Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 15 lipca 2025 20:26
  • Data zakończenia: 15 lipca 2025 20:33

Egzamin niezdany

Wynik: 8/40 punktów (20,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z podanych przewodów nie jest stosowany jako przewód fazowy w instalacjach trójfazowych?

A. Przewód L3
B. Przewód L1
C. Przewód N
D. Przewód L2
W instalacjach trójfazowych przewód neutralny (N) pełni kluczową rolę w zrównoważeniu obciążenia i zapewnieniu stabilności systemu. Przewód neutralny jest odpowiedzialny za powrót prądu do źródła i wyrównanie potencjałów między fazami. W standardowych systemach trójfazowych, oznaczonych jako L1, L2, L3, przewody te są wykorzystywane jako przewody fazowe, które prowadzą prąd do odbiorników. Przewód neutralny nie przenosi prądu w sposób ciągły, ale umożliwia jego powrót w sytuacjach asymetrii obciążenia. Może być też wykorzystywany do podłączenia niektórych urządzeń jednofazowych w instalacjach trójfazowych. Dzięki temu system całkowicie funkcjonuje stabilnie, a użytkownicy mogą korzystać z zasilania w sposób bezpieczny i efektywny. Zrozumienie funkcji przewodu neutralnego jest kluczowe dla prawidłowej eksploatacji i konserwacji systemów elektrycznych, co jest niezbędne dla każdego technika elektryka.

Pytanie 2

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B10
B. B16
C. B20
D. B25
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 3

Który z wymienionych czynników dotyczących przewodów nie wpływa na wartość spadku napięcia w systemie elektrycznym?

A. Długość przewodu
B. Typ materiału izolacyjnego
C. Typ materiału żyły
D. Przekrój żył
Rodzaj materiału izolacji nie ma wpływu na spadek napięcia w przewodach elektrycznych, ponieważ spadek napięcia jest ściśle związany z oporem żyły przewodowej, jej długością oraz przekrojem. Opór elektryczny przewodu jest obliczany na podstawie materiału, z którego wykonana jest żyła, oraz jej wymiarów. Izolacja przewodu ma na celu zapewnienie bezpieczeństwa, ochrony przed uszkodzeniami i minimalizacji strat energii, ale sama w sobie nie wpływa na opór elektryczny. Przykładowo, w instalacjach domowych wykorzystywane są przewody miedziane o odpowiednich przekrojach, co zapewnia minimalny spadek napięcia. Standardy takie jak PN-IEC 60228 oraz PN-EN 50525 precyzują wymagania dotyczące przewodów, skupiając się na ich właściwościach elektrycznych, a nie na materiale izolacyjnym. Ważne jest, aby inżynierowie i elektrycy zdawali sobie sprawę, że odpowiednio dobrane przewody mogą znacznie zwiększyć efektywność energetyczną instalacji elektrycznych.

Pytanie 4

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. prądowego po stronie pierwotnej
B. napięciowego po stronie pierwotnej
C. prądowego po stronie wtórnej
D. napięciowego po stronie wtórnej
Wybór bezpieczników w obwodzie przekładników prądowych po stronie pierwotnej, wtórnej czy napięciowej jest problematyczny i oparty na kilku błędnych założeniach. Przykładowo, stosowanie bezpieczników po stronie wtórnej może wydawać się rozsądne, jednak niesie ono ryzyko uszkodzenia izolacji uzwojeń. Działanie bezpiecznika w sytuacji zwarcia prowadzi do nagłego wzrostu napięcia w obwodzie wtórnym, co może uszkodzić izolację oraz wpłynąć na dokładność pomiarów. Podobnie, umieszczanie bezpieczników na stronie pierwotnej, w kontekście przekładników napięciowych, również stwarza niebezpieczeństwo dla urządzeń zabezpieczających, ponieważ naraża je na nadmierne napięcia i przepięcia. Warto zauważyć, że przekładniki prądowe i napięciowe są projektowane z myślą o zachowaniu wysokiej niezawodności w transporcie informacji o prądzie i napięciu do systemów pomiarowych. Bezpieczniki w istocie mogą zakłócać ten proces, wprowadzając dodatkowe ryzyko i zmniejszając niezawodność całego systemu. W praktyce, należy stosować odpowiednie metody zabezpieczeń i monitorowania, które są zgodne z normami branżowymi, aby uniknąć tych problemów. Normy te, jak IEC 61850, podkreślają znaczenie prawidłowego doboru zabezpieczeń oraz ich integracji z systemami monitorującymi, co jest kluczowe dla utrzymania bezpieczeństwa i efektywności w instalacjach elektrycznych.

