Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 września 2025 22:10
  • Data zakończenia: 12 września 2025 22:22

Egzamin niezdany

Wynik: 13/40 punktów (32,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Demontaż przekładni pasowej zaczyna się od

A. zdemontowania koła pasowego o mniejszej średnicy
B. demontażu wałów
C. zdemontowania koła pasowego o większej średnicy
D. poluzowania naciągu pasów
Poluzowanie naciągu pasów jest kluczowym krokiem w demontażu przekładni pasowych, ponieważ pozwala na swobodne odłączenie elementów układu. W praktyce, zanim przystąpimy do demontażu, ważne jest, aby zminimalizować napięcie w pasach, co zapewnia łatwe usunięcie kół pasowych, zarówno większych, jak i mniejszych. Podczas pracy z przekładniami pasowymi, zgodnie z normami branżowymi, należy zawsze rozpoczynać demontaż od poluzowania naciągu, aby uniknąć uszkodzeń komponentów oraz zapewnić bezpieczeństwo. Przykładowo, w wielu zakładach przemysłowych, przed demontażem przekładni, technicy wykonują inspekcję stanu pasów oraz kół pasowych, aby upewnić się, że nie ma widocznych uszkodzeń. Taki proces pozwala na uniknięcie niepotrzebnych kosztów związanych z wymianą uszkodzonych elementów, a także przyspiesza proces konserwacji maszyn. Dlatego, poluzowanie naciągu pasów jest nie tylko procedurą techniczną, ale także praktycznym podejściem do zarządzania zasobami w zakładzie.

Pytanie 2

Jakie z czynności związanych z wymianą oleju oraz filtrów w zasilaczu hydraulicznym powinno być zrealizowane jako ostatnie?

A. Odłączyć wszystkie obwody, wyłączyć zasilanie, odkręcić śrubę odpowietrzającą lub wyjąć korek wlewowy i lekko przechylając zasilacz zlać olej
B. Wlać olej do właściwego poziomu i włączyć zasilanie, aby umożliwić samoczynne odpowietrzenie
C. Odkręcić śruby mocujące pokrywę do zbiornika, zdjąć pokrywę, dokładnie oczyścić i przepłukać zbiornik
D. Zamienić uszczelkę między zbiornikiem a pokrywą oraz wymienić wkłady filtrujące, a później połączyć zbiornik z pokrywą, przestrzegając zalecanej siły dokręcania
Właściwy przebieg czynności przy wymianie oleju i filtrów w zasilaczu hydraulicznym powinien kończyć się wlaniem nowego oleju do odpowiedniego poziomu i włączeniem zasilania. Jest to kluczowy etap, ponieważ zapewnia prawidłowe funkcjonowanie systemu hydraulicznego. Po napełnieniu zbiornika olejem, należy uruchomić zasilacz, co pozwala na samoczynne odpowietrzenie układu. W praktyce, odpowietrzanie jest istotne, ponieważ usunięcie powietrza z układu hydraulicznego zapobiega powstawaniu kawitacji, a tym samym zwiększa efektywność i żywotność urządzeń. Zgodnie z wytycznymi producentów zasilaczy hydraulicznych, tego rodzaju czynności powinny być zawsze wykonywane według ścisłych norm, aby zapewnić bezpieczeństwo i niezawodność systemu. Na przykład, jeżeli w systemie pozostało powietrze, może to prowadzić do nieprawidłowego działania siłowników, co negatywnie wpływa na dokładność operacji hydraulicznych. Zatem, kluczowe znaczenie ma również monitorowanie poziomu oleju oraz regularne sprawdzanie stanu filtrów, co jest zgodne z praktykami zarządzania konserwacją w branży hydraulicznej.

Pytanie 3

Siłowniki do bramy powinny być zamontowane w poziomej orientacji. Jakie narzędzie należy użyć do właściwego zamocowania siłowników?

A. poziomnicę
B. przymiar liniowy
C. kątomierz
D. czujnik zegarowy
Poziomnica jest narzędziem niezbędnym do precyzyjnego ustawienia siłowników w pozycji poziomej, co jest kluczowe dla prawidłowego działania bramy. Użycie poziomnicy pozwala na dokładne pomiary, które zapewniają, że siłowniki będą pracować w optymalnych warunkach, co z kolei wpływa na ich żywotność i efektywność. Na przykład, podczas montażu bramy przesuwnej, brak precyzyjnego ustawienia siłowników może prowadzić do ich uszkodzenia w wyniku nadmiernego obciążenia lub niewłaściwego działania mechanizmu. Dodatkowo, stosowanie poziomnicy jest zgodne z najlepszymi praktykami montażowymi, które zalecają regularne sprawdzanie poziomu oraz wyrównania elementów konstrukcji. Ważne jest również, aby pamiętać, że ustawienie siłowników w pozycji poziomej wpływa na równomierność działania bramy, co jest istotne z perspektywy bezpieczeństwa użytkowania. Dlatego poziomnica jest kluczowym narzędziem w procesie instalacji siłowników, a jej kompetentne użycie ma fundamentalne znaczenie dla sukcesu całego projektu.

Pytanie 4

Dobierz minimalny zestaw sterownika S7-200 do realizacji sterowania windą w budynku trzykondygnacyjnym. Wykorzystaj w tym celu opis elementów wejściowych/wyjściowych podłączonych do sterownika.

