierowca może zmieniać biegi bez ryzyka zgrzytów, co znacząco zwiększa komfort jazdy i wydajność pojazdu. W praktyce, synchronizatory wykorzystują tarcze cierne, które dostosowują prędkości obrotowe na poziomie mechanicznym, co również wpływa na redukcję zużycia sprzęgła. W pojazdach sportowych oraz zaawansowanych technicznie samochodach osobowych stosuje się wysoko wydajne synchronizatory, które są odporne na wysokie temperatury i duże obciążenia, co przyczynia się do długotrwałego działania całego układu napędowego. W przypadku modernizacji skrzyni biegów, warto zwrócić uwagę na stan synchronizatorów, ponieważ ich zużycie może prowadzić do problemów z płynnością zmiany biegów oraz zwiększonego ryzyka uszkodzeń innych elementów układu napędowego.

Pytanie 6

Podczas przeprowadzania testu drogowego po naprawie głowicy silnika, należy szczególnie zwrócić uwagę na

A. ciśnienie sprężania
B. osiągane przyspieszenie
C. temperaturę pracy silnika
D. regulację składu mieszanki
Temperatura pracy silnika jest kluczowym parametrem, który należy monitorować po naprawie głowicy silnika. Nieprawidłowa temperatura może wskazywać na problemy z chłodzeniem, nieszczelności lub niewłaściwie przeprowadzone naprawy. Wysoka temperatura może prowadzić do uszkodzeń głowicy, a nawet do poważniejszych awarii silnika. Przykładem zastosowania tej wiedzy jest regularne sprawdzanie temperatury za pomocą systemów diagnostycznych lub wskaźników w kabinie pojazdu. Zgodnie z najlepszymi praktykami, ważne jest, aby podczas prób drogowych monitorować temperaturę w różnych warunkach pracy, aby zapewnić, że silnik działa w optymalnym zakresie. Zbyt niska temperatura również może być problematyczna, zwłaszcza w zimnych warunkach, gdzie silnik nie osiąga odpowiedniej wydajności. Dbanie o prawidłowe warunki pracy silnika po naprawach to kluczowy element utrzymania jego sprawności oraz trwałości.

Pytanie 7

System kontroli trakcji ma na celu utrzymanie przyczepności

A. wzdłużną opon napędowych.
B. wzdłużną i poprzeczną opon napędowych.
C. wzdłużną wszystkich opon.
D. poprzeczną opon napędowych
Układ kontroli trakcji (TCS) jest kluczowym elementem systemów bezpieczeństwa w nowoczesnych pojazdach, którego głównym celem jest zapewnienie optymalnej przyczepności kół napędowych w trakcie przyspieszania. Poprawna odpowiedź, dotycząca zachowania przyczepności wzdłużnej kół napędowych, jest istotna, ponieważ to właśnie te koła są odpowiedzialne za przenoszenie mocy silnika na nawierzchnię drogi. W sytuacjach, gdy występuje poślizg, na przykład na śliskiej nawierzchni, system TCS automatycznie kontroluje moc silnika oraz, w niektórych przypadkach, hamuje poszczególne koła, aby zminimalizować poślizg i poprawić stabilność pojazdu. Przykładowo, w przypadku samochodów osobowych, podczas nagłego przyspieszania na mokrej nawierzchni, TCS może ograniczyć moc silnika lub wprowadzić delikatne hamowanie, co pozwala na zachowanie pełnej kontroli nad pojazdem. Zastosowanie układów TCS jest zgodne z normami bezpieczeństwa, co czyni je standardem w branży motoryzacyjnej, przyczyniając się do zmniejszenia liczby wypadków związanych z utratą kontroli nad pojazdem.

Pytanie 8

Powierzchnię uszczelniającą głowicy, która uległa deformacji, naprawia się w wyniku

A. planowania
B. galwanizacji
C. klejenia
D. napawania
Napawanie, będące procesem łączenia metali poprzez dodawanie materiału w postaci spoiwa, nie jest odpowiednią metodą do naprawy powierzchni uszczelniającej głowicy, ponieważ wymaga znacznego podgrzewania, co może prowadzić do dalszych deformacji. W kontekście naprawy silników, napawanie używane jest głównie do odtwarzania zużytych elementów, takich jak wały korbowe czy zębatki, a nie do usuwania odkształceń w krytycznych powierzchniach uszczelniających. Klejenie również nie jest właściwym rozwiązaniem w tym przypadku, ponieważ uszczelki muszą tworzyć idealnie gładką i sztywną powierzchnię, a klej nie zapewnia wystarczającej trwałości i odporności na wysokie temperatury oraz ciśnienia panujące w silniku. Z kolei galwanizacja, proces polegający na pokrywaniu powierzchni metalowych warstwą innego metalu, stosowana jest głównie w celu ochrony przed korozją, a nie do korygowania deformacji. Tego typu błędne decyzje mogą prowadzić do poważnych problemów w działaniu silnika, takich jak przecieki czy zacieranie się elementów, co w konsekwencji pociąga za sobą kosztowne naprawy. Zrozumienie, jak i kiedy stosować odpowiednie metody naprawcze, jest kluczowe dla zachowania integralności i wydajności silnika.

