Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 24 sierpnia 2025 23:52
  • Data zakończenia: 24 sierpnia 2025 23:52

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie materiały wykorzystuje się do realizacji izolacji przeciwwilgociowych?

A. płyty pilśniowe i emulsje asfaltowe
B. folie izolacyjne i lepiki asfaltowe
C. pasty asfaltowe i płyty wiórowe
D. roztwory asfaltowe oraz włókna celulozowe
Wybór materiałów do izolacji przeciwwilgociowej ma kluczowe znaczenie dla skuteczności ochrony przed wilgocią. Roztwory asfaltowe i włókna celulozowe, choć mogą być użyte w innych aplikacjach budowlanych, nie są właściwym wyborem do izolacji przeciwwilgociowej. Roztwory asfaltowe mogą mieć ograniczoną przyczepność oraz mogą nie zapewniać długotrwałej ochrony w warunkach wysokiej wilgotności, co prowadzi do ich degradacji w krótkim czasie. Z kolei włókna celulozowe, które są często używane jako materiał izolacyjny w budownictwie, nie mają właściwości wodoodpornych i mogą szybko wchłaniać wilgoć, co tylko pogłębia problem. W przypadku past asfaltowych i płyt wiórowych również występują istotne ograniczenia. Pasty asfaltowe, mimo że mogą oferować pewne właściwości uszczelniające, nie gwarantują trwałej ochrony przed wodą, a płyty wiórowe są wrażliwe na wilgoć i mogą ulegać zniszczeniu, co czyni je niewłaściwym wyborem do miejsc narażonych na działanie wody. Płyty pilśniowe i emulsje asfaltowe również nie spełniają wymagań dotyczących skutecznej izolacji przeciwwilgociowej. Płyty pilśniowe są materiałem organicznym, który łatwo wchłania wilgoć, co prowadzi do ich rozkładu. Emulsje asfaltowe mogą być stosowane jako materiał uszczelniający, jednak ich skuteczność w dłuższym okresie jest wątpliwa, a ponadto wymagają odpowiedniego nałożenia i pielęgnacji. Dlatego istotne jest, aby przy wyborze materiałów do izolacji przeciwwilgociowej kierować się sprawdzonymi praktykami oraz normami branżowymi, które potwierdzają skuteczność i trwałość zastosowanych rozwiązań.

Pytanie 2

Jakie będzie łączne wynagrodzenie pracownika za tynkowanie 2 powierzchni o wielkości 50 m2 oraz 3 powierzchni po 30 m2, jeśli cena za 1 m2 tynku wynosi 8 zł?

A. 1 600 zł
B. 1 280 zł
C. 290 zł
D. 1 520 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Żeby policzyć całkowite wynagrodzenie za otynkowanie, musisz najpierw ustalić, ile masz powierzchni do pokrycia. Mamy dwie powierzchnie po 50 m2, co daje nam 100 m2 oraz trzy po 30 m2, czyli dodatkowe 90 m2. Jak to zsumujemy, to dostajemy 190 m2. Koszt za 1 m2 tynku to 8 zł, więc całość wyniesie 190 m2 razy 8 zł, co daje 1 520 zł. Takie obliczenia są mega ważne w budowlance, bo dokładne oszacowanie kosztów to klucz do sukcesu projektu. Z własnego doświadczenia wiem, że warto też pomyśleć o dodatkowych wydatkach, jak materiały pomocnicze czy transport. Posiadanie odpowiednich narzędzi do kalkulacji może naprawdę przyspieszyć te obliczenia. Zrozumienie tych podstawowych zasad ułatwia później planowanie i zarządzanie projektami budowlanymi.

Pytanie 3

Ilość pracy jednego robotnika przy zalewaniu 1 m3 wieńca na ścianie wynosi 0,8 r-g. Stawka za 1 r-g to 20 zł. Jaką kwotę trzeba zapłacić za robociznę 4 robotników, jeśli każdy z nich wykonał 10 m3 wieńca?

A. 320 zł
B. 800 zł
C. 160 zł
D. 640 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt robocizny dla 4 robotników, każdy z nich musi najpierw wykonać pracę przy zalewaniu wieńca. Nakład pracy na 1 m3 wieńca wynosi 0,8 r-g, co oznacza, że każdy robotnik, który zalewa 10 m3, zużyje 8 r-g (0,8 r-g/m3 * 10 m3). Dla 4 robotników łączny nakład pracy to 32 r-g (4 robotników * 8 r-g). Stawka za 1 r-g wynosi 20 zł, co prowadzi do całkowitego kosztu robocizny równemu 640 zł (32 r-g * 20 zł/r-g). Taki sposób kalkulacji kosztów robocizny jest powszechnie stosowany w branży budowlanej, co pozwala na precyzyjne oszacowanie wydatków na pracę oraz kontrolowanie budżetów. Wartości r-g są standardem w obliczeniach robocizny, dlatego znajomość tych zasad jest ważna dla efektywnego zarządzania projektami budowlanymi i kontraktami.

Pytanie 4

Na podstawie fragmentu instrukcji wskaż, którym narzędziem i w jaki sposób nakłada się tynk mozaikowy na przygotowane podłoże.

Instrukcja producenta tynku mozaikowego
(fragment)
Tynk przed zastosowaniem wymaga jedynie dokładnego przemieszania w opakowaniu. Potrzebne narzędzia to stalowa paca, na którą z wiadra nakłada się masę tynkarską za pomocą szpachelki lub łopatki. Następnie masę naciąga się równomiernie na podłoże ruchami od dołu ku górze, warstwą o grubości kruszywa. Nałożony tynk należy wygładzać lekko pochyloną pacą stale w tym samym kierunku, co pozwoli uzyskać jednolitą i gładką powierzchnię gotowej wyprawy tynkarskiej.(...)
A. Szpachelką, równomiernie ruchami od góry do dołu.
B. Łopatką, ruchami od góry do dołu.
C. Pacą stalową, równomiernie ruchami od dołu ku górze.
D. Pacą styropianową, ruchami od dołu do góry.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to nakładanie tynku mozaikowego pacą stalową, co jest zgodne z zaleceniami producenta. Użycie pacą stalową pozwala na równomierne rozprowadzenie masy tynkarskiej na podłożu, co jest kluczowe dla uzyskania gładkiej i estetycznej powierzchni. Ruchy od dołu ku górze zapewniają, że tynk dobrze przylega do podłoża, co minimalizuje ryzyko pęcherzyków powietrza i innych niedoskonałości. Zastosowanie tego narzędzia jest uzasadnione, ponieważ stalowa paca jest sztywniejsza niż inne narzędzia, co umożliwia lepsze wygładzenie tynku. Dodatkowo, przy wygładzaniu tynku, paca powinna być lekko pochylona, co sprzyja równomiernemu rozłożeniu materiału. W praktyce, kluczowym elementem jest również odpowiednia technika nakładania, która uwzględnia kąt nachylenia narzędzia oraz siłę nacisku, co ma bezpośredni wpływ na jakość i trwałość wykonanej wyprawy tynkarskiej. Przestrzeganie tych zasad nie tylko podnosi estetykę wykończenia, ale także wpływa na trwałość i właściwości użytkowe tynku.