Elementy
wejściowe
jeden czujnik na każdej kondygnacji informujący o stanie drzwi zewnętrznych (otwarte/zamknięte)
jeden czujnik na każdej kondygnacji informujący o położeniu windy
jeden przycisk na każdej kondygnacji przywołujący windę
3 przyciski wewnątrz windy służące do wyboru kondygnacji
jeden przycisk wewnątrz windy informujący o awarii (AWARIA)
Elementy
wyjściowe
dwa styczniki załączające otwieranie i zamykanie drzwi
dwa styczniki uruchamiające jazdę kabiny na dół i jazdę kabiny do góry
A. S7-200 o 6 wejściach i 4 wyjściach
B. S7-200 o 24 wejściach i 16 wyjściach
C. S7-200 o 14 wejściach i 10 wyjściach
D. S7-200 o 8 wejściach i 6 wyjściach
Niepoprawne odpowiedzi, takie jak S7-200 o 8 wejściach i 6 wyjściach, S7-200 o 24 wejściach i 16 wyjściach oraz S7-200 o 6 wejściach i 4 wyjściach, nie spełniają wymagań dla skutecznego sterowania windą w budynku trzykondygnacyjnym. Przede wszystkim, w przypadku 8 wejść i 6 wyjść, liczba wejść jest zdecydowanie zbyt mała, aby obsłużyć wszystkie niezbędne czujniki, takie jak te monitorujące położenie windy, sygnały przycisków oraz inne sensory. Podobnie, 6 wejść i 4 wyjścia również nie są wystarczające, co prowadzi do ryzyka awarii systemu. Z drugiej strony, odpowiedź z 24 wejściami i 16 wyjściami, mimo że teoretycznie przekracza wymagania, w praktyce może prowadzić do zbędnych kosztów oraz złożoności systemu, co jest nieefektywne. W projektowaniu systemów automatyki niezwykle ważne jest, aby dobierać komponenty w sposób przemyślany, co oznacza nie tylko spełnienie minimalnych wymagań, ale także optymalizację kosztów. Niezrozumienie tego aspektu może prowadzić do błędnych założeń i nieefektywnej pracy systemu, co w konsekwencji może wpłynąć na bezpieczeństwo użytkowników oraz niezawodność działania urządzeń. Warto pamiętać, że właściwy dobór komponentów jest fundamentem każdej dobrze zaprojektowanej instalacji automatyki.

Pytanie 5

Elementy, które umożliwiają przepływ medium wyłącznie w jednym kierunku, to zawory

A. regulacyjne
B. dławiące
C. rozdzielające
D. zwrotne
Dławiące zawory są stosowane głównie do regulacji przepływu medium w systemach hydraulicznych, ale nie mają funkcji uniemożliwiania cofania się cieczy. Ich zadaniem jest zmniejszenie przepływu poprzez zwiększenie oporu, co może prowadzić do spadków ciśnienia w systemie. Takie podejście może być mylące, ponieważ niektórzy mogą sądzić, że regulacja przepływu jest równoważna z kierunkowością, co jest niezgodne z zasadami działania zaworów zwrotnych. Z kolei zawory regulacyjne służą do kontroli ciśnienia lub przepływu, ale podobnie jak zawory dławiące, nie są zaprojektowane do zapobiegania cofaniu się medium. W praktyce, ich niewłaściwe zastosowanie może prowadzić do problemów w systemach, takich jak awarie, które wynikają z niekontrolowanego przepływu. Zawory rozdzielające, z drugiej strony, mają za zadanie kierować przepływ medium do różnych obiegu, a nie ograniczać jego kierunek w sposób, w jaki robią to zawory zwrotne. Należy podkreślić, że pomyłki w doborze tych komponentów mogą prowadzić do poważnych wycieków lub uszkodzeń instalacji, co jest kosztowne i niebezpieczne w kontekście inżynieryjnym. Dlatego zrozumienie różnic pomiędzy tymi rodzajami zaworów jest kluczowe dla efektywnego projektowania i eksploatacji systemów hydraulicznych i pneumatycznych.

Pytanie 6

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. usunąć ciało obce, położyć rannego i wezwać lekarza
B. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
C. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
D. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
Usunięcie obcego ciała z rany może się wydawać słuszne, ale w praktyce to dość ryzykowne. Może to prowadzić do większego krwawienia lub dodatkowych uszkodzeń tkanek. Tak naprawdę zasada pierwszej pomocy mówi, żeby unikać wszelkich działań, które mogą pogorszyć sytuację, w tym usuwania ciał obcych, które mogą działać jak „korki”, ograniczając krwotok. W przypadku krwotoku ważne jest, by zmniejszyć przepływ krwi, a najlepszym sposobem jest ucisk na ranę i uniesienie kończyn. Użycie opatrunku uciskowego to standard w pierwszej pomocy, bo skutecznie zmniejsza krwawienie i stabilizuje poszkodowanego. Nie zapominaj, że zawsze trzeba wezwać pomoc, ale najpierw skup się na podstawowych zasadach opieki nad poszkodowanym. Niezrozumienie tych rzeczy może spowodować opóźnienia w skutecznej pomocy i zwiększyć ryzyko zdrowotnych konsekwencji.

Pytanie 7

Największe ryzyko związane z urządzeniami elektrycznymi wynika z możliwości

A. wystąpienia zwarcia doziemnego
B. pojawu przerwy w obwodzie elektrycznym
C. dotknięcia odizolowanych części będących pod napięciem
D. dotknięcia elementów urządzenia elektrycznego mających uziemienie
Dotknięcie odizolowanych elementów znajdujących się pod napięciem stanowi poważne zagrożenie dla zdrowia i życia ludzi. Elementy te, jeśli są odizolowane, mogą wydawać się bezpieczne, jednak w momencie, gdy dojdzie do naruszenia izolacji, stają się źródłem niebezpiecznego napięcia elektrycznego. Przykładem może być uszkodzona wtyczka lub przewód, w którym izolacja została przerwana, a przewodnik stał się dostępny. W takich sytuacjach, dotykając odizolowanego elementu, osoba może stać się drogą, przez którą prąd elektryczny przepływa do ziemi, co może prowadzić do porażenia elektrycznego. Zgodnie z normami bezpieczeństwa, takimi jak PN-EN 61140, urządzenia elektryczne powinny być projektowane z myślą o minimalizowaniu ryzyka kontaktu z elementami pod napięciem. Regularne przeglądy oraz stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowo-prądowe, mogą znacznie zredukować to ryzyko. Odpowiednia edukacja użytkowników i pracowników w zakresie bezpieczeństwa elektrycznego jest kluczowa dla zapobiegania wypadkom.

Pytanie 8

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Przemiennika częstotliwości
B. Softstartu
C. Prostownika sterowanego trójpulsowego
D. Przełącznika gwiazda-trójkąt
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 9

Który element powinien zostać wymieniony w podnośniku hydraulicznym, jeśli tłoczysko siłownika unosi się, a następnie samoistnie opada?