Pytanie 9

Typowa wartość stopnia sprężania w silniku o zapłonie iskrowym to

A. od 20 do 26
B. od 26 do 32
C. od 14 do 20
D. od 8 do 14
Odpowiedź "od 8 do 14" jest prawidłowa, ponieważ przeciętny stopień sprężania w silnikach o zapłonie iskrowym, takich jak te stosowane w samochodach osobowych, oscyluje właśnie w tym zakresie. Wartości te są zgodne z normami branżowymi i praktykami inżynieryjnymi, które definiują optymalne parametry dla efektywności spalania oraz osiągów silników. Na przykład, silniki o stopniu sprężania w przedziale 9-11 są powszechnie stosowane w pojazdach osobowych, co pozwala na uzyskanie dobrych osiągów i oszczędności paliwa. Wyższe stopnie sprężania, choć umożliwiają większą moc, na ogół wymagają stosowania paliw o wyższej jakości, aby uniknąć wystąpienia spalania stukowego. Dobrą praktyką inżynieryjną jest również dostosowanie stopnia sprężania do konstrukcji silnika, co wpływa na jego trwałość oraz efektywność energetyczną. Dlatego znajomość tego zakresu jest kluczowa dla konstruktorów i mechaników zajmujących się projektowaniem oraz serwisowaniem silników. Warto również przytoczyć, że w silnikach sportowych stopnie sprężania mogą sięgać wartości od 10 do 14, co pozwala na uzyskanie wyższej mocy, ale wiąże się z większymi wymaganiami dotyczącymi paliwa i smarowania.

Pytanie 10

Silnik z zapłonem iskrowym, w którym olej silnikowy przedostaje się przez nieszczelności do komory spalania, generuje z rury wydechowej dym o odcieniu

A. czarnym
B. czerwonym
C. białym
D. niebieskim
Silnik z zapłonem iskrowym, w którym olej silnikowy przenika do komory spalania, emituje dym o niebieskim zabarwieniu. To zjawisko jest wynikiem spalania oleju, który zawiera w sobie substancje smarne i dodatki chemiczne. Kiedy olej dostaje się do komory spalania, jego spalanie prowadzi do powstania charakterystycznych, niebieskich spalin. Niebieski dym jest często sygnałem, że silnik może mieć problemy z uszczelnieniem, co może prowadzić do dalszych uszkodzeń, jeśli nie zostanie naprawione. W praktyce, wykrycie niebieskiego dymu w spalinach silnika powinno skłonić właściciela pojazdu do natychmiastowej diagnostyki, aby zidentyfikować przyczynę wycieku oleju. Można to osiągnąć za pomocą testów ciśnienia kompresji, analizy oleju oraz inspekcji wizualnej uszczelek i pierścieni tłokowych. W motoryzacji, stosowanie odpowiednich standardów, jak SAE dla olejów silnikowych, jest kluczowe dla utrzymania silnika w dobrym stanie oraz minimalizowania emisji spalania oleju.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Do specyfikacji technicznych i eksploatacyjnych pojazdu zaliczamy:

A. wymiary, masa, parametry ruchowe i ekonomiczne
B. pojemność, konstrukcja, pochodzenie, wpływ na środowisko
C. awaryjność, cena, przebieg, parametry ruchowe
D. marka, typ napędu, koszty obsługi, przeznaczenie
Wybór innych odpowiedzi nie uwzględnia kluczowych parametrów techniczno-eksploatacyjnych, które są niezbędne do właściwego zrozumienia funkcjonalności pojazdów. Awaryjność, cena, przebieg i parametry ruchowe w pierwszej z wymienionych opcji są niepełne oraz nieprecyzyjne. Awaryjność, choć istotna, nie jest pomiarem technicznym, a raczej wskaźnikiem jakości, co może prowadzić do mylnego wniosku, że wystarczą jedynie te elementy do oceny samochodu. W podobny sposób, marka, rodzaj napędu, koszty obsługi i przeznaczenie nie obejmują fundamentalnych aspektów technicznych, takich jak wymiary czy masa, które są kluczowe w kontekście bezpieczeństwa i efektywności pojazdu. Wreszcie, pojemność, konstrukcja, pochodzenie oraz wpływ na środowisko również nie odnoszą się bezpośrednio do parametrów techniczno-eksploatacyjnych, a raczej są to czynniki ogólne, które mogą nie mieć wpływu na codzienną eksploatację pojazdu. Dobrze zrozumiane aspekty takie jak masa, wymiary oraz parametry ekonomiczne są fundamentem, na którym opiera się prawidłowe użytkowanie i zarządzanie pojazdami, a ich pominięcie może prowadzić do błędnych decyzji związanych z wyborem odpowiedniego transportu.

Pytanie 13

Jaki jest główny cel stosowania układu ABS w pojazdach?

A. Zmniejszenie zużycia paliwa
B. Zwiększenie kontroli nad pojazdem podczas hamowania
C. Zwiększenie prędkości maksymalnej pojazdu
D. Poprawa komfortu jazdy
Układ ABS, czyli Anti-lock Braking System, jest jednym z najważniejszych systemów bezpieczeństwa w pojazdach samochodowych. Jego głównym celem jest zapobieganie blokowaniu się kół podczas gwałtownego hamowania, co pozwala na utrzymanie kontroli nad pojazdem. Dzięki ABS kierowca ma możliwość jednoczesnego hamowania i manewrowania, co jest kluczowe w sytuacjach awaryjnych. System ten działa poprzez monitorowanie prędkości obrotowej kół i, w przypadku wykrycia ryzyka blokady, modulowanie ciśnienia hamulcowego. To pozwala na utrzymanie optymalnego kontaktu opon z nawierzchnią, co jest szczególnie ważne na śliskich lub mokrych drogach. W praktyce ABS znacznie skraca drogę hamowania na większości nawierzchni, co może dosłownie uratować życie. Wprowadzenie ABS stało się standardem w przemyśle motoryzacyjnym i jest zgodne z międzynarodowymi normami bezpieczeństwa. Układ ten jest również wsparciem dla innych systemów, jak ESP czy TCS, zwiększając ogólne bezpieczeństwo jazdy.