Pytanie 5

Zespół elektryków ma wykonać na polecenie pisemne prace konserwacyjne przy urządzeniu elektrycznym.
Jak powinien postąpić kierujący zespołem w przypadku stwierdzenia niedostatecznego oświetlenia w miejscu pracy?

Wykonać zleconą pracęPowiadomić przełożonego
o niedostatecznym oświetleniu
A.TAKNIE
B.TAKTAK
C.NIETAK
D.NIENIE
A. A.
B. C.
C. B.
D. D.
Wybór odpowiedzi C jest zgodny z zasadami BHP, które nakładają na kierownika zespołu obowiązek zapewnienia bezpiecznych warunków pracy. Niedostateczne oświetlenie stwarza ryzyko wypadków, co może prowadzić do poważnych konsekwencji zarówno dla pracowników, jak i dla pracodawcy. W sytuacji, gdy oświetlenie nie spełnia norm, kierujący zespołem powinien niezwłocznie zaprzestać wszelkich prac i poinformować przełożonego. Zgodnie z normą PN-EN 12464-1, miejsca pracy powinny być odpowiednio oświetlone, aby zminimalizować ryzyko błędów i wypadków. Przykładowo, w przypadku prac konserwacyjnych na wysokości, odpowiednie oświetlenie jest kluczowe dla bezpiecznej nawigacji i wykonywania zadań. Oprócz tego, zgodnie z wytycznymi BHP, pracownicy powinni być szkoleni w zakresie identyfikacji zagrożeń związanych z oświetleniem i wiedzieć, jak reagować w takich sytuacjach. Dlatego odpowiedź C nie tylko wskazuje na właściwe postępowanie, ale także na dbałość o bezpieczeństwo i zdrowie zespołu.

Pytanie 6

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Zarządca obiektu
B. Producent energii elektrycznej
C. Dostawca energii elektrycznej
D. Właściciel obiektu
Dostawca energii elektrycznej ma obowiązek zapewnić należyty stan techniczny układów pomiarowo-rozliczeniowych energii elektrycznej. Oznacza to, że odpowiedzialność za utrzymanie tych układów w dobrym stanie spoczywa na dostawcy, który ma świadomość, że niesprawne urządzenia mogą powodować błędne pomiary, co w efekcie wpływa na rozliczenia finansowe z odbiorcami. Przykładem może być konieczność regularnych przeglądów i kalibracji liczników, aby zapewnić ich prawidłowe działanie. Zgodnie z normami PN-EN 62052-11 oraz PN-EN 62053-21, dostawcy energii są zobowiązani do przestrzegania określonych standardów jakości, co przekłada się na rzetelność pomiarów. Ważne jest, aby odbiorcy byli świadomi, że to dostawca energii jest odpowiedzialny za wszelkie aspekty związane z technicznym stanem układów pomiarowych, co wpływa na przejrzystość i zaufanie w relacjach z klientami.

Pytanie 7

W instalacji jednofazowej o częstotliwości 50 Hz oraz napięciu znamionowym 230 V, wartość napięcia pomiędzy przewodem fazowym a przewodem neutralnym nie powinna wynosić

A. mniej niż 230 V
B. więcej niż 253 V
C. mniej niż 213 V
D. więcej niż 243 V
'Większa niż 253 V' to faktycznie dobra odpowiedź. W instalacjach jednofazowych, gdzie mamy napięcie 230 V i częstotliwość 50 Hz, napięcie między fazą a neutralnym musi się mieścić w określonym zakresie. Z tego co pamiętam, normy mówią, że odchylenia napięcia mogą wynosić +/- 10%. W takim przypadku dolna granica to 207 V, a górna to 253 V. Jak widzisz, wszystko powyżej 253 V to już sporo za dużo. I to może być niebezpieczne dla urządzeń elektrycznych, mogą się przegrzewać i psuć. Dlatego w projektowaniu instalacji warto używać zabezpieczeń, jak wyłączniki nadprądowe czy ograniczniki przepięć, żeby chronić system. Monitorowanie napięcia to kluczowa sprawa, żeby wszystko działało długo i bezpiecznie.