A. Tłokowy pierścień uszczelniający
B. Sprężynę zaworu zwrotnego
C. Zawór bezpieczeństwa
D. Filtr oleju
Tłokowy pierścień uszczelniający odgrywa kluczową rolę w działaniu podnośnika hydraulicznego, ponieważ zapewnia uszczelnienie między tłokiem a cylindrem, co zapobiega niepożądanym wyciekom oleju hydraulicznego. Gdy tłokowy pierścień jest zużyty lub uszkodzony, może to prowadzić do spadku ciśnienia w systemie, co z kolei powoduje, że podnoszona masa opada po pewnym czasie. W praktyce, regularna kontrola stanu pierścieni uszczelniających jest niezbędna w ramach konserwacji podnośników hydraulicznych, co jest zgodne z zaleceniami branżowymi dotyczącymi serwisowania sprzętu hydraulicznego. Zastosowanie wysokiej jakości materiałów w produkcji tych pierścieni oraz ich poprawna instalacja mają kluczowe znaczenie dla długotrwałej i efektywnej pracy podnośnika. W przypadku zauważenia problemów z opadaniem podnoszonego ciężaru, wymiana tłokowego pierścienia uszczelniającego powinna być jednym z pierwszych kroków diagnostycznych, aby przywrócić prawidłowe funkcjonowanie systemu hydraulicznego.

Pytanie 10

Jakie znaczenie mają parametry zaworu pneumatycznego rozdzielającego: Gl/8; 550 Nl/min; 12 V AC; 3 VA w podanej kolejności?

A. przyłącze stożkowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc pozorna cewki
B. przyłącze stożkowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc czynna cewki
C. przyłącze walcowe, ciśnienie nominalne powietrza, napięcie stałe cewki, moc czynna cewki
D. przyłącze walcowe, przepływ nominalny powietrza, napięcie zmienne cewki, moc pozorna cewki
Analizując błędne odpowiedzi, warto zwrócić uwagę na kilka kluczowych nieporozumień. Przyłącze stożkowe, które sugeruje część niepoprawnych odpowiedzi, nie jest typowe dla zaworów pneumatycznych o parametrach podanych w pytaniu. W praktyce, przyłącza walcowe są szeroko stosowane ze względu na ich łatwość montażu oraz kompatybilność z większością systemów. Z kolei pojęcie 'ciśnienia nominalnego powietrza' jest mylące w kontekście podanych parametrów, ponieważ bardziej odpowiednim określeniem w tym przypadku jest 'przepływ nominalny', który bezpośrednio odnosi się do wydajności zaworu. Napięcie 'stałe', zaproponowane w jednej z odpowiedzi, również jest błędne; parametry wskazują, że zawór działa na napięciu zmiennym, co jest istotne w kontekście zastosowań, w których wykorzystuje się zasilanie AC. Dodatkowo, moc pozorna cewki powinna być zrozumiana jako wartość, która wskazuje, ile energii jest potrzebne do pracy zaworu, a nie jako moc czynna, jak sugeruje jedna z odpowiedzi. Te nieporozumienia mogą prowadzić do niewłaściwego doboru komponentów, co z kolei może mieć negatywne konsekwencje dla efektywności i bezpieczeństwa całego systemu pneumatycznego. Właściwe zrozumienie specyfikacji technicznych zaworów i ich parametrów jest kluczowe dla projektowania oraz eksploatacji systemów automatyki przemysłowej.

Pytanie 11

Jak można zmierzyć moc pobieraną przez urządzenie zasilane napięciem 24 V DC?

A. watomierzem w układzie Arona
B. mostkiem Wheatstone'a
C. mostkiem Thompsona
D. woltomierzem i amperomierzem
Pomiar mocy pobieranej przez urządzenie zasilane napięciem 24 V DC nie może być przeprowadzony za pomocą mostka Wheatstone'a, ponieważ ten typ mostka jest używany głównie do pomiaru oporu elektrycznego, a nie mocy. Mostek Wheatstone'a działa na zasadzie równoważenia dwóch gałęzi obwodu, co umożliwia dokładne pomiary oporu, ale nie dostarcza informacji o napięciu i prądzie przepływającym przez obwód. Z tego powodu jego zastosowanie w kontekście pomiarów mocy jest niewłaściwe i prowadzi do błędnych wniosków. Z kolei mostek Thompsona, podobnie jak mostek Wheatstone'a, jest zaprojektowany do pomiaru oporu, a jego wykorzystanie w pomiarze mocy również nie ma sensu. W obu przypadkach pomiar mocy wymaga znajomości wartości napięcia i natężenia prądu, co nie jest możliwe za pomocą tych mostków. Watomierz w układzie Arona, choć jest urządzeniem dedykowanym do pomiaru mocy, nie jest najpraktyczniejszym rozwiązaniem w prostych układach prądu stałego, jak 24 V DC. Często stosowane urządzenia pomiarowe w przemyśle elektronicznym i elektrotechnicznym to woltomierze i amperomierze, które są bardziej uniwersalne i łatwe w użyciu. Użycie nieodpowiednich przyrządów pomiarowych oraz brak zrozumienia ich zastosowania mogą prowadzić do nieprecyzyjnych pomiarów oraz błędnych interpretacji wyników, co jest kluczowym zagadnieniem w praktyce inżynierskiej.

Pytanie 12

Urządzenia elektroniczne, które gwarantują stabilność napięcia prądu elektrycznego na wyjściu, niezależnie od obciążeń oraz zmian w napięciu w sieci, określamy mianem

A. stabilizatorów
B. prostowników
C. zasilaczy
D. generatorów
Stabilizatory to urządzenia elektroniczne, które zapewniają stałe napięcie na wyjściu, niezależnie od zmian napięcia zasilania oraz obciążenia podłączonego do nich układu. Ich kluczową funkcją jest ochrona urządzeń elektronicznych przed niekorzystnymi skutkami wahań napięcia, co jest szczególnie istotne w zastosowaniach wymagających wysokiej niezawodności, jak w urządzeniach medycznych, systemach komputerowych czy automatyce przemysłowej. Stabilizatory można podzielić na liniowe i impulsowe, z których każdy typ ma swoje unikalne zalety i zastosowania. Stabilizatory liniowe są proste w konstrukcji i oferują niewielkie zniekształcenia, ale ich wydajność energetyczna jest niższa, co sprawia, że w zastosowaniach wymagających dużych prądów lepiej sprawdzają się stabilizatory impulsowe. W standardach branżowych, takich jak IEC 61000, uwzględnia się wymagania dotyczące stabilności napięcia w kontekście kompatybilności elektromagnetycznej, co czyni stabilizatory niezbędnym elementem w projektowaniu nowoczesnych systemów elektronicznych.