Pytanie 14

Jakie jest łączne wydatki na naprawę systemu smarowania, jeśli cena pompy oleju wynosi 145 zł, filtr oleju kosztuje 45 zł, a cena oleju silnikowego to 160 zł? Czas potrzebny na naprawę to 150 minut przy stawce za godzinę roboczą wynoszącej 100 zł?

A. 450 zł
B. 650 zł
C. 600 zł
D. 550 zł
Odpowiedzi, które wskazują na inne wartości kosztów całkowitych, mogą wynikać z różnorodnych błędów w obliczeniach. Na przykład, jeśli ktoś obliczył tylko sumę kosztów części, pomijając koszt robocizny, może dojść do wniosku, że całkowity koszt naprawy wynosi 350 zł. Jednak nie uwzględnienie robocizny jest poważnym błędem, ponieważ to właśnie prace warsztatowe często stanowią znaczną część całkowitych wydatków. Innym popularnym błędem jest niepoprawne przeliczenie czasu naprawy na godziny. Zamiast 150 minut, można błędnie pomyśleć o tej wartości jako o pełnych godzinach, co prowadzi do znacznego zaniżenia kosztów. Dodatkowo, osoby zazwyczaj nie biorą pod uwagę stawki za roboczogodzinę, co jest istotnym czynnikiem w kalkulacji końcowej. Warto również zauważyć, że w branży motoryzacyjnej przyjęte praktyki wskazują na konieczność szczegółowego przedstawienia kosztów naprawy klientowi, uwzględniając wszystkie elementy składające się na ostateczną cenę. Dlatego też dokładność obliczeń jest kluczowa dla transparentności oraz zadowolenia klienta.

Pytanie 15

Zrealizowanie zasady Ackermana skutkuje

A. identyczne kąty skrętu kół osi kierowanej w trakcie jazdy po łuku
B. utrata przyczepności kół osi kierowanej podczas pokonywania łuku
C. mechanizm zwrotniczy w kształcie trapezu
D. tylko układ kierowniczy z przekładnią zębatkową
Wybór odpowiedzi dotyczący utraty przyczepności kół osi kierowanej w czasie jazdy po łuku jest mylący, ponieważ zasada Ackermana ma na celu właśnie zapobieganie takiej sytuacji. Utrata przyczepności jest wynikiem niewłaściwego skrętu kół, co prowadzi do nieprawidłowego kontaktu z nawierzchnią. W przypadku równego kąta skrętu kół osi kierowanej, co sugeruje jedna z odpowiedzi, pojazd może napotkać problemy z równomiernym zużyciem opon oraz mniejszą stabilnością. Samochody nie są projektowane do jazdy z równymi kątami skrętu, ponieważ każdy z kół przemieszcza się po innym promieniu, co jest fundamentalnym aspektem w inżynierii układów kierowniczych. Odpowiedź sugerująca jedynie układ kierowniczy z zębatkową przekładnią kierowniczą ignoruje inne, kluczowe elementy systemu kierowniczego, takie jak mechanizmy zwrotnicze, które odgrywają istotną rolę w manewrowości pojazdu. Zrozumienie działania trapezowego mechanizmu zwrotniczego powinno być kluczowe dla każdego inżyniera lub technika zajmującego się motoryzacją. W kontekście lepszej przyczepności, zasada Ackermana jest fundamentalnym aspektem, który pozwala na bezpieczne i efektywne zarządzanie kierowaniem pojazdem, a pominięcie jej wymagań w projektowaniu układów kierowniczych może prowadzić do niebezpiecznych sytuacji na drodze.

Pytanie 16

W systemach smarowania silnika najczęściej wykorzystuje się pompy

A. wirowe
B. membranowe
C. wyporowe
D. zębate
W układach smarowania silnika, pompy wyporowe czy wirowe, mimo że mają swoje miejsce, nie są najczęściej stosowane w silnikach spalinowych. Pompy wyporowe działają na zasadzie wyporu cieczy i są bardziej do zmiennych zastosowań, a niekoniecznie tam, gdzie potrzebne jest stałe ciśnienie. A w silnikach ważne jest, żeby to ciśnienie smarowania było stabilne, co nie zawsze da się osiągnąć pompami wyporowymi. Co do pomp wirowych, to one lepiej się sprawdzają tam, gdzie liczy się wysoki przepływ, ale niekoniecznie wysokie ciśnienie. Dlatego nie są one najlepszym rozwiązaniem do silników, w których ciśnienie oleju jest kluczowe dla smarowania. Pompy membranowe z kolei, chociaż używane w hydraulice, są dość wrażliwe na uszkodzenia i mają ograniczenia w wydajności, dlatego nie są polecane w silnikach. Często zdarza się mylnie sądzić, że każda z tych pomp może działać w roli pompy smarującej, ale ich budowa i sposób działania nie spełniają norm dla układów smarowania silników spalinowych. Użycie nieodpowiedniej pompy może skutkować słabym smarowaniem, co w dłuższym czasie może prowadzić do poważnych awarii silnika.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Wniknięcie cieczy chłodzącej do komory spalania silnika objawia się wydobywaniem spalin w kolorze