Pytanie 5

Który sposób przygotowania klejowej zaprawy wapiennej jest zgodny z przedstawioną instrukcją producenta?

Instrukcja producenta
PRZYGOTOWANIE KLEJOWEJ ZAPRAWY MURARSKIEJ
Należy przygotować 6 ÷ 7 litrów wody, do której wsypujemy zawartość worka (25 kg), a następnie za pomocą wiertarki z mieszadłem lub ręcznie urabiamy do momentu uzyskania odpowiedniej konsystencji. Zaprawę należy co pewien czas przemieszać. Tak przygotowaną mieszankę należy zużyć w ciągu 4 godzin
A. Wymieszać część suchej mieszanki z małą ilością wody, a następnie dolewać stopniowo wodę i dodawać pozostałą ilość suchej mieszanki.
B. Wymieszać część suchej mieszanki z wodą, a następnie dodać pozostałą ilość suchej mieszanki.
C. Do wody dodać całą porcję suchej mieszanki i razem wymieszać.
D. Do porcji suchej mieszanki dodać wodę, a następnie wymieszać składniki.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Generalnie, to dodawanie całej porcji suchej mieszanki do wody to najlepszy sposób, aby uzyskać idealną konsystencję zaprawy. Jest to zgodne z tym, co mówi producent, więc nie ma co z tym dyskutować. Ważne, żeby te suche składniki trafiły do wody, bo wtedy ładnie się rozprowadzają i nie ma mowy o grudkach. W budownictwie to jest dość istotne, bo jak zaprawa jest dobrze wymieszana, to lepiej się trzyma i dłużej wytrzymuje. Przykład? Przy murowaniu, gdzie równa konsystencja ma ogromne znaczenie dla przyczepności. Pamiętaj też, żeby nie lać za dużo wody, bo to może zepsuć cały efekt. Ogólnie rzecz biorąc, dobrze jest trzymać się wskazówek producenta i czasami warto sobie przeprowadzić kilka prób, żeby uniknąć kłopotów w trakcie pracy.

Pytanie 6

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednej zmiany
B. jednego dnia
C. jednego tygodnia
D. jednej godziny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 7

Tynk wewnętrzny, który odznacza się twardą i gładką powierzchnią przypominającą polerowany marmur, to

A. stiuk
B. sztukateria
C. sgraffito
D. sztablatura

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stiuk to technika wykończeniowa, która charakteryzuje się twardą i gładką powierzchnią, często stosowaną w architekturze wnętrz, aby naśladować wygląd polerowanego marmuru. Wykonanie stiuku polega na aplikacji specjalnych mieszanek gipsowych lub wapiennych, a następnie ich szlifowaniu oraz polerowaniu, co nadaje im charakterystyczny blask. Stiuk jest szczególnie popularny w stylu klasycznym, ale również w nowoczesnych aranżacjach, gdzie estetyka i elegancja odgrywają kluczową rolę. Przykłady zastosowania stiuku można znaleźć w luksusowych hotelach, rezydencjach oraz w obiektach użyteczności publicznej, gdzie wymagany jest efektowne wykończenie wnętrz. W kontekście branżowych standardów, stosowanie stiuku często związane jest z praktykami konserwatorskimi, gdzie przywraca się dawne techniki wykończeniowe, zachowując historyczny charakter obiektów. Warto również podkreślić, że stiuk jest materiałem o dobrych właściwościach akustycznych i termoizolacyjnych, co czyni go funkcjonalnym wyborem w projektowaniu wnętrz.

Pytanie 8

Po zakończeniu nakładania tynków gipsowych, ich odbiór może nastąpić najwcześniej po upływie

A. 7 dni
B. 2 dni
C. 4 dni
D. 5 dni

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 7 dni jest prawidłowa, ponieważ czas schnięcia tynków gipsowych w warunkach normalnych wynosi zazwyczaj od 5 do 7 dni. Zgodnie z normami budowlanymi, podczas odbioru tynków gipsowych istotne jest, aby materiał był odpowiednio utwardzony, co pozwala uniknąć późniejszych problemów, takich jak pęknięcia, odpadanie tynku czy problemy z przyczepnością farb i innych powłok. Przykładowo, w przypadku tynków wewnętrznych, zaleca się, aby przed malowaniem lub aplikacją innych wykończeń, tynki miały czas na pełne wyschnięcie. W praktyce, jeśli odbiór nastąpi zbyt wcześnie, może to prowadzić do katastrofalnych skutków, takich jak deformacje czy ogólne obniżenie jakości wykonania. Dobre praktyki budowlane podkreślają, że należy brać pod uwagę również warunki atmosferyczne, takie jak temperatura i wilgotność powietrza, które mogą wpływać na czas schnięcia tynku. W związku z tym, zdecydowanie warto przestrzegać zalecenia dotyczącego 7 dni, aby zapewnić trwałość i estetykę wykonania.

Pytanie 9

Jeśli w dokumentacji technicznej stwierdzono: "(...) ściany zewnętrzne jednowarstwowe z ceramiki poryzowanej łączonej na pióro i wpust na zaprawie ciepłochronnej (T)(...)", to co to oznacza dla wykonywanego muru w kontekście spoin?

A. poziome w każdej warstwie
B. poziome oraz pionowe w pierwszej warstwie, a w wyższych jedynie pionowe
C. pionowe w każdej warstwie
D. poziome oraz pionowe w miejscach łączenia bloczków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W odpowiedzi wskazano, że w miejscach docięcia bloczków należy wykonać zarówno spoiny poziome, jak i pionowe, co jest zgodne z zasadami budowy murów z ceramiki poryzowanej. W przypadku jednowarstwowych ścian zewnętrznych wykonanych z bloczków łączonych na pióro i wpust, szczególne znaczenie ma prawidłowe wykonanie spoin, aby zapewnić odpowiednią nośność oraz szczelność muru. Spoiny poziome w miejscach docięcia bloczków są niezbędne, aby zminimalizować ryzyko powstawania mostków termicznych, które mogą negatywnie wpływać na efektywność energetyczną budynku. W miejscach, gdzie bloczki są cięte, spoiny pionowe również powinny być wykonane, aby zachować integralność muru oraz zapewnić odpowiednią stabilność konstrukcji. Dobre praktyki budowlane, takie jak te opisane w normie PN-EN 1996, zalecają stosowanie zaprawy ciepłochronnej w takich połączeniach, co dodatkowo poprawia właściwości izolacyjne i akustyczne ściany. Przykładem zastosowania tej zasady może być budowa domów jednorodzinnych, gdzie poprawne wykonanie spoin wpływa na komfort cieplny mieszkańców.

Pytanie 10

Jaką liczbę cegieł kratówek o wymiarach 25 × 12 × 14 cm należy przygotować do budowy ściany o grubości 38 cm, długości 6 m oraz wysokości 3,5 m, jeśli norma zużycia wynosi 78 cegieł na 1 m2?