Pytanie 13

Zwiększenie wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny, przy niezmiennym obciążeniu silnika, prowadzi do

A. wzrostu rezystancji uzwojeń
B. zwiększenia prędkości obrotowej
C. zmniejszenia prędkości obrotowej
D. spadku rezystancji uzwojeń
Wzrost wartości częstotliwości wyjściowej falownika zasilającego silnik indukcyjny prowadzi do zwiększenia prędkości obrotowej silnika. Wynika to z faktu, że prędkość obrotowa silnika indukcyjnego jest bezpośrednio proporcjonalna do częstotliwości zasilania, co jest opisane równaniem: n = (120 * f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość w hercach (Hz), a p to liczba par biegunów silnika. W praktyce oznacza to, że zmiana częstotliwości zasilania pozwala na precyzyjne sterowanie prędkością obrotową silnika, co jest kluczowe w wielu aplikacjach przemysłowych, takich jak napędy wentylatorów, pomp czy przenośników taśmowych. Wzrost prędkości obrotowej może również skutkować zwiększeniem wydajności procesu produkcyjnego oraz optymalizacją zużycia energii, ponieważ falowniki pozwalają na dostosowanie parametrów pracy silnika w zależności od aktualnych potrzeb. Współczesne standardy w automatyce przemysłowej promują wykorzystanie falowników jako najbardziej efektywnego sposobu zarządzania napędami elektrycznymi, co przekłada się na większą elastyczność i oszczędności energetyczne.

Pytanie 14

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s
A. warunkowo.
B. z opóźnieniem czasowym.
C. z ograniczeniem czasowym.
D. impulsowo.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 15

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. brak modyfikacji częstotliwości impulsów z kontrolera
B. zbyt wysokie napięcie zasilające
C. wysyłanie impulsów sterujących w błędnej kolejności
D. nadmierne obciążenie silnika
Silnik krokowy, aby poprawnie zmieniać prędkość obrotową, wymaga odpowiedniego sterowania impulsami, które muszą być podawane z określoną częstotliwością. Gdy częstotliwość impulsów ze sterownika pozostaje niezmieniona, silnik nie jest w stanie dostosować swojej prędkości obrotowej do pożądanych wartości. W praktyce oznacza to, że jeśli na przykład wymagamy od silnika przyspieszenia lub zwolnienia, a częstotliwość impulsów nie zostaje zwiększona ani zmniejszona, silnik pozostaje w tej samej prędkości obrotowej. Dobrym przykładem zastosowania tej zasady jest w systemach CNC, gdzie zmiana prędkości obrotowej silnika krokowego jest kluczowa dla precyzyjnego wykonywania operacji obróbczych. Zgodnie z dobrymi praktykami w projektowaniu systemów sterowania, należy zapewnić odpowiednie algorytmy regulacji, które będą automatycznie dostosowywać częstotliwość impulsów na podstawie wymagań aplikacji, co gwarantuje optymalną pracę silnika i jego efektywność.

Pytanie 16

Jakie metody wykorzystuje się do produkcji prętów?

A. wytłaczanie
B. tłoczenie
C. odlewanie
D. walcowanie
Odpowiedzi takie jak odlewanie, wytłaczanie i tłoczenie, choć są powszechnie stosowane w przemyśle metalowym, nie są odpowiednie dla procesu produkcji prętów. Odlewanie polega na wlewaniu ciekłego metalu do form, gdzie stwardnieje w pożądanym kształcie. Ta metoda, choć efektywna dla produkcji części o skomplikowanych kształtach, nie zapewnia wymaganego stopnia jednorodności ani kontrolowanej struktury mikro w prętach, co jest kluczowe dla ich późniejszego zastosowania. Wytłaczanie, z drugiej strony, polega na formowaniu metalu poprzez przepychanie go przez matrycę; chociaż jest to skuteczna technika dla tworzenia długich elementów, pręty wymagają specyficznych wymiarów i właściwości mechanicznych, które lepiej osiągnąć poprzez walcowanie. Tłoczenie, będące procesem kształtowania blachy lub cienkowarstwowych materiałów poprzez użycie nacisku, nie jest także odpowiednie do produkcji prętów, które wymagają szczególnej precyzji w grubości i długości. Zrozumienie różnicy między tymi metodami obróbki jest kluczowe dla wyboru odpowiedniego procesu w zależności od zamierzonych zastosowań prętów. Typowym błędem myślowym jest traktowanie wszystkich metod obróbczych jako równoważnych, bez uwzględnienia ich specyfiki oraz wymagań technicznych danego produktu. Właściwe podejście do wyboru technologii obróbczej ma kluczowe znaczenie dla jakości i wydajności produkcji.

Pytanie 17

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
B. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
C. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
D. wylutowania uszkodzonej diody oraz wlutowania nowej diody
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 18

Co koniecznie trzeba skonfigurować w urządzeniu, aby mogło funkcjonować w sieci Ethernet?

A. Z szybkość przesyłania danych
B. Niepowtarzalny adres IP
C. Bity stopu
D. Adres serwera DNS
Aby urządzenie mogło pracować w sieci Ethernet, konieczne jest przypisanie mu niepowtarzalnego adresu IP. Adres IP jest unikalnym identyfikatorem, który umożliwia komunikację pomiędzy urządzeniami w sieci. W kontekście protokołu TCP/IP, który jest fundamentem komunikacji w sieciach Ethernet, każdy host musi posiadać swój własny adres IP, aby móc wysyłać i odbierać dane. Przykładowo, w małej sieci lokalnej (LAN) adresy IP mogą być przydzielane dynamicznie przez serwer DHCP, ale każde urządzenie musi być w stanie zostać zidentyfikowane przez unikalny adres. W praktyce, ustawiając adres IP, administratorzy sieci muszą również upewnić się, że nie koliduje on z innymi adresami w sieci, co jest kluczowe dla prawidłowego funkcjonowania i unikania konfliktów. Warto również pamiętać, że adres IP może być w wersji IPv4 lub IPv6, a ich odpowiedni wybór jest istotny w kontekście rozwoju i przyszłości sieci. Dobre praktyki obejmują przydzielanie adresów z odpowiednich pul adresowych oraz dokumentowanie przydzielonych adresów, aby zminimalizować ryzyko błędów.