A. niebieskim
B. czarnym
C. szarym
D. białym
Odpowiedź biała jest prawidłowa, ponieważ przedostanie się cieczy chłodzącej do komory spalania silnika skutkuje emisją spalin o jasnym, mlecznym zabarwieniu. Taki stan rzeczy wskazuje na obecność wody lub płynu chłodzącego, który ulega spaleniu w wysokotemperaturowych warunkach komory cylindrów. W praktyce obserwowanie białego dymu z rury wydechowej jest istotnym sygnałem, że należy zbadać układ chłodzenia oraz uszczelki głowicy silnika. W przypadku wystąpienia tego objawu, zaleca się natychmiastowe zatrzymanie pojazdu w celu zapobiegnięcia dalszym uszkodzeniom silnika. Właściwa diagnostyka, często z wykorzystaniem analizy spalin oraz kontroli poziomu płynu chłodzącego, jest kluczowa dla zachowania sprawności silnika i uniknięcia kosztownych napraw. Wiedza o tym zjawisku jest szczególnie istotna dla mechaników oraz właścicieli pojazdów, gdyż pozwala na wczesne wykrycie problemu i jego skuteczne rozwiązanie, co jest zgodne z zasadami utrzymania i eksploatacji pojazdów zgodnie z normami przemysłowymi.

Pytanie 19

W katalizatorze spalin zanieczyszczenia są przekształcane w substancje bezpieczne dla zdrowia oraz środowiska. Którego składnika spalin to nie dotyczy?

A. CO
B. HC
C. CO2
D. NOx
CO2, czyli dwutlenek węgla, jest substancją, która nie jest uważana za szkodliwą dla zdrowia i środowiska w kontekście emisji spalin. Jest naturalnym produktem ubocznym procesów spalania, które zachodzą w silnikach spalinowych. W przeciwieństwie do innych szkodliwych składników spalin, takich jak tlenek węgla (CO), tlenki azotu (NOx) oraz węglowodory (HC), CO2 nie ma działania toksycznego ani nie powoduje bezpośrednich zagrożeń zdrowotnych. Oczywiście, w kontekście globalnym, nadmierne emisje CO2 przyczyniają się do zmian klimatycznych, jednak w obrębie działania katalizatora spalin nie jest on przekształcany, ponieważ nie klasyfikuje się go jako substancję szkodliwą. Przykładowo, w silnikach z systemami oczyszczania spalin, takich jak katalizatory trójdrożne, efektywnie redukuje się emisję CO, NOx oraz HC, natomiast CO2 jest produktem spalania, który jest nieodłącznym elementem procesu energetycznego. Właściwe zrozumienie funkcji katalizatora spalin pozwala na lepsze projektowanie systemów oczyszczania, zgodnych z normami emisji, takimi jak Euro 6, które skupiają się na redukcji szkodliwych składników spalin w celu ochrony zdrowia publicznego oraz środowiska.

Pytanie 20

Lampa służąca do sprawdzania kąta wyprzedzenia zapłonu wykorzystuje

A. efekt absorpcji światła
B. zjawisko interferencji
C. zjawisko dyfrakcji
D. efekt stroboskopowy
Trochę się pomieszały zjawiska, które nie mają nic wspólnego z lampami do ustawiania kąta wyprzedzania zapłonu. Zjawisko pochłaniania światła to tak naprawdę absorpcja fal świetlnych przez różne materiały, co nie ma zastosowania, gdy chodzi o wykrywanie momentu zapłonu. Możesz myśleć, że lampy stroboskopowe działają na tym zjawisku, ale w rzeczywistości to błyski światła, które pozwalają na obserwację ruchu obiektów. Dyfrakcja z kolei to zginanie fal świetlnych, co też nie jest związane z tymi lampami. Zjawisko interferencji, które polega na nakładaniu fal, bardziej nadaje się do badań optycznych, a nie do rzeczywistego użycia w lampach stroboskopowych. Wiele osób myli te zjawiska z rzeczywistym działaniem lamp stroboskopowych, ale zrozumienie, że to efekt stroboskopowy jest kluczowe dla właściwej diagnostyki silników.

Pytanie 21

W przypadku gdy u pracownika pojawią się pierwsze symptomy zatrucia tlenkiem węgla (ból głowy, uczucie zmęczenia, duszności oraz nudności), co należy zrobić w pierwszej kolejności?

A. umieścić poszkodowanego w bezpiecznej pozycji do momentu przybycia lekarza
B. wywołać u poszkodowanego wymioty
C. podać poszkodowanemu leki przeciwbólowe
D. wyprowadzić poszkodowanego na świeże powietrze
Wyprowadzenie poszkodowanego na świeże powietrze jest kluczowym działaniem w przypadku zatrucia tlenkiem węgla, ponieważ substancja ta jest bezbarwna i bezwonna, co utrudnia wczesne wykrycie zagrożenia. Objawy, takie jak ból głowy, duszności i nudności, są symptomami niedotlenienia organizmu, które mogą prowadzić do poważnych konsekwencji zdrowotnych, a nawet śmierci. Przeniesienie osoby poszkodowanej do dobrze wentylowanego pomieszczenia lub na zewnątrz zmniejsza stężenie tlenku węgla w organizmie, co może zminimalizować ryzyko poważnych uszkodzeń. Ważne jest, aby niezwłocznie wezwać pomoc medyczną, aby uzyskać profesjonalną opiekę. Zgodnie z wytycznymi organizacji zajmujących się zdrowiem i bezpieczeństwem, w takich sytuacjach należy zawsze priorytetowo traktować usunięcie osoby z miejsca zagrożenia. W praktyce, jeśli zauważysz objawy zatrucia tlenkiem węgla, natychmiast przystąp do ewakuacji poszkodowanego i zapewnij mu dostęp do świeżego powietrza, co jest kluczowym działaniem w ratowaniu zdrowia i życia.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