Pytanie 8

Jak zmieni się ilość ciepła wydobywanego przez grzejnik elektryczny w jednostce czasu, jeśli jego spiralę grzejną skróci się o połowę, a napięcie zasilające pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się czterokrotnie
Wybierając odpowiedzi, które sugerują, że zmiana długości spiral grzejnych skutkuje znacznym zmniejszeniem ilości wydzielanego ciepła, można popaść w pułapkę błędnych założeń dotyczących zasad działania grzejników elektrycznych. Odpowiedzi takie jak "Zmniejszy się czterokrotnie" lub "Zmniejszy się dwukrotnie" opierają się na mylnym założeniu, że skrócenie elementu grzewczego automatycznie prowadzi do proporcjonalnego spadku wydajności cieplnej, co jest sprzeczne z prawem Ohma oraz zasadą zachowania energii. Kluczowym aspektem jest zrozumienie, że moc wydobywana z grzejnika elektrycznego nie tylko zależy od długości spirali, ale również od napięcia i oporu. Przy stałym napięciu zasilania, zmniejszenie oporu (wynikające ze skrócenia spirali) prowadzi do wzrostu prądu, a tym samym do wzrostu mocy.Odpowiedzi sugerujące, że moc spadnie, mogą wynikać z nieporozumień dotyczących tego, jak opór i prąd elektryczny współdziałają w obwodach. W rzeczywistości, przy krótszej spirali, opór maleje, a prąd rośnie, co skutkuje wyższą mocą. W praktyce, projektując urządzenia grzewcze, należy brać pod uwagę te fundamentalne zasady, aby uniknąć nieefektywności oraz potencjalnych uszkodzeń sprzętu. Zatem wszelkie wnioski opierające się na intuicji a nie na solidnych podstawach teoretycznych mogą prowadzić do nieprawidłowych wyników i decyzji w inżynierii grzewczej.

Pytanie 9

W jaki sposób zmieni się spadek napięcia na przewodzie zasilającym przenośny odbiornik, jeśli zamienimy przewód OWY 5×4 mm2 o długości 5 m na przewód OWY 5×6 mm2 o długości 15 m?

A. Zmniejszy się dwukrotnie
B. Zmniejszy się trzykrotnie
C. Zwiększy się trzykrotnie
D. Zwiększy się dwukrotnie
Odpowiedź, że spadek napięcia na przewodzie zasilającym odbiornik przenośny zwiększy się dwukrotnie, jest poprawna z perspektywy prawa Ohma oraz zasad obliczania spadku napięcia. Spadek napięcia (U) na przewodniku oblicza się według wzoru U = I * R, gdzie I to prąd płynący przez przewód, a R to oporność przewodu. Oporność przewodu wyrażona jest wzorem R = ρ * (L/A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego pole przekroju. Zastępując przewód OWY 5×4 mm² o długości 5 m przewodem OWY 5×6 mm² o długości 15 m, zwiększamy długość przewodu trzykrotnie (15 m do 5 m) oraz zmniejszamy pole przekroju o 1,5 razy (4 mm² do 6 mm²). Mimo większego pola przekroju nowego przewodu, jego długość powoduje, że spadek napięcia wzrasta. W praktyce oznacza to, że dla zastosowań wymagających długich przewodów zasilających, dobór odpowiedniego przekroju przewodu jest kluczowy, aby zminimalizować straty energetyczne i zapewnić stabilność zasilania. Dostosowywanie długości i przekrojów przewodów jest zgodne z normą PN-IEC 60364, która zaleca obliczanie spadków napięcia dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych.

Pytanie 10

W silniku odkurzacza po wyjęciu z obudowy i załączeniu pełnego napięcia w serwisie zauważono zmniejszone obroty i iskrzenie na komutatorze. Na podstawie zamieszczonej tabeli wskaż, prawidłową kolejność czynności przy wykrywaniu i naprawie uszkodzenia w silniku odkurzacza.

Czynność
1demontaż elementów silnika
2próbne uruchomienie silnika przy zmniejszonym napięciu i doszlifowanie szczotek
3sprawdzenie długości szczotek i ich prawidłowego docisku do komutatora
4wykonanie badania na obecność zwarć w wirniku
5wymiana uszkodzonych podzespołów
6montaż podzespołów silnika
A. 4, 1, 5, 3, 6, 2
B. 3, 1, 4, 5, 6, 2
C. 1, 4, 3, 5, 2, 6
D. 3, 4, 2, 1, 5, 6
W przypadku niepoprawnych odpowiedzi pojawiają się typowe błędy myślowe związane z kolejnością działań diagnostycznych. Zaczynanie od demontażu elementów silnika bez wcześniejszej weryfikacji stanu szczotek prowadzi do nieefektywnej pracy oraz zwiększonego ryzyka uszkodzenia innych podzespołów. Diagnostyka powinna zawsze zaczynać się od najprostszych do najtrudniejszych problemów; w tym przypadku sprawdzenie szczotek jest kluczowe. Idąc dalej, pominiecie etapu badania wirnika na obecność zwarć może skutkować dalszymi uszkodzeniami, które nie będą widoczne gołym okiem. Wymiana uszkodzonych elementów przed dokładnym zrozumieniem przyczyny awarii prowadzi do marnotrawstwa czasu i zasobów. Ostatecznie, przeprowadzanie próbnego uruchomienia silnika przed całkowitym złożeniem i wykonaniem wszystkich niezbędnych napraw jest także niewłaściwą praktyką, która może prowadzić do dalszych awarii. W kontekście standardów branżowych, zawsze należy przestrzegać metodologii diagnostycznej, która zakłada systematyczne podejście i eliminację potencjalnych źródeł problemów, zaczynając od najprostszych rozwiązań. Dobre praktyki wskazują na znaczenie odpowiedniego przygotowania przed przystąpieniem do skomplikowanych operacji serwisowych, co pozwala na minimalizowanie ryzyka i zwiększenie efektywności napraw.