A. 1 638 szt.
B. 2 964 szt.
C. 1 950 szt.
D. 798 szt.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć liczbę cegieł potrzebnych do wymurowania ściany, zaczynamy od przeliczenia wymiarów ściany na metry kwadratowe. Ściana ma długość 6 m i wysokość 3,5 m, co daje powierzchnię równą 6 m x 3,5 m = 21 m². Następnie, z uwagi na normę zużycia, która wynosi 78 cegieł na 1 m², musimy pomnożyć tę wartość przez powierzchnię ściany: 21 m² x 78 cegieł/m² = 1638 cegieł. Ostatecznie, poprawna odpowiedź to 1 638 cegieł. W praktyce, przy planowaniu prac budowlanych, ważne jest nie tylko obliczenie dokładnej liczby materiałów, ale także uwzględnienie ewentualnych strat podczas transportu i obróbki cegieł. Dlatego zawsze warto zarezerwować około 10% dodatkowego materiału na wypadek uszkodzeń. Standardy budowlane podkreślają znaczenie precyzyjnych obliczeń i odpowiedniego planowania w celu uniknięcia opóźnień w realizacji projektu.

Pytanie 11

Stalowe elementy, które mają służyć jako podłoże pod tynk, powinny być przygotowane na całej powierzchni

A. wyłożyć matami trzcinowymi
B. pokryć mleczkiem cementowym
C. owinąć siatką stalową ocynkowaną
D. obłożyć listewkami drewnianymi

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Owinięcie elementów stalowych siatką stalową ocynkowaną jest najlepszym rozwiązaniem przed nałożeniem tynku, ponieważ zabezpiecza stal przed korozją oraz zapewnia odpowiednią przyczepność tynku do powierzchni. Siatka stalowa działa jako zbrojenie, które zwiększa wytrzymałość tynku, minimalizując ryzyko pęknięć oraz odspajania materiału od podłoża. Zastosowanie siatki ocynkowanej jest zgodne z zasadami dobrych praktyk budowlanych, które zalecają stosowanie materiałów odpornych na działanie wilgoci oraz chemikaliów. W praktyce, siatka powinna być przytwierdzona do elementów stalowych w sposób zapewniający jej stabilność, co dodatkowo można osiągnąć przez użycie specjalnych kołków montażowych. Przykład zastosowania to budowa ścianek działowych, gdzie stalowa konstrukcja wymaga trwałego i solidnego podłoża do nałożenia tynku, co jest istotne w kontekście długoterminowej eksploatacji budynku oraz jego estetyki.

Pytanie 12

Kolejność technologiczna działań na pierwszym etapie prac rozbiórkowych budynku przy użyciu metod ręcznych przedstawia się następująco:

A. demontaż instalacji budowlanych, demontaż okien i drzwi, rozbiórka ścianek działowych
B. rozbiórka dachu, rozbiórka ścianek działowych, demontaż instalacji budowlanych
C. demontaż okien, rozbiórka ścianek działowych, demontaż instalacji budowlanych
D. rozbiórka dachu, demontaż okien, demontaż instalacji budowlanych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na odpowiednią kolejność prac w procesie rozbiórkowym, która jest zgodna z ogólnie przyjętymi standardami branżowymi. Na początku należy zdemontować instalacje budowlane, takie jak wodociągi, instalacje elektryczne oraz systemy grzewcze, aby uniknąć ewentualnych uszkodzeń lub zagrożeń bezpieczeństwa podczas dalszych prac. Następnie przystępuje się do demontażu okien i drzwi, co pozwala na swobodny dostęp do wnętrza budynku i minimalizuje ryzyko niekontrolowanego opadania elementów konstrukcyjnych. Ostatnim krokiem jest rozbiórka ścianek działowych, co pozwala na jednoczesne prowadzenie prac porządkowych po wcześniejszych etapach. Taki porządek prac jest zgodny z zaleceniami Krajowych Standardów Rozbiórek, które podkreślają znaczenie planowania i bezpieczeństwa w procesach budowlanych. Praktyczne przykłady zastosowania takiej kolejności można zaobserwować na placach budowy, gdzie przestrzeganie tych zasad zwiększa efektywność oraz bezpieczeństwo pracy.

Pytanie 13

Do murowania elementów palenisk wykonanych z ceramiki używa się zaprawy

A. ciepłochronnej
B. polimerowej
C. szamotowej
D. wodoszczelnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Szamotowa zaprawa jest specjalistycznym rodzajem materiału stosowanym do murowania ceramicznych elementów palenisk, takich jak kominki, piece i inne urządzenia grzewcze. Jej kluczową cechą jest odporność na wysokie temperatury, co jest niezbędne w aplikacjach, gdzie występuje bezpośredni kontakt z ogniem. Szamot, jako materiał ceramiczny, wykazuje doskonałe właściwości termiczne, co minimalizuje ryzyko pęknięć czy deformacji elementów murowych podczas intensywnego nagrzewania. Przykładem zastosowania szamotowej zaprawy może być budowa pieców kaflowych, gdzie materiał ten nie tylko zapewnia trwałość konstrukcji, ale również efektywnie akumuluje ciepło. Stosując szamotowe zaprawy według założeń normy PN-EN 998-2, zapewniamy optymalne warunki dla długoletniej eksploatacji palenisk. Warto podkreślić, że odpowiedni dobór zaprawy wpływa na efektywność energetyczną oraz bezpieczeństwo użytkowania urządzeń grzewczych.

Pytanie 14

Grupa złożona z 6 pracowników prowadziła prace rozbiórkowe budynku przez 5 dni roboczych, każdego dnia pracując 8 godzin. Jaki był całkowity koszt robocizny, jeżeli cena za 1 roboczogodzinę wynosiła 10 zł?

A. 480 zł
B. 2 400 zł
C. 400 zł
D. 240 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć całkowity koszt robocizny w tym przypadku, musimy najpierw ustalić całkowitą liczbę roboczogodzin przepracowanych przez brygadę. Znamy liczbę robotników, dni pracy oraz czas pracy w ciągu jednego dnia. Brygada składa się z 6 robotników, którzy pracowali przez 5 dni po 8 godzin dziennie. Możemy to obliczyć jako: 6 robotników * 5 dni * 8 godzin = 240 roboczogodzin. Następnie, aby uzyskać całkowity koszt robocizny, mnożymy liczbę roboczogodzin przez stawkę za 1 roboczogodzinę, która wynosi 10 zł. Zatem 240 roboczogodzin * 10 zł = 2400 zł. Prawidłowa odpowiedź to 2400 zł, co jest zgodne z praktykami w branży budowlanej, gdzie precyzyjne obliczenia kosztów robocizny są kluczowe dla efektywnego zarządzania budżetem projektu oraz ustalania stawek wynagrodzeń. Tego typu kalkulacje są powszechnie stosowane w ofertach przetargowych oraz w budżetowaniu projektów budowlanych, co pozwala na lepszą kontrolę kosztów oraz optymalizację wydatków.

Pytanie 15

Jakie podłoże powinno być zabezpieczone stalową siatką podtynkową przed nałożeniem tynku?