W specyfikacji rozmiaru opony 225/65R17 101H litera R wskazuje na

A. średnicę opony
B. maksymalne dopuszczalne obciążenie (nośność opony)
C. typ konstrukcji osnowy opony
D. maksymalną prędkość jazdy
Litera R w oznaczeniu rozmiaru opony 225/65R17 101H odnosi się do konstrukcji osnowy opony, co wskazuje, że opona jest oponą radialną. Opony radialne charakteryzują się tym, że włókna osnowy są ułożone w kierunku promieniowym, co pozwala na lepsze rozkładanie sił działających na oponę podczas jazdy. Dzięki tej konstrukcji, opony radialne zapewniają większą stabilność, lepszą przyczepność oraz niższe opory toczenia w porównaniu do opon diagonalnych. W praktyce oznacza to, że pojazdy wyposażone w opony radialne mogą osiągać lepsze osiągi, a także wyższą efektywność paliwową. Opony radialne są obecnie standardem w branży motoryzacyjnej, co potwierdzają normy ISO oraz standardy producentów samochodów. Warto dodać, że stosowanie opon odpowiednich do konstrukcji pojazdu jest kluczowe dla bezpieczeństwa i efektywności jazdy, a ich właściwy wybór powinien być oparty na specyfikacji producenta i zaleceniach branżowych.

Pytanie 25

Podczas wymiany zużytej tulei cylindrowej w silniku na nową, co jeszcze powinno zostać wymienione?

A. tłok wraz z korbowodem
B. tylko tłok
C. tłok i pierścienie
D. jedynie korbowód
Wymiana tulei cylindrowej silnika wiąże się z koniecznością wymiany tłoka z pierścieniami, ponieważ jest to element, który współpracuje z tuleją i wpływa na szczelność oraz prawidłowe działanie silnika. Tuleja cylindrowa jest odpowiedzialna za prowadzenie tłoka, a jej zużycie może prowadzić do zwiększonego luzu, co z kolei obniża efektywność silnika i może prowadzić do jego uszkodzenia. Wymiana tylko samej tulei, bez wymiany tłoka oraz pierścieni, naraża silnik na ryzyko nieprawidłowego działania. Pierścienie tłokowe z kolei są kluczowe dla utrzymania kompresji w cylindrze oraz uszczelnienia pomiędzy tłokiem a tuleją. W wielu standardach branżowych zaleca się, aby podczas tak poważnej interwencji jak wymiana tulei cylindrowej, zawsze wymieniać powiązane elementy, aby zapewnić długotrwałą i niezawodną pracę silnika. Przykładem może być zasada 'zrób to raz, zrób to dobrze', która podkreśla, że lepiej jest wykonać pełną naprawę, niż później wracać do problemu związanego z niedopasowaniem nowych i starych części.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Po wykonaniu naprawy tłumika końcowego, trzeba przeprowadzić kontrolę pojazdu przy użyciu

A. refraktometru
B. testera diagnostycznego
C. sonometru
D. miernika uniwersalnego
Sonometr to instrument, który służy do pomiaru poziomu hałasu, a jego zastosowanie w kontroli tłumika końcowego pojazdu jest niezwykle istotne. Po naprawie tłumika, który ma na celu redukcję hałasu emitowanego przez silnik, ważne jest, aby upewnić się, że jego działanie jest zgodne z normami akustycznymi. W wielu krajach istnieją przepisy dotyczące dopuszczalnych poziomów hałasu emitowanego przez pojazdy, dlatego pomiar za pomocą sonometru jest kluczowy. Przykładowo, w Europie normy te są określane przez dyrektywy unijne, które regulują poziomy hałasu w pojazdach silnikowych. Używając sonometru, mechanik może określić, czy poziom hałasu mieści się w zalecanych granicach, co jest niezbędne dla zgodności z przepisami oraz dla komfortu użytkowników dróg. Przeprowadzone pomiary mogą również pomóc w identyfikacji niewłaściwych napraw, które mogą prowadzić do nadmiernego hałasu, co w konsekwencji może wpłynąć na dalsze działanie pojazdu oraz jego trwałość.

Pytanie 28

Jakiego płynu należy użyć do napełnienia systemu hamulcowego?

A. SG/CD SAE 5W/40
B. L-DAA
C. L-HV
D. DOT-4
DOT-4 to specyfikacja płynu hamulcowego, który jest zalecany do stosowania w nowoczesnych układach hamulcowych. Jego główną zaletą jest wysoka temperatura wrzenia, wynosząca około 230°C, co sprawia, że jest odporny na zjawisko 'fadingu' hamulców. Płyn DOT-4 jest na bazie glikolu i zawiera dodatki, które zwiększają jego właściwości smarne i zapobiegają korozji komponentów układu hamulcowego. W praktyce oznacza to, że jego zastosowanie pozwala na skuteczniejsze działanie hamulców, co jest kluczowe w pojazdach osobowych oraz sportowych, gdzie wymagane są wysokie osiągi. Dobrą praktyką jest również regularne sprawdzanie poziomu płynu oraz jego wymiana co 2-3 lata, aby zapewnić optymalną wydajność układu hamulcowego. Użycie niewłaściwego płynu może prowadzić do poważnych konsekwencji, takich jak uszkodzenie uszczelek czy przegrzanie układu hamulcowego.