Pytanie 11

Jakie numery wskazano na schemacie z dokumentacji techniczno-ruchowej elementów zamiennych, które są częścią silnika szlifierki?

A. Od 19 do 26
B. Od 47 do 52
C. Od 7 do 14
D. Od 1 do 6

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 'Od 7 do 14' jest jak najbardziej trafna. Te numery odnoszą się do konkretnych części zamiennych w silniku szlifierki, które są mega ważne dla jej działania. W dokumentacji techniczno-ruchowej znajdziesz, że przypisane są do takich elementów jak wirnik czy chłodzenie. Bez nich, szlifierka raczej nie zadziała tak, jak powinna. Na przykład, wirnik odpowiada za ruch obrotowy, co bezpośrednio przekłada się na to, jak skutecznie szlifujemy. Wiedza o tych częściach i ich numerach jest kluczowa, bo pozwala szybko znaleźć odpowiednie zamienniki w razie awarii. Takie podejście naprawdę ułatwia życie nie tylko inżynierom, ale i tym, którzy zajmują się konserwacją maszyn. Dobrze jest też pamiętać, że poprawna identyfikacja części wpływa na bezpieczeństwo i sprawność operacyjną szlifierki.

Pytanie 12

Która z podanych przyczyn prowadzi do włączenia przekaźnika Buchholtza w celu odłączenia transformatora?

A. Przerwa w uziemieniu neutralnego punktu
B. Niesymetryczne obciążenie transformatora
C. Zwarcie pomiędzy uzwojeniem pierwotnym a wtórnym
D. Przerwa w uzwojeniu pierwotnym
Przerwa w uziemieniu punktu neutralnego, niesymetryczne obciążenie czy przerwa w uzwojeniu pierwotnym nie są bezpośrednimi przyczynami zadziałania przekaźnika Buchholtza. Uziemienie punktu neutralnego jest istotne dla stabilizacji pracy transformatora, ale jego przerwanie nie generuje bezpośrednio warunków do zadziałania przekaźnika ochronnego. Niesymetryczne obciążenie natomiast, choć może prowadzić do przegrzewania uzwojeń, nie wywołuje nagłych zmian w przepływie oleju, które są podstawą działania przekaźnika Buchholtza. Przerwa w uzwojeniu pierwotnym może prowadzić do poważnych uszkodzeń transformatora, jednak nie wywołuje ona sytuacji, w której przekaźnik odnotowuje nieprawidłowy przepływ oleju. W rzeczywistości, aby przekaźnik Buchholtza działał, muszą wystąpić warunki, które wpływają na właściwości fizyczne oleju izolacyjnego, co jest wynikiem zwarcia. Dobrym przykładem jest fakt, że w przypadku zwarcia, olej zaczyna się szybko podgrzewać, co prowadzi do ruchu powietrza w zbiorniku transformatora i zadziałania przekaźnika. Zrozumienie, jak przekaźnik Buchholtza funkcjonuje w kontekście rzeczywistych zagrożeń, jest kluczowe dla prawidłowej eksploatacji transformatorów oraz skutecznego zarządzania ryzykiem w systemach energetycznych.

Pytanie 13

Kontrolę instalacji elektrycznej, znajdującej się w miejscach o podwyższonej wilgotności (75-100%), pod kątem efektywności zabezpieczeń przeciwporażeniowych należy przeprowadzać nie rzadziej niż co

A. 4 lata
B. 2 lata
C. 1 rok
D. 3 lata
Zgodnie z polskimi normami oraz przepisami związanymi z instalacjami elektrycznymi w pomieszczeniach wilgotnych, inspekcje i kontrole instalacji powinny być przeprowadzane nie rzadziej niż co 1 rok. Wilgoć w takich pomieszczeniach może znacząco wpływać na bezpieczeństwo użytkowników, prowadząc do zwiększonego ryzyka porażenia prądem. Regularne kontrole pozwalają na wczesne wykrycie potencjalnych usterek oraz degradacji materiałów izolacyjnych, co jest kluczowe dla zapewnienia skutecznej ochrony przeciwporażeniowej. Przykładowo, w łazienkach, które są klasyfikowane jako pomieszczenia wilgotne, należy regularnie sprawdzać stan gniazdek, włączników oraz przewodów elektrycznych. Warto pamiętać, że nieprzestrzeganie tych zasad może prowadzić do poważnych wypadków, dlatego organizacje i osoby odpowiedzialne za instalacje muszą stosować się do takich wytycznych, aby zapewnić bezpieczeństwo użytkowników.