Pytanie 19

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Przewodu koncentrycznego
B. Przewodu dziewięciożyłowego
C. Skrętki czteroparowej, ekranowanej
D. Skrętki dwuprzewodowej
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 20

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. obcinacze i szczypce
C. lampy UV i szczypce
D. lampy UV i odsysacz
Odpowiedź 'obcinacze i szczypce' jest prawidłowa, ponieważ obydwa te narzędzia są niezbędne w procesie lutowania na płytkach drukowanych. Obcinacze służą do precyzyjnego przycinania nadmiaru nogi elementów elektronicznych po ich zamontowaniu, co ma kluczowe znaczenie dla estetyki oraz funkcjonalności płytki. Z kolei szczypce umożliwiają odpowiednie chwytanie i manipulowanie drobnymi komponentami, co jest ważne podczas montażu oraz lutowania w trudno dostępnych miejscach. Zastosowanie tych narzędzi jest zgodne z dobrymi praktykami w inżynierii elektronicznej, które podkreślają znaczenie precyzyjnego i estetycznego wykonania połączeń lutowanych, co przekłada się na niezawodność i długowieczność urządzeń elektronicznych. Warto również pamiętać o standardach IPC, które definiują zalecenia dotyczące lutowania i obróbki komponentów na płytkach, co czyni użycie obcinaczy i szczypców kluczowym elementem w procesie produkcji elektroniki.

Pytanie 21

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. trójfazowym 230 V/400 V
B. stałym 110 V
C. jednofazowym symetrycznym 2 x 115 V
D. stałym 24 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 22

Silnik liniowy przekształca

A. energię elektryczną w energię mechaniczną
B. ruch liniowy w ruch obrotowy
C. energię mechaniczną w energię elektryczną
D. ruch obrotowy w ruch liniowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silnik liniowy to urządzenie, które bezpośrednio przekształca energię elektryczną w ruch mechaniczny w linii prostej. Działa na zasadzie generowania siły wzdłuż swojej osi, co pozwala na bezpośrednie przemieszczanie obiektów bez potrzeby używania mechanizmów przekładniowych, jak w przypadku silników obrotowych. Przykładem zastosowania silników liniowych są systemy transportu w przemyśle, takie jak linie montażowe, gdzie precyzyjne ruchy liniowe są niezbędne do efektywnej produkcji. Innym przykładem są pociągi maglev, które dzięki silnikom liniowym poruszają się z dużymi prędkościami, eliminując tarcie i zwiększając efektywność energetyczną. Przy projektowaniu silników liniowych wykorzystuje się standardy dotyczące bezpieczeństwa i efektywności, takie jak normy IEC oraz ISO, co zapewnia nie tylko wysoką wydajność, ale również niezawodność w działaniu. W praktyce, silniki liniowe znajdują zastosowanie w robotyce, automatyce oraz nowoczesnych systemach transportowych, co tylko podkreśla ich znaczenie w dzisiejszym przemyśle.

Pytanie 23

Jakie urządzenie służy do pomiaru prędkości obrotowej wirnika silnika?

A. prądnica tachometryczna.
B. resolver.
C. galwanometr.
D. tensometr.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna jest urządzeniem stosowanym do pomiaru prędkości obrotowej wirnika silnika, które działa na zasadzie generowania napięcia proporcjonalnego do prędkości obrotowej wału. Jest to szczególnie przydatne w aplikacjach, gdzie precyzyjny pomiar prędkości jest kluczowy, takich jak w silnikach elektrycznych, systemach automatyki czy pojazdach. Prądnice tachometryczne są często wykorzystywane w systemach regulacji, gdzie dokładne informacje o prędkości obrotowej są niezbędne do uzyskania stabilności i efektywności działania układu. W praktyce, prądnice te znajdują zastosowanie w napędach, robotyce oraz w różnych maszynach przemysłowych. Dobrą praktyką jest regularne kalibrowanie prądnic tachometrycznych, aby zapewnić ich dokładność oraz niezawodność. Znajomość działania prądnic tachometrycznych oraz ich zastosowań pozwala inżynierom na efektywniejsze projektowanie systemów automatyki i zwiększa efektywność produkcji.

Pytanie 24

Jakiego koloru powinna być izolacja przewodu PE?

A. Brązowy.
B. Niebieski.
C. Zielony.
D. Żółto-zielony.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 25

Podczas instalacji systemu z kontrolerem PLC, przewody magistrali Profibus powinny

A. być wciągane do osłon jako ostatnie
B. być układane jak najdalej od przewodów silnoprądowych
C. być kładzione w bezpośrednim sąsiedztwie kabli energetycznych
D. być wciągane do osłon jako pierwsze

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Układanie przewodów magistrali Profibus jak najdalej od przewodów silnoprądowych jest kluczowe dla zapewnienia niezawodności i integralności sygnału w systemach automatyki przemysłowej. Przewody silnoprądowe emitują pole elektromagnetyczne, które może zakłócać transmisję danych w kablach magistrali, prowadząc do błędów komunikacyjnych i spadku wydajności systemu. Dobre praktyki montażowe, zgodne z normami, takimi jak IEC 61158, zalecają trzymanie przynajmniej 30 centymetrów odstępu pomiędzy przewodami sygnałowymi a przewodami zasilającymi. Ponadto, umieszczając przewody w odpowiednich osłonach, można zminimalizować ryzyko uszkodzeń mechanicznych oraz wpływu czynników zewnętrznych, co ma istotne znaczenie w trudnych warunkach przemysłowych. Przykładowo, w zakładach produkcyjnych, w których występuje intensywna obecność maszyn elektrycznych, przestrzeganie tych zasad zapewnia stabilność działania systemu sterowania oraz minimalizuje ryzyko awarii, co przekłada się na zwiększenie efektywności produkcji.

Pytanie 26

Który z podanych standardów przesyłania sygnałów cyfrowych pozwala na bezprzewodową transmisję danych?