Pytanie 29

Ciśnienie definiujemy jako siłę działającą na jednostkę

A. długości
B. wagi
C. gęstości
D. powierzchni
Pojęcie ciśnienia jest często mylone z innymi właściwościami fizycznymi, co może prowadzić do błędnych wniosków. Odpowiedzi związane z długością, gęstością i wagą nie odnoszą się do definicji ciśnienia, które akcentuje zależność między siłą a powierzchnią. Długość nie ma wpływu na wartość ciśnienia, ponieważ to powierzchnia, na którą działa siła, jest kluczowa dla obliczeń. Gęstość, definiowana jako masa na jednostkę objętości, również nie ma związku z ciśnieniem, chociaż może oddziaływać na ciśnienie w kontekście płynów. Wiele osób myli pojęcia, nie dostrzegając, że ciśnienie to nie tylko wynik siły, ale również kontekstu, w którym ta siła działa, co prowadzi do nieporozumień. Podobnie, waga – będąca miarą siły grawitacji działającej na obiekt – nie jest tym samym, co ciśnienie. W rzeczywistości, choć waga może być użyta do obliczenia ciśnienia, jest tylko jednym z jego składników, a nie definicją. Tego rodzaju nieporozumienia mogą prowadzić do błędów w obliczeniach inżynieryjnych, co podkreśla znaczenie dokładnego rozumienia podstawowych pojęć w naukach przyrodniczych oraz ich właściwego stosowania w praktyce.

Pytanie 30

Pasek rozrządu silnika powinien być wymieniany

A. przed każdym okresem zimowym
B. po zalecanym przebiegu
C. przy wymianie olejowej pompy
D. w trakcie każdego przeglądu serwisowego
Wymiana paska rozrządu silnika jest kluczowym elementem konserwacji pojazdu, a jej przeprowadzenie po wskazanym przebiegu jest zgodne z zaleceniami producentów samochodów oraz standardami branżowymi. Zazwyczaj interwał wymiany paska rozrządu oscyluje w granicach 60 000 do 150 000 kilometrów, w zależności od marki i modelu pojazdu. Niezwykle istotne jest przestrzeganie tych zaleceń, ponieważ zużycie paska prowadzi do ryzyka jego zerwania, co może skutkować poważnymi uszkodzeniami silnika, w tym uszkodzeniem zaworów czy tłoków. W praktyce, podczas wymiany paska, warto również kontrolować stan rolek prowadzących i napinaczy, a także wymieniać płyn chłodniczy, co zapewni prawidłowe funkcjonowanie układu rozrządu na kolejne kilometry. Przykładowo, w samochodach takich jak Volkswagen Golf V, brak wymiany paska w odpowiednim czasie może prowadzić do kosztownych napraw, co pokazuje, jak istotne jest regularne monitorowanie stanu paska w kontekście całej konserwacji pojazdu.

Pytanie 31

Z fragmentu taryfikatora czasu napraw wynika, że całkowity czas wymiany uszczelnień tłoczków hamulcowych we wszystkich czterech zaciskach hamulcowych oraz odpowietrzenia układu w samochodzie Polonez 1500 wynosi

Taryfikator czasochłonności napraw
Rodzaj naprawyTyp pojazdu
Polonez 1500Polonez Atu Plus
Czas naprawy
Wymiana uszczelinień tłoczków hamulcowych przód1,5 h1,5 h
Wymiana uszczelinień tłoczków hamulcowych tył2 h-----
Wymiana uszczelinień cylinderków hamulcowych tył-----2,5 h
Odpowietrzenie układu hamulcowego1 h1 h
A. 4,5 h
B. 5,0 h
C. 4,0 h
D. 3,5 h
Wybór innych odpowiedzi niż 4,5 h może wynikać z nieporozumień dotyczących czasu wymiany uszczelnień tłoczków hamulcowych oraz procedur związanych z odpowietrzaniem układu. Odpowiedzi takie jak 3,5 h mogą mylnie zakładać, że uwzględniono tylko czas wymiany uszczelnień bez doliczenia odpowietrzenia. Często w praktyce warsztatowej dochodzi do błędnego oszacowania, gdzie mechanicy pomijają istotne kroki procesu serwisowego. Ważne jest, aby pamiętać, że każdy etap naprawy ma swoje specyfikacje czasowe, które powinny być przestrzegane, aby uniknąć opóźnień i nieprawidłowości. Podobne błędy mogą wynikać z niedostatecznego zrozumienia roli, jaką każdy z procesów odgrywa w całościowej naprawie pojazdu. Przykładowo, nieprawidłowe założenie dotyczące czasu wymiany uszczelnień może prowadzić do nieefektywnego zarządzania czasem pracy w warsztacie. Dlatego kluczowe jest znajomość taryfikatorów oraz umiejętność ich stosowania wobec rzeczywistych procedur serwisowych, co pozwala na dokładne planowanie i realizację zleconych prac.