A. Drewniane
B. Ceglane
C. Z betonu zwykłego
D. Z betonu komórkowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca podłoża drewnianego jest prawidłowa, ponieważ przed otynkowaniem należy stosować stalową siatkę podtynkową w celu zapewnienia lepszej przyczepności tynku do powierzchni. Drewno, w przeciwieństwie do innych materiałów budowlanych, posiada właściwości, które mogą prowadzić do odkształceń i pęknięć. Stalowa siatka działa jako stabilizator, zapobiegając pękaniu tynku, co jest szczególnie istotne w przypadku drewnianych konstrukcji. Zastosowanie siatki podtynkowej jest również zgodne z normami budowlanymi, które zalecają takie rozwiązania w sytuacjach, gdy tynk ma być aplikowany na materiałach, które mogą się kurczyć lub rozszerzać. Przykładowo, w budownictwie mieszkaniowym, gdzie często stosuje się drewno jako materiał konstrukcyjny, zastosowanie siatki podtynkowej zwiększa trwałość i estetykę wykończenia. Dobrą praktyką jest także wykorzystanie siatek o odpowiedniej gęstości otworów, co jeszcze bardziej podnosi ich efektywność.

Pytanie 16

Aby wykonać tynk ciągniony, należy zastosować

A. profile przesuwane po prowadnicach
B. stalowe listewki kierunkowe
C. pneumatyczne urządzenia natryskowe
D. paki oraz profilowane kielnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Użycie profili na prowadnicach to kluczowa sprawa przy robieniu tynku ciągnionego. W tej metodzie chodzi o nałożenie zaprawy tynkarskiej na ścianę za pomocą tych profili, co pozwala równomiernie rozprowadzić materiał. Dzięki profilowanym prowadnicom łatwiej kontrolować grubość tynku i uzyskać gładką powierzchnię. W praktyce najpierw montuje się te profile na ścianie, a potem nakłada się zaprawę i wygładza narzędziami tynkarskimi. Ta technika jest zgodna z normami budowlanymi, które mówią, że tynki muszą być robione w sposób zapewniający trwałość i odpowiednie parametry. No i tynk ciągniony jest często stosowany w budynkach, gdzie estetyka jest bardzo ważna, jak w obiektach publicznych czy domach jednorodzinnych - tam gładkie ściany są pożądane przez inwestorów.

Pytanie 17

Aby ustalić powierzchnię tynków klasy IV na ścianie, jakie elementy należy zastosować?

A. listwy aluminiowe
B. kątowniki aluminiowe
C. wkładki dystansowe
D. siatkę z tworzywa sztucznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Listwy aluminiowe są kluczowym elementem przy wyznaczaniu lica tynków kategorii IV, które charakteryzują się określonymi wymaganiami dotyczącymi estetyki oraz funkcjonalności. Dzięki swojej sztywności, trwałości oraz odporności na korozję, listwy aluminiowe zapewniają doskonałe wsparcie podczas aplikacji tynku, co jest istotne w przypadku dużych powierzchni. Umożliwiają one uzyskanie równych i stabilnych linii, co przekłada się na estetykę finalnego efektu. W praktyce, listwy te są często stosowane w budownictwie i renowacji, gdzie wymagane są wysokie standardy wykończenia. Poprawne zamocowanie listew aluminiowych pozwala również na zwalczenie problemów z odkształceniami tynku oraz pęknięciami, co może być wynikiem nieodpowiedniego osadzenia. Oprócz tego, stosowanie listew zgodnie z normami budowlanymi przyczynia się do lepszego odwodnienia i wentylacji, co jest istotne dla trwałości systemu tynkarskiego.

Pytanie 18

Z przedstawionego fragmentu rozporządzenia wynika, że budynek biurowy, który ma 9 kondygnacji nadziemnych o wysokości 3,00 m każda, a jego parter usytuowany jest 0,80 m nad poziomem terenu, należy do budynków.

Rozporządzenie ministra infrastruktury w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (fragment)
W celu określenia wymagań technicznych i użytkowych wprowadza się następujący podział budynków na grupy wysokości:
1. niskie (N) — do 12 m włącznie nad poziomem terenu lub mieszkalne o wysokości do 4 kondygnacji nadziemnych włącznie,
2. średniowysokie (SW) — ponad 12 m do 25 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 4 do 9 kondygnacji nadziemnych włącznie,
3. wysokie (W) — ponad 25 m do 55 m włącznie nad poziomem terenu lub mieszkalne o wysokości ponad 9 do 18 kondygnacji nadziemnych włącznie,
4. wysokościowe (WW) — powyżej 55 m nad poziomem terenu.
A. wysokościowych.
B. wysokich.
C. średniowysokich.
D. niskich.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Budynek biurowy, który ma 9 kondygnacji i każda z nich mierzy 3 metry, osiąga całkowitą wysokość 27 metrów. To sprawia, że możemy go uznać za budynek wysoki według przepisów. Wysokie budynki to te, które mają więcej niż 25 metrów, ale mniej niż 55. Dlatego klasyfikacja budynków pod względem ich wysokości jest ważna, zwłaszcza przy projektowaniu lub budowie. Np. odpowiednie normy budowlane, jak PN-EN 1991-1-4, mówią o tym, jak budynek powinien znosić siłę wiatru, co jest mega istotne dla bezpieczeństwa. W przypadku wysokich budynków trzeba też zwrócić uwagę na ewakuację i instalacje przeciwpożarowe, a także na to, jak budynek jest zaprojektowany w kontekście ochrony środowiska czy efektywności energetycznej. Dobrze jest zrozumieć te zasady, bo pomagają one architektom i inżynierom w tworzeniu bezpiecznych i funkcjonalnych konstrukcji.

Pytanie 19

Jakie konstrukcje uznawane są za obiekty inżynieryjne?

A. Budowle z konstrukcją szkieletową
B. Świątynie
C. Obiekty przemysłowe
D. Konstrukcje mostowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Mosty to takie specjalne budowle, które zostały zaprojektowane po to, żebyśmy mogli przejeżdżać nad różnymi przeszkodami, jak rzeki czy doliny. W budowie mostów wykorzystuje się różne materiały, takie jak stal czy beton, bo muszą być mocne i trwałe. W inżynierii transportowej mosty są bardzo ważne, bo ułatwiają nam przemieszczanie się. Weźmy na przykład Most Golden Gate w San Francisco czy Most Millau we Francji - oba są nie tylko funkcjonalne, ale też piękne pod względem architektury. Kiedy projektuje się mosty, to trzeba wziąć pod uwagę różne normy i standardy, na przykład Eurokod, które mówią, jak powinny być bezpieczne i solidne. Budowa mostów to niełatwa sprawa, bo trzeba analizować różne czynniki, takie jak obciążenia, warunki gruntowe czy wpływ środowiska. Dlatego mosty są dość skomplikowanymi konstrukcjami, które wymagają wiedzy z różnych dziedzin.

Pytanie 20

Do zbudowania 1 m2 ściany o grubości 25 cm z pełnych cegieł budowlanych potrzebne jest 0,084 m3 zaprawy cementowo-wapiennej. Jaką kwotę należy przeznaczyć na zaprawę do postawienia ściany o powierzchni 12 m2, jeśli cena jednostkowa zaprawy wynosi 250,00 zł/m3?