A. RS 232
B. USB
C. RS 485
D. IRDA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
IRDA, czyli Infrared Data Association, to standard komunikacji bezprzewodowej, który umożliwia przesyłanie danych za pomocą podczerwieni. Technologia ta jest stosunkowo popularna w urządzeniach takich jak telefony komórkowe, laptopy oraz różnego rodzaju urządzenia peryferyjne, które wymagają szybkiej i wygodnej wymiany danych. IRDA wspiera różne prędkości transmisji, co czyni ją elastycznym rozwiązaniem w zastosowaniach, gdzie istnieje potrzeba bezprzewodowego przesyłania informacji na niewielkie odległości, zazwyczaj do kilku metrów. To podejście jest szczególnie efektywne w środowiskach, gdzie inne formy komunikacji, jak Bluetooth, mogą być zbyt rozbudowane lub zbędne. Dobre praktyki dotyczące IRDA obejmują stosowanie odpowiednich protokołów dla zapewnienia bezpieczeństwa transmisji, co jest kluczowe w kontekście wymiany poufnych danych. Zrozumienie tej technologii oraz jej praktyczne zastosowanie w codziennym życiu użytkowników jest niezbędne dla efektywnego zarządzania urządzeniami oraz danymi.

Pytanie 27

Przed ponownym połączeniem silnika elektrycznego z napędzaną maszyną konieczne jest przeprowadzenie

A. pomiary obrotów wirnika
B. kontroli kierunku obrotu wirnika
C. kontroli temperatury uzwojenia
D. pomiary napięcia zasilającego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzanie, w którą stronę obraca się wirnik przed ponownym połączeniem silnika elektrycznego z maszyną, to bardzo ważny krok, żeby wszystko działało bezpiecznie i efektywnie. Kierunek obrotów ma ogromne znaczenie, bo gdyby wirnik kręcił się w złą stronę, może to prowadzić do poważnych uszkodzeń sprzętu lub nawet zablokowania wirnika. W praktyce, zanim podłączysz silnik, dobrze jest upewnić się, że wirnik obraca się w odpowiednią stronę. Na przykład w wentylatorach, pompach czy systemach transportowych, błędny kierunek mógłby spowodować, że przepływ cieczy lub powietrza byłby niewłaściwy, co może prowadzić do przeciążenia i zniszczenia urządzenia. Dlatego warto przed każdą operacją zrobić szybki przegląd, a także użyć narzędzi, jak wskaźniki kierunku obrotów, aby sprawdzić, czy wszystko działa jak należy. Taki sposób działania nie tylko zwiększa bezpieczeństwo, ale też może wydłużyć żywotność maszyn. Warto pamiętać, że zgodnie z normami bezpieczeństwa, sprawdzenie kierunku obrotów wirnika jest jednym z podstawowych kroków, które należy wykonać przed uruchomieniem maszyny.

Pytanie 28

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. V
B. obr./min
C. V/(obr./min)
D. Hz

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź V/(obr./min) jest poprawna, ponieważ jednostka ta odzwierciedla zależność napięcia wyjściowego prądnicy tachometrycznej od prędkości obrotowej. Prądnice tachometryczne to urządzenia, które przekształcają ruch obrotowy w sygnał elektryczny, a ich zastosowanie jest kluczowe w systemach automatyki i kontroli procesów. Wartość wyjściowa, mierzona w woltach, jest proporcjonalna do prędkości obrotowej wyrażonej w obrotach na minutę. Dlatego stosunek V/(obr./min) idealnie charakteryzuje tę zależność. Na przykład, w aplikacjach takich jak regulacja prędkości silników elektrycznych, prądnice tachometryczne dostarczają istotnych informacji o prędkości obrotowej, co pozwala na precyzyjne sterowanie i monitorowanie systemów. W branży inżynieryjnej wykorzystuje się standardy, takie jak ISO 9001, które zapewniają jakość i niezawodność urządzeń pomiarowych, w tym prądnic tachometrycznych.

Pytanie 29

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Graniczne
B. Jednostronne
C. Nominalne
D. Rzeczywiste

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "Graniczne" jest poprawna, ponieważ wymiary graniczne definiują maksymalne i minimalne wartości dopuszczalne dla wymiarów elementów mechanicznych. W praktyce inżynieryjnej, wymiary graniczne są kluczowe w procesie projektowania, produkcji oraz kontroli jakości, ponieważ określają, w jakim zakresie wymiaru elementu można tolerować błędy wykonania. W projektowaniu przyjmuje się nominalny wymiar, natomiast granice wymiarowe wyznaczają zakres, w którym element może być produkowany, co jest istotne dla zapewnienia odpowiednich właściwości funkcjonalnych oraz interoperacyjności z innymi komponentami. Na przykład, w przemyśle motoryzacyjnym, wymiary graniczne są istotne dla zapewnienia, że wszystkie części pasują ze sobą w pojazdach, co ma wpływ na bezpieczeństwo oraz wydajność. W praktyce, stosowanie norm takich jak ISO 286, które definiują systemy wymiarów granicznych, jest kluczowe dla efektywności procesów produkcyjnych oraz redukcji kosztów związanych z błędami wykonawczymi.

Pytanie 30

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Prądnica tachometryczna
B. Potencjometr obrotowy
C. Selsyn trygonometryczny
D. Mostek tensometryczny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna to fajne urządzenie, które służy do mierzenia prędkości obrotowej wału silnika. Działa na zasadzie indukcji elektromagnetycznej, co oznacza, że kiedy wał się kręci, w uzwojeniach prądnicy powstaje prąd, który jest proporcjonalny do prędkości tego obrotu. To bardzo ważne w automatyce i regulacji, bo precyzyjne pomiary prędkości są kluczowe, żeby maszyny działały stabilnie i efektywnie. Na przykład w autach, prądnice tachometryczne pomagają kontrolować prędkość silnika, co z kolei wpływa na zużycie paliwa i emisję spalin. Co więcej, te urządzenia są zgodne z normami europejskimi, jak IEC 60034, więc można na nie liczyć. W praktyce, wdrożenie prądnic tachometrycznych w systemach pomiarowych umożliwia uzyskanie wysokiej dokładności i szybkiej reakcji, co jest super ważne w nowoczesnym przemyśle.

Pytanie 31

Który rodzaj smaru powinien być regularnie uzupełniany w smarownicy pneumatycznej?