Pytanie 14

Jakie są zalecane minimalne okresy pomiędzy kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach narażonych na pożar?

A. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
B. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 1 rok dla badania rezystancji izolacji
C. 5 lat dla oceny skuteczności ochrony przeciwporażeniowej i 5 lat dla badania rezystancji izolacji
D. 1 rok dla oceny skuteczności ochrony przeciwporażeniowej oraz 5 lat dla badania rezystancji izolacji
Nieprawidłowe podejścia do okresów między sprawdzeniami instalacji elektrycznych mogą prowadzić do poważnych zagrożeń dla bezpieczeństwa. Na przykład, sprawdzanie skuteczności ochrony przeciwporażeniowej co 1 rok, jak sugeruje jedna z opcji, jest zbyt częste i może być nieefektywne, biorąc pod uwagę, że te systemy powinny wykazywać stabilność przez dłuższy czas, co potwierdzają wytyczne europejskie przyjęte w normach bezpieczeństwa. Z drugiej strony, zalecenie, aby sprawdzać rezystancję izolacji co 5 lat, ignoruje szybkość, z jaką mogą pojawiać się uszkodzenia izolacji w wyniku eksploatacji, co może prowadzić do ryzykownych sytuacji. Typowe błędy myślowe polegają na myleniu częstotliwości kontroli z ich rzeczywistą skutecznością. Dłuższe okresy mogą prowadzić do zaniedbań i niewykrytych usterek, które z czasem narastają. Dlatego niezbędne jest przestrzeganie określonych norm, które są oparte na rzeczywistych warunkach eksploatacyjnych, a nie jedynie na intuicyjnych osądach dotyczących bezpieczeństwa. Rozsądnie jest stosować się do najlepszych praktyk branżowych, które zalecają częstsze przeglądy instalacji w pomieszczeniach o podwyższonym ryzyku pożaru, aby minimalizować ryzyko incydentów związanych z elektrycznością.

Pytanie 15

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. drgań
B. charakterystyki stanu jałowego
C. izolacji łożysk
D. rezystancji uzwojeń

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 16

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm, średnicy wewnętrznej tarczy łożyskowej D = 37 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6001
B. 6301
C. 6200
D. 6700

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 6301 jest prawidłowa, ponieważ dokładnie spełnia wszystkie wymagane wymiary dla danego zastosowania. Średnica wału o wartości 12 mm odpowiada średnicy otworu wewnętrznego łożyska 6301, który wynosi również 12 mm. Dodatkowo, średnica zewnętrzna tego łożyska wynosi 37 mm, co idealnie pasuje do średnicy wewnętrznej tarczy łożyskowej, a jego szerokość wynosząca 12 mm również jest zgodna z wymaganiami. W praktyce, dobór odpowiedniego łożyska jest kluczowy dla trwałości i niezawodności maszyn. Wybór łożyska zgodnego z wymiarami zapewnia optymalne przenoszenie obciążeń i minimalizuje zużycie. Zgodnie z międzynarodowymi standardami, właściwy dobór łożysko wpływa na efektywność działania silników i urządzeń, co często przekłada się na obniżenie kosztów eksploatacji oraz wydłużenie żywotności komponentów. W branży inżynieryjnej, stosowanie łożysk takich jak 6301 jest powszechne w silnikach elektrycznych, gdzie kluczowym aspektem jest redukcja tarcia, co z kolei zwiększa efektywność energetyczną.

Pytanie 17

Jaką czynność powinno się wykonać w trakcie oględzin urządzenia napędowego z silnikiem pierścieniowym podczas jego pracy?

A. Sprawdzenie poziomu drgań
B. Sprawdzenie połączeń elementów urządzenia
C. Ocena stanu pierścieni ślizgowych
D. Ocena stanu szczotek i szczotkotrzymaczy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie poziomu drgań jest kluczowym elementem oceny stanu technicznego urządzenia napędowego z silnikiem pierścieniowym. Drgania mogą być wskaźnikiem wielu problemów, takich jak niewyważenie wirnika, luzy w łożyskach czy nieprawidłowe ustawienie osi. Monitorowanie drgań podczas pracy urządzenia pozwala na wczesne wykrycie tych problemów i podjęcie działań naprawczych, co może znacznie wydłużyć żywotność maszyny. W praktyce, stosuje się różne metody pomiaru drgań, w tym analizatory drgań, które mogą dostarczyć szczegółowych informacji na temat amplitudy, częstotliwości oraz charakterystyki drgań. Zgodnie z normami ISO 10816, ocena drgań powinna być wykonywana regularnie, a wyniki należy porównywać z wartościami granicznymi, aby określić stan techniczny urządzenia. Dobra praktyka w branży mechanicznej zaleca prowadzenie dokumentacji pomiarów, co umożliwia śledzenie zmian w czasie i diagnozowanie potencjalnych usterek.