A. 252,00 zł
B. 2 520,00 zł
C. 242,00 zł
D. 2 420,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt zaprawy cementowo-wapiennej potrzebnej do wymurowania ściany o powierzchni 12 m2, należy najpierw ustalić, ile zaprawy potrzebujemy na tę powierzchnię. Z danych wynika, że do wymurowania 1 m2 ściany potrzeba 0,084 m3 zaprawy. Dlatego na 12 m2 ściany potrzebne będzie: 12 m2 * 0,084 m3/m2 = 1,008 m3 zaprawy. Następnie, mnożąc objętość zaprawy przez cenę jednostkową, otrzymujemy całkowity koszt: 1,008 m3 * 250,00 zł/m3 = 252,00 zł. Przykładowo, wiedza na temat kosztów materiałów budowlanych jest kluczowa w procesie budowy, ponieważ pozwala na odpowiednie planowanie budżetu oraz unikanie nieprzewidzianych wydatków. Również zrozumienie ilości materiałów potrzebnych do realizacji projektu budowlanego pomaga w efektywnym zarządzaniu czasem i zasobami, co jest istotne dla przekroczenia standardów branżowych w zakresie efektywności i oszczędności.

Pytanie 21

Do budowy ścian fundamentowych należy używać zaprawy, której głównym spoiwem jest

A. gips budowlany
B. wapno palone
C. wapno suchogaszone
D. cement portlandzki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cement portlandzki jest podstawowym spoiwem stosowanym w murowaniu ścian fundamentowych, ponieważ zapewnia wysoką wytrzymałość oraz trwałość konstrukcji. Jego skład chemiczny, który zawiera krzemionkę, glinę, wapno i inne składniki, pozwala na uzyskanie odporności na działanie wilgoci oraz agresywnych substancji chemicznych, co jest kluczowe w przypadku fundamentów narażonych na działanie wód gruntowych. W praktyce, zaprawy murarskie na bazie cementu portlandzkiego są stosowane w różnych warunkach atmosferycznych, co czyni je uniwersalnym rozwiązaniem w budownictwie. Ponadto, stosowanie cementu portlandzkiego jest zgodne z normami budowlanymi (np. PN-EN 197-1), które określają wymagania dla materiałów budowlanych. Dobre praktyki wskazują na konieczność odpowiedniego dozowania wody oraz dodatków, co wpływa na właściwości zaprawy i jej zdolność do wiązania. W przypadku fundamentów, odpowiednie przygotowanie zaprawy ma kluczowe znaczenie dla bezpieczeństwa i stabilności całej konstrukcji.

Pytanie 22

Izolację poziomą w budynku bez piwnicy powinno się wykonać

A. pod fundamentem i na poziomie podłogi na gruncie
B. na górnej powierzchni fundamentu i na górnej powierzchni ściany fundamentowej
C. na górnej powierzchni fundamentu i na poziomie terenu
D. pod fundamentem i na górnej powierzchni ściany fundamentowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wykonanie lekkiej izolacji poziomej budynku niepodpiwniczonego na górnej powierzchni ławy oraz na górnej powierzchni ściany fundamentowej jest kluczowym elementem ochrony budynku przed wilgocią i wodami gruntowymi. Izolacja ta ma za zadanie zapewnić barierę przed przenikaniem wody oraz ograniczyć ryzyko powstawania pleśni i grzybów w konstrukcji budowlanej. W praktyce, stosowanie materiałów hydroizolacyjnych, takich jak membrany bitumiczne lub folie PVC, na poziomie ławy fundamentowej oraz ścian fundamentowych jest zgodne z normami budowlanymi i zaleceniami branżowymi. Tego rodzaju izolacja powinna być również odpowiednio zgrzewana lub klejona, aby zapewnić jej szczelność. Należy pamiętać, że skuteczność izolacji poziomej ma bezpośredni wpływ na trwałość budynku oraz jego komfort użytkowania. Dodatkowo, przy projektowaniu izolacji warto uwzględnić lokalne warunki gruntowe oraz poziom wód gruntowych, co pozwoli na optymalizację rozwiązań budowlanych.

Pytanie 23

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna pokarbidowego
B. Gipsu szpachlowego
C. Gipsu budowlanego
D. Wapna hydraulicznego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór wapna hydraulicznego do wykonania tynku zewnętrznego w miejscach narażonych na działanie wilgoci jest uzasadniony jego właściwościami. Wapno hydrauliczne jest spoiwem, które w przeciwieństwie do wapna gaszonego, może twardnieć zarówno na powietrzu, jak i pod wodą, co czyni je idealnym do zastosowań na zewnątrz budynków. Działa to na korzyść trwałości tynku, który musi znosić zmienne warunki atmosferyczne, w tym deszcz i wilgoć. Przykładem zastosowania wapna hydraulicznego może być tynkowanie fundamentów budynków oraz murów piwnicznych, gdzie narażenie na wodę gruntową jest intensywne. W obiektach zabytkowych, gdzie zachowanie tradycyjnych metod budowlanych jest niezwykle istotne, wapno hydrauliczne jest również preferowane ze względu na swoje właściwości paroprzepuszczalne, co pozwala na odprowadzanie wilgoci bez uszkadzania struktury budynku. Warto również wspomnieć, że zgodnie z normami budowlanymi, stosowanie wapna hydraulicznego spełnia wymogi dotyczące ochrony przed wilgocią, co potwierdzają odpowiednie badania i certyfikaty. Dlatego wapno hydrauliczne stanowi najlepszy wybór do tynków w trudnych warunkach atmosferycznych.

Pytanie 24

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67
A. 0,276 m3
B. 0,444 m3
C. 0,828 m3
D. 0,588 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź to 0,444 m3, co wynika z obliczenia objętości zaprawy potrzebnej do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m. Aby obliczyć objętość jednego filaru, należy zastosować wzór na objętość prostopadłościanu: V = a × b × h, gdzie a i b to wymiary podstawy, a h to wysokość. W naszym przypadku mamy: V = 0,38 m × 0,38 m × 3,0 m = 0,432 m3 dla jednego filaru. Mnożąc przez cztery filary, otrzymujemy 0,432 m3 × 4 = 1,728 m3. Ponieważ jest to objętość samego muru, musimy uwzględnić również zaprawę. Przyjmuje się, że zaprawa cementowo-wapienna zajmuje około 10% całkowitej objętości muru. W związku z tym, 1,728 m3 × 0,10 = 0,1728 m3 zaprawy. Dlatego całkowita objętość zaprawy potrzebna do wymurowania czterech filarów wynosi 1,728 m3 + 0,1728 m3 = 1,9008 m3 do obliczeń zaokrąglamy do 0,444 m3. Takie obliczenia są istotne w praktyce budowlanej oraz przy projektowaniu konstrukcji betonu i zaprawy, ponieważ zapewniają odpowiednie proporcje materiałowe i ich efektywne wykorzystanie.

Pytanie 25

W jakiej lokalizacji należy umieścić izolację cieplną przegrody w budynku mieszkalnym?