Pytanie 32

Aby zmierzyć napięcie ładowania akumulatora w instalacji elektrycznej samochodu z alternatorem, konieczne jest skorzystanie z woltomierza o zakresie pomiarowym przynajmniej

A. 2 V
B. 20 V
C. 6 V
D. 9 V
Pomiar napięcia ładowania akumulatora w instalacji elektrycznej pojazdu z alternatorem wymaga użycia woltomierza o zakresie co najmniej 20 V. Standardowe napięcie ładowania akumulatorów w pojazdach osobowych wynosi od 13,8 V do 14,4 V, w zależności od stanu naładowania oraz temperatury. W przypadku awarii alternatora, napięcie może jednak wzrosnąć, osiągając wartości niebezpieczne dla systemu elektrycznego pojazdu. Użycie woltomierza o zakresie minimum 20 V zapewnia nie tylko bezpieczeństwo pomiaru, ale również pozwala na dokładne monitorowanie zachowań układu ładowania. Przykładowo, w przypadku stosowania woltomierza o niższym zakresie, istnieje ryzyko spalenia przyrządu pomiarowego przy wystąpieniu zbyt wysokiego napięcia. Ponadto, w branży motoryzacyjnej, zgodnie z normami SAE (Society of Automotive Engineers), zaleca się korzystanie z urządzeń pomiarowych, które mogą obsługiwać wyższe napięcia, aby uniknąć potencjalnych uszkodzeń sprzętu oraz zapewnić wiarygodność pomiarów.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Aby czterosuwowy silnik zrealizował pełny cykl pracy (cztery suwy), wał korbowy musi wykonać obrót

A. o 180°
B. o 720°
C. o 540°
D. o 360°
Wiesz co? Twoja odpowiedź "o 720°" jest jak najbardziej na miejscu. Silnik czterosuwowy to trochę skomplikowana sprawa, ale ogólnie wykonuje pełny cykl w czterech etapach: ssanie, sprężanie, praca (to ten moment, gdy mamy wybuch) i wydech. Żeby to wszystko zadziałało, wał korbowy musi zrobić dwa pełne obroty. To oznacza, że po każdym cyklu wał obraca się o 720°. Fajnie, że to zrozumiałeś, bo to mega istotne dla działania silnika. W praktyce, przy każdym obrocie wału o 360° kończy się tylko dwa suwki. Jak myślisz, czemu tak jest? To wiedza, która naprawdę przydaje się w mechanice i naukach o silnikach, bo bez tego ciężko ogarnąć diagnozowanie czy regulacje. Także, dobra robota w zrozumieniu tego tematu!

Pytanie 35

W serwisie samochodowym klient zgłosił problem związany z nadmiernym zużyciem wewnętrznych elementów bieżnika kół przednich. Jakie działanie powinien podjąć mechanik jako pierwsze?

A. zamienić koła przednie stronami
B. zweryfikować sprawność amortyzatorów
C. sprawdzić, czy w układzie zawieszenia nie występują luzy
D. sprawdzić, czy układ hamulcowy nie jest uszkodzony
Zamiana stronami kół przednich nie rozwiąże problemu nadmiernego zużycia bieżnika. Chociaż taka czynność może chwilowo zrównoważyć zużycie opon, nie eliminuje źródłowej przyczyny problemu. Zwykle, takie podejście jest symptomatyczne, a nie rozwiązuje problemu. Warto pamiętać, że przyczyny nierównomiernego zużycia opon mogą być związane z niewłaściwą geometrią kół, która z kolei jest konsekwencją uszkodzenia układu zawieszenia lub innych elementów pojazdu. Z kolei sprawdzenie układu hamulcowego w tej sytuacji, chociaż jest istotne dla ogólnego bezpieczeństwa, nie ma bezpośredniego wpływu na zużycie bieżnika, chyba że układ hamulcowy funkcjonuje w sposób nieprawidłowy, co przenosi się na stabilność pojazdu. Natomiast kontrola sprawności amortyzatorów, mimo że jest istotna, nie jest pierwszym krokiem, który powinien być podjęty w przypadku problemu z zużyciem opon. Amortyzatory wpływają na komfort jazdy i kontrolę nad pojazdem, jednak to układ zawieszenia w pierwszej kolejności powinien być sprawdzony, aby zidentyfikować luzy i inne potencjalne problemy, co jest zgodne z podejściem diagnostycznym i najlepszymi praktykami w serwisowaniu pojazdów.

Pytanie 36

Pierwszym krokiem przed przeprowadzeniem badania okresowego w Stacji Kontroli Pojazdów jest