Pytanie 18

Jaką wartość ma maksymalna dozwolona rezystancja uziomu RA przewodu ochronnego, który łączy uziom z częścią przewodzącą przy nominalnym prądzie różnicowym IΔN = 30 mA oraz napięciu dotykowym 50 V AC wyłącznika różnicowoprądowego?

A. 2 000 Ω
B. 4 000 Ω
C. Około 830 Ω
D. Około 1660 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Największa dopuszczalna rezystancja uziomu R_A dla przewodu ochronnego łączącego uziom z częścią przewodzącą dostępną w przypadku prądu różnicowego I_ΔN = 30 mA i napięcia dotykowego 50 V AC wynosząca około 1660 Ω wynika z obliczeń opartych na zasadach bezpieczeństwa elektrycznego. W przypadku, gdy wystąpi prąd różnicowy, uziemienie ma za zadanie zapewnić skuteczne odprowadzenie prądu do ziemi, aby zminimalizować ryzyko porażenia prądem. Przy napięciu dotykowym 50 V AC maksymalna dopuszczalna rezystancja uziomu może być obliczona z równania: R = U/I, gdzie U to napięcie dotykowe, a I to prąd różnicowy. Zatem R = 50 V / 0,030 A = 1666,67 Ω. Praktyczne zastosowanie tej wiedzy ma kluczowe znaczenie w projektowaniu instalacji elektrycznych, gdzie zapewnienie skutecznego uziemienia jest niezbędne dla ochrony ludzi oraz sprzętu. Utrzymywanie odpowiednich wartości rezystancji uziomu jest zgodne z normami europejskimi, takimi jak PN-EN 61140, które wskazują na konieczność regularnych pomiarów oraz konserwacji systemów uziemiających, aby zapewnić ich skuteczność i bezpieczeństwo.

Pytanie 19

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Luzy w łożyskach
B. Przerwa w uzwojeniu wzbudzenia
C. Brak obciążenia
D. Przerwa w uzwojeniu twornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 20

Podczas pracy młotowiertarki udarowej zaobserwowano intensywne iskrzenie na komutatorze. Co należy zrobić, aby uniknąć uszkodzenia narzędzia?

A. Należy zatrzymać pracę i dokręcić połączenia kabli wewnątrz obudowy
B. Po zakończeniu pracy należy skontrolować połączenie uzwojenia twornika z uzwojeniem wzbudzenia
C. Wstrzymać pracę i wymienić szczotki
D. Trzeba wstrzymać pracę i wymienić łącznik zasilający

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana szczotek w młotowiertarce udarowej jest kluczowym krokiem, gdy zauważamy nadmierne iskrzenie na komutatorze. Iskrzenie to może być wynikiem zużycia szczotek, które są odpowiedzialne za przewodzenie prądu do wirnika silnika. W miarę eksploatacji, szczotki ulegają ścieraniu, co prowadzi do zwiększenia oporu elektrycznego, a w konsekwencji do iskrzenia. Wymiana szczotek powinna być przeprowadzana zgodnie z zaleceniami producenta, co często wiąże się z regularnymi inspekcjami technicznymi, aby zapobiec poważniejszym uszkodzeniom narzędzia. Przykładowo, w przypadku firmy produkującej młotowiertarki, regularne serwisowanie i monitorowanie stanu szczotek mogą znacząco wydłużyć żywotność narzędzia oraz zapewnić jego optymalne działanie. Praktyka ta nie tylko przyczynia się do bezpieczeństwa użytkownika, ale także utrzymuje wysoką wydajność pracy, co jest niezmiernie ważne w środowisku budowlanym czy remontowym. W ten sposób można uniknąć kosztownych napraw oraz przedłużyć okres użytkowania urządzenia.

Pytanie 21

W celu oceny stanu technicznego silnika prądu stałego dokonano jego oględzin i pomiarów. Na podstawie wyników pomiarów zamieszczonych w tabeli określ stan techniczny tego silnika.