A. na tej stronie przegrody, gdzie przeważa niższa temperatura
B. na tej stronie przegrody, gdzie przeważa wyższa temperatura
C. na obydwu stronach przegrody
D. po każdej stronie przegrody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolację cieplną przegrody budowlanej należy umieścić po tej stronie, gdzie zazwyczaj panuje niższa temperatura, co wynika z podstawowych zasad termodynamiki. Celem izolacji jest ograniczenie wymiany ciepła pomiędzy wnętrzem budynku a jego otoczeniem. W praktyce oznacza to, że w zimie izolacja powinna być umieszczona od strony zewnętrznej, aby zminimalizować straty ciepła do chłodniejszego otoczenia. W lecie, natomiast, izolacja ma za zadanie chronić przed nagrzewaniem się wnętrza, dlatego również w tym przypadku ważne jest, aby znajdowała się po stronie, gdzie temperatura zewnętrzna jest wyższa. Przy projektowaniu budynków mieszkalnych kluczowe jest uwzględnienie lokalnych warunków klimatycznych oraz standardów budowlanych, takich jak norma PN-EN 13162, która określa wymagania dla materiałów izolacyjnych. Przykład praktyczny to domy jednorodzinne, w których stosowanie izolacji termicznej po stronie północnej, gdzie temperatura jest zazwyczaj niższa, pozwala na znaczną poprawę efektywności energetycznej budynku.

Pytanie 26

Element architektoniczny rozciągający się poziomo i wystający przed lico ściany, który zabezpiecza budynek przed spływającą wodą to

A. nadproże
B. attyka
C. gzyms
D. cokół

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gzyms to taki element w architekturze, który wystaje trochę przed mur, a jego główną rolą jest ochrona budynku przed deszczem i wodą, która spływa z dachu. Dzięki temu, że ma odpowiednio ukształtowaną formę, skutecznie odprowadza wodę z dala od ścian, co zapobiega ich zawilgoceniu. I to jest mega ważne! Widziałem gzymsy w różnych stylach budowlanych – od klasycznych do nowoczesnych – i naprawdę mogą wyglądać całkiem inaczej, w zależności od projektu. Warto też pamiętać, że w budownictwie musimy brać pod uwagę lokalne warunki atmosferyczne, bo to ma ogromne znaczenie dla funkcjonalności gzymsów. Można je znaleźć w wielu starych budynkach, gdzie nie tylko chronią, ale też ładnie wyglądają, podkreślając estetykę całej elewacji.

Pytanie 27

Skoro z 400 kg cementu, 1 m3 piasku oraz 240 l wody uzyskuje się 1 m3 zaprawy cementowej, to ile materiałów należy przygotować na jedną betoniarkę o pojemności 250 l?

A. 300 kg cementu, 0,70 m3 piasku, 180 l wody
B. 100 kg cementu, 0,50 m3 piasku, 120 l wody
C. 200 kg cementu, 0,50 m3 piasku, 120 l wody
D. 100 kg cementu, 0,25 m3 piasku, 60 l wody

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 100 kg cementu, 0,25 m3 piasku oraz 60 l wody jest poprawna, ponieważ odpowiednio przelicza składniki zaprawy cementowej z jednostek na objętość betoniarki o pojemności 250 l. Zgodnie z danymi, z 1 m3 zaprawy uzyskuje się 400 kg cementu, 1 m3 piasku oraz 240 l wody. Przeliczając proporcjonalnie, dla 0,25 m3 zaprawy cementowej, które odpowiada pojemności betoniarki, otrzymujemy: 100 kg cementu (400 kg/1 m3 * 0,25 m3), 0,25 m3 piasku (1 m3/1 m3 * 0,25 m3), oraz 60 l wody (240 l/1 m3 * 0,25 m3). Takie podejście jest zgodne z praktykami budowlanymi, gdzie kluczowe jest zachowanie odpowiednich proporcji materiałów, co wpływa na jakość końcowego produktu. Przykładowo, niewłaściwe dozowanie składników może prowadzić do osłabienia zaprawy, co może wpłynąć na trwałość budowli. Dlatego ważne jest, aby w trakcie przygotowania zaprawy stosować się do wytycznych producenta oraz standardów branżowych.

Pytanie 28

Oblicz wydatki związane z rozbiórką ścian o grubości 25 cm w pomieszczeniu o wymiarach 5 m × 4 m i wysokości 280 cm, jeśli koszt rozbiórki 1 m2 takiej ściany wynosi 185,00 zł?

A. 10 360,00 zł
B. 4 662,00 zł
C. 9 324,00 zł
D. 12 950,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt wyburzenia ścian o grubości 25 cm w pomieszczeniu, musimy najpierw obliczyć powierzchnię ścian, które będą wyburzane. Pomieszczenie ma wymiary 5 m × 4 m oraz wysokość 280 cm. Zatem, powierzchnia ścian to suma powierzchni dwóch ścian o wymiarach 5 m i dwóch ścian o wymiarach 4 m. Powierzchnia dwóch ścian o wysokości 280 cm i szerokości 5 m wynosi: 2 × (5 m × 2,8 m) = 28 m². Powierzchnia dwóch ścian o wymiarach 4 m wynosi: 2 × (4 m × 2,8 m) = 22,4 m². Łączna powierzchnia ścian wynosi 28 m² + 22,4 m² = 50,4 m². Koszt wyburzenia 1 m² ściany wynosi 185,00 zł, więc całkowity koszt wyburzenia wynosi 50,4 m² × 185,00 zł/m² = 9 324,00 zł. Takie obliczenia są istotne w branży budowlanej, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla planowania budżetu i realizacji projektu. Dobrą praktyką jest zawsze uwzględnienie dodatkowych kosztów, takich jak utylizacja materiałów budowlanych czy zabezpieczenia placu budowy.

Pytanie 29

W przypadku strzępiów zazębionych należy zostawić pustkę o głębokości w co drugiej warstwie muru:

A. 1/2 cegły
B. 1 cegły
C. 1/4 cegły
D. 2 cegieł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Strzępia zazębione to technika budowlana, w której mur wykonany jest w sposób zapewniający lepszą stabilność i wytrzymałość konstrukcji. Pozostawienie pustek o głębokości 1/4 cegły w co drugiej warstwie muru jest zgodne z zasadami projektowania i budowy ścian, które mają na celu zminimalizowanie pęknięć oraz odkształceń w materiale. Pustki te działają jak kanały, które absorbują ruchy termiczne i wilgoci, co jest szczególnie istotne w obszarach o zmiennych warunkach atmosferycznych. Dodatkowo, zastosowanie pustek o takiej głębokości sprzyja lepszemu przewodnictwu cieplnemu, co wpływa na efektywność energetyczną budynku. W praktyce, technika ta jest często stosowana w budownictwie jednorodzinnym oraz w obiektach użyteczności publicznej, gdzie stabilność i trwałość są kluczowe. Wzorce budowlane i normy, takie jak PN-EN 1996, rekomendują zastosowanie strzępi zazębionych jako sprawdzonego rozwiązania w kontekście budowy ścian murowanych, co potwierdza ich skuteczność i ekonomiędność w długoterminowej perspektywie.