A. Pastę
B. Olej
C. Proszek
D. Silikon

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Olej jest kluczowym środkiem smarnym w smarownicach pneumatycznych, ponieważ zapewnia niezbędne smarowanie ruchomych części oraz minimalizuje tarcie, co przekłada się na dłuższa żywotność urządzenia. W kontekście smarownic pneumatycznych, olej ułatwia również transport powietrza, co jest istotne dla efektywności działania systemu. W praktyce, regularne uzupełnianie oleju w smarownicach zapewnia optymalne warunki pracy, co jest zgodne z zaleceniami producentów urządzeń oraz normami branżowymi. Na przykład, w systemach pneumatycznych stosuje się oleje syntetyczne lub mineralne, które są dedykowane do konkretnego zastosowania, co zwiększa ich skuteczność oraz zmniejsza ryzyko awarii. Przy odpowiednim doborze oleju, można także poprawić efektywność energetyczną urządzeń, co jest istotne w kontekście oszczędności oraz zrównoważonego rozwoju.

Pytanie 32

Jakie czynności są charakterystyczne dla utrzymania układów pneumatycznych?

A. Usuwanie kondensatu wodnego
B. Codzienna wymiana filtra powietrza
C. Okresowe wyłączanie sprężarki
D. Codzienna wymiana oleju w smarownicy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Usuwanie kondensatu wodnego jest kluczowym działaniem w konserwacji układów pneumatycznych, ponieważ kondensat, który gromadzi się w systemie, może prowadzić do wielu problemów operacyjnych. Woda w układzie pneumatycznym może spowodować korozję komponentów, zmniejszenie efektywności działania siłowników oraz obniżenie jakości powietrza dostarczanego do narzędzi pneumatycznych. Zgodnie z normami ISO 8573, które określają wymagania dotyczące jakości powietrza sprężonego, wilgotność powietrza jest istotnym czynnikiem do utrzymania w ryzach. Regularne usuwanie kondensatu, na przykład przy użyciu automatycznych osuszczy powietrza lub separatorów kondensatu, jest standardową praktyką, która pomaga zapewnić długą żywotność sprzętu i optymalną wydajność układów pneumatycznych. Przykładem tego może być zastosowanie separatorów wody w linii sprężonego powietrza, co pozwala na efektywne usuwanie wody i minimalizowanie ryzyka uszkodzeń oraz przestojów w pracy systemu.

Pytanie 33

Modulacja impulsowa określana jako PWM polega na modyfikacji w sygnale, który jest modulowany

A. szerokości impulsu
B. częstotliwości impulsu
C. amplitudy impulsu
D. częstotliwości oraz fazy impulsu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Modulacja szerokości impulsu (PWM) to technika, w której szerokość impulsów w sygnale modulowanym jest zmieniana w zależności od wartości sygnału wejściowego. W praktyce oznacza to, że czas, w jakim sygnał jest w stanie wysokim (ON) lub niskim (OFF), jest dostosowywany, co pozwala na skuteczne reprezentowanie informacji. PWM jest szeroko stosowana w elektronice, zwłaszcza w kontrolowaniu prędkości silników, jasności diod LED oraz w systemach audio. Przy zastosowaniu PWM, możemy zredukować straty energii, co jest zgodne z dobrą praktyką inżynieryjną, ponieważ umożliwia efektywne zarządzanie mocą. Na przykład, w przypadku silników DC, poprzez zmianę szerokości impulsów, inżynierowie mogą precyzyjnie regulować prędkość obrotową silnika, co jest kluczowe w automatyzacji i robotyce. Zgodnie ze standardami branżowymi, stosowanie PWM może również poprawić jakość sygnałów w systemach audio, co przekłada się na lepsze wrażenia słuchowe. Warto również zauważyć, że technika ta jest fundamentalna w systemach zasilania, gdzie precyzyjna kontrola mocy jest niezbędna do zapewnienia stabilności i efektywności operacyjnej.

Pytanie 34

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozchodzenie się mgły olejowej w instalacji
B. odfiltrowanie cząstek stałych z powietrza
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. spływ kondensatu wodnego do najniższego punktu instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 35

Jakie narzędzia powinno się zastosować do montażu przewlekanego komponentów elektronicznych na płytce PCB?

A. Stacja lutownicza
B. Lutownica na gorące powietrze z dyszą w kształcie 7x7
C. Lutownica z końcówką 'minifala'
D. Rozlutownica

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stacja lutownicza to narzędzie, które zapewnia precyzyjne i stabilne warunki pracy, co jest kluczowe podczas lutowania przewlekanego elementów elektronicznych na płytkach drukowanych. Dzięki regulowanej temperaturze i możliwości dostosowania przepływu powietrza, stacja lutownicza umożliwia skuteczne lutowanie, minimalizując ryzyko przegrzewania komponentów. Na przykład, w przypadku lutowania małych elementów, takich jak kondensatory czy oporniki, stacja lutownicza pozwala na dokładne ustawienie temperatury, co jest niezbędne do uzyskania mocnych połączeń bez uszkodzenia wrażliwych elementów. Dobre praktyki branżowe sugerują użycie stacji z technologią podgrzewania, co umożliwia równomierne rozgrzanie obszaru lutowanego, co jest szczególnie przydatne w przypadku złożonych układów. Stacje lutownicze są także wyposażone w różnorodne końcówki, co zwiększa ich wszechstronność i umożliwia pracę z różnymi rodzajami elementów elektronicznych. W kontekście standardów IPC (Institute of Printed Circuits), stosowanie stacji lutowniczych w procesie montażu jest zalecane, ponieważ pozwala na osiągnięcie wyższej jakości połączeń lutowanych oraz dłuższej żywotności urządzeń elektronicznych.