Wartość rezystancji pomiędzy zaciskami:
A1-A2D1-D2E1-E2A1-PED1-PEE1-PE
0,8 Ω0,9 Ω4,7 Ω123,1 MΩ102,5 MΩ166,6 MΩ
A. Pogorszony stan połączeń uzwojenia twornika w tabliczce zaciskowej.
B. Zwarcie międzyzwojowe w uzwojeniu bocznikowym.
C. Pogorszony stan izolacji między uzwojeniem szeregowym, a obudową.
D. Przebicie izolacji uzwojenia bocznikowego do obudowy.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w uzwojeniu bocznikowym to sytuacja, w której dwa lub więcej zwojów w tym samym uzwojeniu stykają się ze sobą, co prowadzi do zmiany odpowiednich parametrów elektrycznych silnika. W analizowanym przypadku, niskie wartości rezystancji między zaciskami A1-A2 oraz D1-D2 sugerują, że uzwojenia te są sprawne i nie mają problemów z połączeniami. Jednak podwyższona rezystancja E1-E2, wynosząca 4,7 Ω, wskazuje na potencjalny problem. W praktyce, zwarcia międzyzwojowe mogą prowadzić do przegrzewania się silnika, co w efekcie skraca jego żywotność oraz wpływa na wydajność. W standardach dotyczących konserwacji silników prądu stałego, takich jak IEC 60034-1, podkreśla się konieczność regularnych pomiarów rezystancji oraz analizy wyników, aby zapobiegać poważniejszym uszkodzeniom. Zrozumienie i identyfikacja zwarć międzyzwojowych to kluczowy element w zarządzaniu stanem technicznym silników elektrycznych, co pozwala na wczesne wykrycie problemów i ich skuteczne usunięcie.

Pytanie 22

Wybierz odpowiedni wyłącznik nadprądowy do ochrony przed przeciążeniem w obwodzie jednofazowym o napięciu znamionowym 230 V, z którego jednocześnie będą zasilane grzejnik oporowy o mocy nominalnej 2 kW oraz chłodziarka o mocy nominalnej 560 W i współczynniku mocy cos ? = 0,7?

A. B10
B. C10
C. B16
D. C20

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybranie wyłącznika nadprądowego B16 jest prawidłowe, ponieważ zapewnia on odpowiednią ochronę dla obwodu jednofazowego o napięciu znamionowym 230 V, w którym zasilane są grzejnik oporowy o mocy 2 kW oraz chłodziarka o mocy 560 W. Łączna moc obciążenia wynosi 2 kW + 0,56 kW = 2,56 kW. Aby obliczyć prąd, możemy skorzystać z wzoru I = P / U, gdzie P to moc, a U to napięcie. Prąd obliczamy: I = 2560 W / 230 V = 11,13 A. Wobec powyższego, wyłącznik B16, który ma nominalny prąd 16 A, jest odpowiedni, ponieważ pozostawia wystarczający margines na przypadkowe przeciążenia. Zastosowanie wyłącznika z wyższym prądem, jak C20, może prowadzić do braku ochrony przed przeciążeniem, co z kolei naraża instalację na uszkodzenia. W praktyce, wyłącznik B16 jest standardowo stosowany w obwodach z urządzeniami o podobnych parametrach, co potwierdzają normy PN-EN 60898, które precyzują zasady doboru zabezpieczeń. Zastosowanie wyłącznika o zbyt wysokim prądzie znamionowym mogłoby prowadzić do uszkodzeń urządzeń zasilanych w wyniku braku odpowiedniej ochrony w przypadku zwarcia lub przeciążenia.

Pytanie 23

Dla urządzenia zasilanego trójfazową instalacją elektryczną o napięciu nominalnym 400 V maksymalny pobór mocy wynosi 13 kW. Określ minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, przyjmując rezystancyjny charakter odbiorników i pomijając problem selektywności zabezpieczeń?

A. 20 A
B. 16 A
C. 25 A
D. 10 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
W przypadku obiektu zasilanego instalacją elektryczną trójfazową o napięciu znamionowym 400 V, aby obliczyć minimalną wartość prądu znamionowego zabezpieczenia przedlicznikowego, należy skorzystać z zależności między mocą, napięciem a prądem. Znamionowa moc wynosząca 13 kW (13 000 W) w połączeniu z napięciem 400 V umożliwia obliczenie prądu za pomocą wzoru: P = √3 * U * I, gdzie P to moc, U to napięcie, a I to prąd. Przekształcając wzór, otrzymujemy: I = P / (√3 * U). Podstawiając dane: I = 13000 / (√3 * 400) ≈ 18,7 A. W praktyce dobieramy zabezpieczenie na wartość wyższą, aby zapewnić odpowiedni margines. Z tego powodu wybrana wartość 20 A jest odpowiednia, zgodna z dobrymi praktykami doboru zabezpieczeń, które powinny mieć również margines na ewentualne przeciążenia. Zastosowanie zabezpieczeń o wartości minimalnej 20 A zapewnia lepszą ochronę przed uszkodzeniem instalacji oraz zmniejsza ryzyko wyzwolenia zabezpieczeń podczas normalnej pracy urządzeń. Warto także pamiętać o konieczności przestrzegania norm PN-IEC 60364, które stanowią wytyczne dotyczące projektowania i wykonania instalacji elektrycznych.