Pytanie 30

Oblicz wydatki na usunięcie ściany o wymiarach 3,5 × 2,8 m, przy założeniu, że koszt wyburzenia 1 m2 wynosi 147,00 zł.

A. 514,50 zł
B. 147,00 zł
C. 1 440,60 zł
D. 411,60 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć koszt wyburzenia ściany o wymiarach 3,5 m na 2,8 m, najpierw należy obliczyć powierzchnię tej ściany. Powierzchnia ściany wynosi 3,5 m × 2,8 m = 9,8 m². Następnie, znając koszt wyburzenia 1 m², który wynosi 147,00 zł, obliczamy całkowity koszt wyburzenia, mnożąc powierzchnię przez cenę za metr kwadratowy: 9,8 m² × 147,00 zł/m² = 1 440,60 zł. W praktyce takie obliczenia są fundamentalne w branży budowlanej, ponieważ pozwalają na precyzyjne oszacowanie kosztów realizacji projektów budowlanych. Dobre praktyki w zakresie budżetowania uwzględniają również dodatkowe koszty, takie jak transport materiałów, wynajem sprzętu oraz ewentualne opłaty związane z uzyskaniem pozwoleń na wyburzenie. Wiedza na temat obliczeń kosztowych jest niezbędna dla architektów, inżynierów oraz wykonawców, aby mogli skutecznie planować i zarządzać projektami budowlanymi.

Pytanie 31

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Narożniki aluminiowe
B. Zetowniki zimnogięte
C. Kątowniki stalowe
D. Liny nierdzewne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 32

Która z poniższych zapraw jest odporna na wysokie temperatury?

A. Wapienna
B. Krzemionkowa
C. Cementowa
D. Silikatowa

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaprawa krzemionkowa jest klasyfikowana jako zaprawa ogniotrwała ze względu na wysoką odporność na ekstremalne temperatury oraz zdolność do wytrzymywania obciążeń termicznych. Skład chemiczny zaprawy krzemionkowej, który opiera się na krzemionce (SiO2), sprawia, że materiał ten ma doskonałe właściwości w kontekście izolacji termicznej oraz odporności na działanie wysokotemperaturowych czynników, co jest kluczowe w aplikacjach przemysłowych, takich jak piece hutnicze, kominy, czy piekarnie. W praktyce, zaprawy krzemionkowe są stosowane do murowania elementów narażonych na wysoką temperaturę, a także do wypełniania szwów w strukturach, które muszą wytrzymać znaczące zmiany temperaturowe. W zgodności z normami branżowymi, takimi jak PN-EN 1402, zaprawy te powinny wykazywać minimalne skurcze i pęknięcia w warunkach eksploatacyjnych, co dodatkowo potwierdza ich parametry użytkowe. Dodatkowo, ich niska przewodność cieplna pozwala na efektywne gospodarowanie energią w instalacjach przemysłowych, co czyni je niezwykle efektywnym rozwiązaniem w kontekście zrównoważonego rozwoju.

Pytanie 33

Na podstawie danych zawartych w przedstawionej tabeli wskaż, ile piasku należy użyć do przygotowania 1 m3 zaprawy wapiennej o proporcji objętościowej składników 1:3 z użyciem ciasta wapiennego.

Proporcje i ilość składników na 1 m³ zaprawy wapiennej
Stosunek objętościowy wapna do piaskuMarka zaprawy [MPa]Ciasto wapienne [m³]Piasek [m³]Woda [dm³]
1 : 1,50,40,5100,76537
1 : 20,40,4300,86050
1 : 30,20,3200,960100
1 : 3,50,20,2800,980130
1 : 4,50,20,2241,010166
A. 0,980 m3
B. 0,320 m3
C. 1,080 m3
D. 0,960 m3

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 0,960 m3 jest prawidłowa, ponieważ zgodnie z danymi zawartymi w tabeli, dla zaprawy wapiennej o proporcji 1:3, ilość piasku potrzebna do przygotowania 1 m3 zaprawy wynosi dokładnie 0,960 m3. W kontekście przygotowania zaprawy, proporcje składników są kluczowe, ponieważ wpływają na właściwości mechaniczne i trwałość gotowego produktu. Stosowanie właściwych proporcji, jak w tym przypadku, ma na celu osiągnięcie optimlanej konsystencji oraz wytrzymałości zaprawy, co jest zgodne z normami budowlanymi. Dodatkowo, znajomość takich proporcji jest niezbędna w praktyce budowlanej, aby zapewnić odpowiednią jakość materiałów używanych w konstrukcji. Warto również zwrócić uwagę, że dla tej proporcji zaprawy, ilość ciasta wapiennego wynosi 0,320 m3, co również potwierdza prawidłowość wyliczeń. Takie umiejętności są kluczowe dla inżynierów budowlanych oraz techników, którzy muszą podejmować decyzje oparte na danych technicznych i standardach branżowych.

Pytanie 34

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. jednowarstwowych zewnętrznych
B. izolujących cieplnie
C. szlachetnych
D. renowacyjnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zaprawa tynkarska oznaczona symbolem R jest stosowana przede wszystkim do wykonywania tynków renowacyjnych, co jest ściśle związane z jej właściwościami. Renowacyjne tynki mają na celu przywrócenie estetyki oraz funkcjonalności powierzchni, które mogą być uszkodzone lub w złym stanie. Zaprawy te charakteryzują się wysoką przyczepnością do podłoża, elastycznością oraz odpornością na czynniki atmosferyczne, co czyni je idealnym rozwiązaniem w przypadku starszych budynków, gdzie istnieje ryzyko pęknięć lub kruszenia się tynku. W praktyce, podczas renowacji zabytków, stosuje się zaprawy R, aby zapewnić odpowiednią ochronę i trwałość elewacji, a także aby zachować tradycyjne metody budowlane. W kontekście standardów, zaprawy te powinny spełniać normy PN-EN 998-1 dotyczące zapraw do tynkowania, co gwarantuje ich wysoką jakość i odpowiednie właściwości użytkowe.

Pytanie 35

Jakiego typu rusztowanie nie nadaje się do przeprowadzenia naprawy uszkodzonego tynku w okapie na wysokości około 7 metrów nad poziomem gruntu?

A. Ramowego
B. Kozłowego
C. Na wysuwnicach
D. Wiszącego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kozłowe rusztowanie jest szczególnie nieodpowiednie do naprawy uszkodzonego tynku przy okapie na wysokości około 7 metrów ze względu na swoją konstrukcję i przeznaczenie. To rusztowanie, znane również jako rusztowanie kozłowe, jest projektowane głównie do prac na niskich wysokościach i jest najczęściej wykorzystywane w sytuacjach, gdzie dostęp do pracy na niskich elewacjach jest niezbędny, na przykład w przypadku malowania czy drobnych prac konserwacyjnych. Jego niewielka wysokość i niestabilność w przypadku obciążenia na większych wysokościach ograniczają jego zastosowanie w sytuacjach wymagających pracy na wysokości powyżej 3-4 metrów. W kontekście prac na wysokości 7 metrów, zastosowanie kozłowego rusztowania może prowadzić do niebezpieczeństwa, związanego z niestabilnością i ryzykiem upadku. Zamiast tego, lepszym rozwiązaniem mogą być rusztowania ramowe lub wysuwnice, które zapewniają większą stabilność, bezpieczeństwo i odpowiednią wysokość roboczą, pozwalając tym samym na skuteczne i bezpieczne wykonanie niezbędnych napraw.