Pytanie 36

Blok przedstawiony na rysunku realizuje funkcję logiczną

Ilustracja do pytania
A. AND
B. NAND
C. OR
D. NOR

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Blok przedstawiony na rysunku realizuje funkcję logiczną AND, co można łatwo zauważyć po symbolu "&" umieszczonym wewnątrz bloku. Funkcja AND jest jedną z podstawowych funkcji logicznych stosowanych w elektronice cyfrowej oraz programowaniu. Działa na zasadzie, że jej wyjście będzie miało wartość prawda (1) tylko wtedy, gdy wszystkie podłączone wejścia mają wartość prawda (1). W praktyce funkcja ta jest często wykorzystywana w układach cyfrowych, takich jak bramki logiczne, gdzie umożliwia realizację złożonych operacji działania systemu. Na przykład, w systemach alarmowych, sygnał alarmowy może być aktywowany tylko wtedy, gdy wszystkie czujniki wykryją intruza. Warto zaznaczyć, że zgodnie z normami IEEE i innymi standardami branżowymi, użycie funkcji AND jest kluczowe w budowie niezawodnych układów logicznych, co czyni tę wiedzę niezwykle ważną w kontekście inżynierii elektronicznej.

Pytanie 37

Jaką metodę nie wykorzystuje się do wykrywania błędów transmisji danych w sieciach komunikacyjnych?

A. Cykliczna redundancja
B. Weryfikacja sumy kontrolnej
C. Pomiar napięcia sygnału przesyłanego
D. Sprawdzanie parzystości

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar poziomu napięcia przesyłanego sygnału nie jest metodą wykorzystywaną do detekcji błędów transmisji danych, ponieważ w tym przypadku skupiamy się na analizie parametrów sygnału, a nie na weryfikacji jego poprawności. W kontekście komunikacji sieciowej, detekcja błędów ma na celu identyfikację i korekcję błędów, które mogą wystąpić podczas przesyłania danych. Przykładowe metody detekcji błędów obejmują kontrolę parzystości, która polega na dodaniu bitu parzystości do zbioru danych, aby zapewnić, że liczba bitów o wartości 1 jest parzysta lub nieparzysta. Analiza sumy kontrolnej, która polega na obliczaniu sumy wartości bajtów w ramce danych, również jest powszechnie stosowana. Cykliczna kontrola nadmiarowości (CRC) to bardziej zaawansowana technika, która wykorzystuje wielomiany do detekcji błędów w przesyłanych danych. Każda z tych metod ma swoje zastosowania w różnych protokołach komunikacyjnych, co czyni je istotnymi w zapewnieniu integralności danych. Rozumienie tych metod jest kluczowe dla inżynierów i specjalistów w dziedzinie sieci komputerowych, ponieważ pozwala na projektowanie bardziej niezawodnych systemów przesyłowych.

Pytanie 38

Jakie czynności nie są wykonywane w trakcie dopasowywania komponentów podczas montażu systemów mechatronicznych?

A. Docieranie
B. Spawanie
C. Rozwiercanie
D. Skrobanie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Spawanie to proces, który polega na łączeniu dwóch lub więcej elementów metalowych poprzez ich stopienie i zespolenie w wyniku działania wysokiej temperatury. W kontekście montażu urządzeń mechatronicznych, spawanie nie jest operacją stosowaną do dopasowywania elementów, ponieważ ma na celu trwałe łączenie komponentów, co jest różne od precyzyjnego dopasowania ich kształtów i wymiarów. W mechatronice kluczowe jest zapewnienie odpowiednich tolerancji i pasowania, które są zdefiniowane na podstawie norm, takich jak ISO 286. Przykładowo, w procesach montażowych często stosuje się techniki takie jak skrobanie, które umożliwia precyzyjne dopasowanie powierzchni elementów, co jest niezbędne dla uzyskania odpowiedniej funkcjonalności układów mechanicznych. Z praktycznego punktu widzenia, umiejętność właściwego dobierania metod montażu i dopasowania elementów jest kluczowa dla zapewnienia niezawodności i efektywności działania urządzeń mechatronicznych.

Pytanie 39

Jakiego typu oprogramowanie powinno być zastosowane do monitorowania przebiegu procesów w przemyśle?

A. CAM
B. CAE
C. CAD
D. SCADA

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest prawidłowa, ponieważ jest to system informatyczny służący do nadzorowania i kontrolowania procesów przemysłowych w czasie rzeczywistym. Systemy SCADA umożliwiają monitoring i zarządzanie urządzeniami zdalnymi, takimi jak pompy, maszyny czy systemy elektryczne, a także zbierają dane z tych urządzeń, które następnie przetwarzane są w celu analizy wydajności oraz optymalizacji procesów. Przykłady zastosowania SCADA obejmują przemysł petrochemiczny, energetykę oraz wodociągi, gdzie konieczne jest nieprzerwane monitorowanie parametrów operacyjnych. Kluczowe dla systemów SCADA jest ich zdolność do integracji z innymi technologiami, takimi jak PLC (Programowalne Sterowniki Logiczne) i HMI (Interfejsy Człowiek-Maszyna), co pozwala na stworzenie kompleksowego środowiska do zarządzania procesami. Wdrażanie standardów takich jak ISA-95 w kontekście integrowania SCADA z systemami zarządzania przedsiębiorstwem (ERP) jest również istotnym aspektem ich efektywności i nowoczesności. Dobrze zaprojektowane systemy SCADA są niezbędne dla zapewnienia bezpieczeństwa operacji i redukcji ryzyka awarii.

Pytanie 40

Jakie urządzenie jest używane do mierzenia prędkości obrotowej wału silnika?

A. mostek tensometryczny
B. potencjometr obrotowy
C. czujnik termoelektryczny
D. prądnica tachometryczna

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna jest urządzeniem wykorzystywanym do pomiaru prędkości obrotowej wału silnika, które działa na zasadzie indukcji elektromagnetycznej. Jej działanie opiera się na generacji napięcia proporcjonalnego do prędkości obrotowej, co czyni ją niezwykle przydatną w monitorowaniu pracy maszyn. Prądnice tachometryczne znajdują zastosowanie w różnych dziedzinach, takich jak automatyka przemysłowa, kontrola procesów technologicznych oraz systemy napędowe. Dzięki nim można dokładnie kontrolować prędkość obrotową silników, co jest kluczowe dla utrzymania stabilności pracy urządzeń oraz minimalizacji zużycia energii. Współczesne prądnice tachometryczne są często zintegrowane z systemami sterowania, co pozwala na automatyzację procesów i zwiększenie efektywności produkcji. Używane są także w aplikacjach wymagających precyzyjnego pomiaru, takich jak robotyka czy systemy CNC, gdzie dokładność i niezawodność pomiarów są krytyczne.