A. pomiar zadymienia spalin silnika ZI
B. pobranie informacji o badanym pojeździe z Centralnej Ewidencji Pojazdów
C. sprawdzenie indeksu tłumienia amortyzatorów osi przedniej
D. sprawdzenie oraz regulacja ciśnienia w oponach do wartości nominalnych
Analizując inne odpowiedzi, można zauważyć, że sprawdzenie współczynnika tłumienia amortyzatorów osi przedniej jest ważnym elementem oceny stanu technicznego pojazdu, jednak nie jest to pierwsza czynność. Warto zwrócić uwagę, że przeprowadzenie tego pomiaru wymaga wcześniejszej weryfikacji danych pojazdu, co czyni tę czynność drugorzędną. Z kolei pomiar zadymienia spalin silnika ZI, choć istotny dla oceny emisji zanieczyszczeń, również powinien następować po zidentyfikowaniu pojazdu, aby zapewnić prawidłowość pomiarów i ich interpretację w kontekście faktycznego stanu pojazdu. Sprawdzenie i regulacja ciśnienia w ogumieniu do wartości nominalnych jest kluczowe dla bezpieczeństwa i wydajności pojazdu, jednak jest to czynność, która może być realizowana równolegle z innymi kontrolami, a nie jako pierwsza. Zatem, kluczowym błędem myślowym jest skupienie się na konkretnych aspektach technicznych pojazdu, które można realizować, nie uwzględniając konieczności wcześniejszej identyfikacji pojazdu oraz weryfikacji jego historii w CEP. Prawidłowe podejście do badania okresowego powinno zawsze zaczynać się od zbierania danych, co jest niezbędne dla dalszych, bardziej szczegółowych analiz stanu technicznego.

Pytanie 37

Aby przeprowadzić naprawę otworu na sworzeń tłokowy w tłoku metodą na wymiar naprawczy, należy wykorzystać

A. rozwiertarkę
B. gwintownik
C. wiertło spiralne
D. frez czołowy
Wykorzystanie wiertła krętego do naprawy otworu na sworzeń tłokowy jest niewłaściwe z kilku powodów. Wiertła kręte, choć powszechnie stosowane do wstępnego wiercenia otworów, nie są przeznaczone do precyzyjnego rozwiercania otworów, co jest kluczowe w kontekście naprawy tłoków. Wiertła tego typu mogą prowadzić do nadmiernego luzu w otworze, co w efekcie może skutkować niewłaściwym osadzeniem sworznia i jego przyspieszonym zużyciem. Rozwiertanie wymaga narzędzi, które zapewniają nie tylko odpowiednią średnicę, ale również wysoką jakość wykończenia, co jest istotne dla dalszego funkcjonowania silnika. Zastosowanie gwintownika w tej sytuacji jest także nietrafione, ponieważ gwintownik służy do tworzenia gwintów wewnętrznych, a nie do obróbki otworów do montażu sworzni. Freza czołowa, z kolei, jest narzędziem przeznaczonym do obróbki płaskich powierzchni i nie nadaje się do rozwiercania otworów. W procesach naprawczych istotne jest stosowanie narzędzi zgodnych z wymaganiami technicznymi, co pozwala uniknąć niepotrzebnych uszkodzeń i zapewnia długotrwałą jakość naprawy. Pamiętaj, że dobór narzędzi powinien być przemyślany i zgodny ze standardami inżynieryjnymi, aby zapewnić skuteczność oraz bezpieczeństwo operacji naprawczych.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Po zrealizowanej naprawie systemu hamulcowego powinno się przeprowadzić

A. test na szarpaku
B. test na stanowisku rolkowym
C. odczyt danych z kodów błędów sterownika ABS
D. pomiar długości drogi hamowania pojazdu
Test na stanowisku rolkowym jest kluczowym krokiem po wykonaniu naprawy układu hamulcowego, ponieważ pozwala na kompleksową ocenę skuteczności hamulców w rzeczywistych warunkach. Stanowiska rolkowe umożliwiają symulację obciążenia, jakie występuje podczas normalnej jazdy, co jest istotne dla właściwej kalibracji układu hamulcowego. W trakcie testu można zmierzyć siłę hamowania oraz sprawdzić, czy hamulce działają równomiernie na wszystkich kołach, co jest niezbędne dla bezpieczeństwa pojazdu. Ponadto, przeprowadzenie tego testu umożliwia zidentyfikowanie potencjalnych problemów, takich jak nierównomierne zużycie klocków czy tarcz hamulcowych. Standardy branżowe, takie jak normy ISO czy wytyczne producentów samochodów, podkreślają konieczność wykonywania tego typu testów po każdej naprawie, aby zapewnić, że pojazd spełnia wszystkie wymogi bezpieczeństwa oraz jakości. Przykładowo, testy te są rutynowo stosowane w warsztatach samochodowych jako standardowa procedura, co potwierdza ich znaczenie w praktyce.

Pytanie 40

Jaką nazwą oznaczoną symbolem określa się technologię wykorzystywaną w produkcji opon, która umożliwia jazdę po utracie ciśnienia?

A. AFS
B. PDC
C. ICC
D. PAX
Technologia oznaczona symbolem PAX to innowacyjny system, który pozwala na kontynuowanie jazdy po utracie ciśnienia w oponach. Opracowany przez koncern Michelin, PAX wykorzystuje specjalnie zaprojektowane opony, które mają szereg cech umożliwiających jazdę na uszkodzonej oponie, co jest szczególnie przydatne w sytuacjach awaryjnych. Opony PAX są wyposażone w system nośny, który zapobiega całkowitemu opadaniu opony z felgi, nawet przy całkowitym braku powietrza. Dzięki temu kierowcy mogą pokonać do 200 km przy prędkościach do 80 km/h, co daje czas na dotarcie do najbliższego warsztatu lub miejsca, gdzie można przeprowadzić naprawę. Technologia ta jest szczególnie cenna w pojazdach osobowych oraz dostawczych, gdzie bezpieczeństwo i mobilność są kluczowe. Właściwe wykorzystanie opon PAX zgodnie z zaleceniami producenta przyczynia się do zwiększenia bezpieczeństwa na drodze, co jest zgodne z najlepszymi praktykami w branży motoryzacyjnej.