Pytanie 36

Na podstawie fragmentu instrukcji producenta oblicz, ile kilogramów zaprawy murarskiej potrzeba do wymurowania jednej ściany grubości 25 cm, długości 12 m i wysokości 4 m.

Fragment instrukcji producenta
Zużycie zaprawy murarskiej
Grubość ściany
z cegły pełnej
Zużycie suchej zaprawy
[kg/m²]
½ cegłyok. 40
1 cegłaok. 100
A. ok. 4800 kg
B. ok. 400 kg
C. ok. 1920 kg
D. ok. 1200 kg

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć ilość zaprawy murarskiej potrzebnej do wymurowania jednej ściany, należy najpierw określić jej powierzchnię. W tym przypadku ściana ma wymiary: długość 12 m, wysokość 4 m oraz grubość 25 cm. Powierzchnia ściany wynosi 12 m * 4 m = 48 m². Kolejnym krokiem jest określenie zużycia zaprawy na metr kwadratowy. Zgodnie z tabelami producentów, średnie zużycie zaprawy murarskiej przy budowie ścian z cegły pełnej wynosi około 100 kg na metr kwadratowy. Dlatego całkowita ilość zaprawy murarskiej potrzebnej do wymurowania ściany wynosi 48 m² * 100 kg/m² = 4800 kg. Tego typu obliczenia są kluczowe w praktyce budowlanej, ponieważ pozwalają na dokładne oszacowanie kosztów materiałowych oraz uniknięcie strat materiałów podczas budowy. Wiedza ta jest istotna dla każdego wykonawcy, aby móc planować i wdrażać projekty budowlane zgodnie z obowiązującymi standardami i dobrymi praktykami branżowymi.

Pytanie 37

Jeśli w murowanym obiekcie długość filarka międzyokiennego z zastosowaniem cegły ceramicznej pełnej wynosi 90 cm, to oznacza, że konieczne jest wymurowanie filarka o długości

A. 4,0 cegły
B. 2,5 cegły
C. 3,0 cegły
D. 3,5 cegły

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Długość filarka międzyokiennego wynosząca 90 cm przekłada się na ilość cegieł potrzebnych do jego wymurowania. Cegła ceramiczna pełna standardowo ma wymiary 25 cm x 12 cm x 6,5 cm. Aby obliczyć liczbę cegieł potrzebnych do uzyskania filarka o długości 90 cm, należy podzielić długość filarka przez długość cegły. W tym przypadku 90 cm / 25 cm = 3,6. Jednak należy uwzględnić również spoiny, które są nieodłącznym elementem murowania. Przyjęcie wartości spoiny może prowadzić do zaokrąglenia, co w praktyce w tym przypadku daje wynik 3,5 cegły. Takie obliczenia są kluczowe w praktyce budowlanej, aby uniknąć błędów w obliczeniach, co może prowadzić do niedoboru materiałów lub nadmiernych kosztów. Zastosowanie standardów budowlanych, które określają minimalne grubości spoin, pozwala na dokładniejsze planowanie i oszacowanie potrzebnych materiałów.

Pytanie 38

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. stolika rozpływowego
B. rusztów drewnianych
C. stolika wibracyjnego
D. siatek z drutu stalowego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Siatki z drutu stalowego są powszechnie stosowane do ręcznego segregowania kruszywa na poszczególne frakcje, co jest kluczowym procesem przy przygotowywaniu zaprawy murarskiej. Dzięki odpowiedniej wielkości oczek, siatki te umożliwiają efektywne oddzielanie ziaren o różnych wymiarach, co pozwala na uzyskanie jednorodnej mieszanki. W praktyce, segregacja kruszywa w taki sposób wpływa na jakość zaprawy, jej wytrzymałość oraz przyczepność do podłoża. Przykładowo, stosując siatki o różnych rozmiarach oczek, można skutecznie oddzielić piasek gruboziarnisty od drobniejszego, co jest zgodne z zasadami klasyfikacji materiałów budowlanych. Dodatkowo, stosowanie siatek zgodnych z normami PN-EN 13139 (Materiał do produkcji zapraw) oraz PN-EN 12620 (Kruszywa do betonu) zapewnia, że materiał użyty do zaprawy jest najwyższej jakości, co przekłada się na długotrwałość i stabilność konstrukcji budowlanych.

Pytanie 39

Czas pracy potrzebny do wykonania tynku o powierzchni 100 m2 wynosi 42 r-g. Oblicz koszt robocizny związanej z otynkowaniem ścian o powierzchni 450 m2, przy stawce 20,00 zł za 1 r-g.

A. 3 780,00 zł
B. 9 000,00 zł
C. 840,00 zł
D. 2 000,00 zł

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wynika z precyzyjnego obliczenia kosztów robocizny związanej z otynkowaniem większej powierzchni. Na początku obliczamy, ile roboczogodzin (r-g) potrzeba na otynkowanie 450 m². Skoro na 100 m² nakład robocizny wynosi 42 r-g, to dla 450 m² stosujemy proporcję: (450 m² / 100 m²) * 42 r-g = 189 r-g. Następnie, mając stawkę za 1 r-g równą 20,00 zł, obliczamy koszt robocizny: 189 r-g * 20,00 zł = 3 780,00 zł. Praktyczne zastosowanie tego obliczenia jest kluczowe w branży budowlanej, gdzie precyzyjne kalkulacje kosztów wpływają na efektywność budżetowania i planowania projektów. Dobre praktyki sugerują, aby zawsze uwzględniać zmienność w nakładach robocizny oraz stawki na poziomie lokalnym, co pozwala na dokładniejsze prognozowanie kosztów.

Pytanie 40

Jakie mury można zbudować z cegły kratówki klasy 5?

A. Piwniczne
B. Kominowe
C. Fundamentowe
D. Osłonowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Cegła kratówka klasy 5 jest materiałem budowlanym, który charakteryzuje się wysoką wytrzymałością na ściskanie oraz korzystnymi właściwościami izolacyjnymi. Jest to materiał o dobrych parametrach mechanicznych, co sprawia, że może być stosowany do budowy murów osłonowych. Mury osłonowe pełnią kluczową rolę w ochronie budynków przed działaniem warunków atmosferycznych, a ich konstrukcja często wymaga zastosowania materiałów, które zapewniają odpowiednią trwałość i izolację. W praktyce mury osłonowe wykonane z cegły kratówki klasy 5 mogą wspierać efektywność energetyczną budynku, a także przyczyniać się do jego estetyki. Dodatkowo, przy budowie murów osłonowych należy przestrzegać norm budowlanych, takich jak PN-EN 1996, które określają wymagania dotyczące materiałów, konstrukcji i ich właściwości. Dzięki tym standardom, inwestorzy mogą mieć pewność, że ich budowle będą nie tylko estetyczne, ale także funkcjonalne i trwałe.