Pytanie 24

Aby przeprowadzić bezpieczne oraz efektywne działania mające na celu zlokalizowanie uszkodzenia w silniku jednofazowym z kondensatorem rozruchowym, należy wykonać kolejność następujących czynności:

A. odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie
B. odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne
C. rozładować kondensator, przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej
D. przeprowadzić oględziny oraz pomiary kontrolne, odłączyć zasilanie, odkręcić pokrywę tabliczki zaciskowej, rozładować kondensator

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź polega na odłączeniu napięcia zasilania, odkręceniu pokrywy tabliczki zaciskowej, rozładowaniu kondensatora i przeprowadzeniu oględzin oraz pomiarów sprawdzających. Każdy z tych kroków ma kluczowe znaczenie dla zapewnienia bezpieczeństwa i efektywności pracy. Pierwszym krokiem jest odłączenie napięcia zasilania, co minimalizuje ryzyko porażenia prądem oraz zapobiega uszkodzeniom sprzętu. Następnie, odkręcenie pokrywy tabliczki zaciskowej umożliwia dostęp do wewnętrznych komponentów silnika. Warto zauważyć, że kondensatory mogą przechowywać ładunek elektryczny nawet po odłączeniu zasilania, dlatego ważne jest, aby rozładować kondensator przed dalszymi pracami, co eliminuje ryzyko porażenia. Ostatnim krokiem są oględziny i pomiary, które pozwalają na diagnozowanie potencjalnych uszkodzeń oraz ocenę stanu technicznego silnika. Stosowanie tej kolejności działań jest zgodne z dobrymi praktykami w zakresie bezpieczeństwa oraz spotykanymi w normach branżowych, co zapewnia skuteczność działań serwisowych i naprawczych.

Pytanie 25

Zabezpieczenie bezpiecznej pracy grzejnika trójfazowego zapewnia

A. wymuszony obieg powietrza
B. wyprowadzenie punktu neutralnego elementów grzejnych
C. osłona elementów grzejnych
D. regulacja mocy grzejnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osłona elementów grzejnych jest kluczowym elementem zapewniającym bezpieczną eksploatację grzejnika trójfazowego. Tego rodzaju osłona chroni użytkowników przed bezpośrednim kontaktem z elementami grzejnymi, które mogą osiągać wysokie temperatury. W praktyce, stosowanie osłon jest zgodne z normami bezpieczeństwa, takimi jak PN-EN 60335, które regulują wymagania dotyczące bezpieczeństwa urządzeń elektrycznych. Osłony mogą być wykonane z materiałów odpornych na działanie wysokiej temperatury i powinny być zamocowane w sposób uniemożliwiający ich przypadkowe zdjęcie. Dobrze zaprojektowana osłona nie tylko chroni przed poparzeniami, ale także minimalizuje ryzyko pożaru. Przykładem zastosowania osłon mogą być grzejniki stosowane w domach, które często wyposażane są w dodatkowe elementy zabezpieczające, aby zminimalizować ryzyko wypadków. Oprócz osłon, ważne jest również regularne sprawdzanie stanu technicznego urządzenia oraz jego instalacji, co jest podstawą odpowiedzialnej eksploatacji grzejników.

Pytanie 26

W jaki sposób zmieni się prędkość obrotowa silnika synchronicznego, gdy liczba par biegunów w jego tworniku zostanie zmieniona z 2 na 1?

A. Dwukrotnie zmniejszy się
B. Dwukrotnie wzrośnie
C. Czterokrotnie zmniejszy się
D. Czterokrotnie wzrośnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prędkość obrotowa silnika synchronicznego jest ściśle związana z częstotliwością prądu zasilającego oraz liczbą par biegunów w uzwojeniach silnika. Zgodnie z zasadą synchronizacji, prędkość obrotowa silnika synchronicznego (n) oblicza się za pomocą wzoru: n = (120 * f) / p, gdzie f to częstotliwość prądu w hercach, a p to liczba par biegunów. W przypadku zmiany liczby par biegunów z 2 na 1, mamy do czynienia ze zmniejszeniem liczby par biegunów o połowę, co skutkuje podwojeniem prędkości obrotowej. W praktyce oznacza to, że silnik będzie pracować z wyższą prędkością, co jest istotne w aplikacjach wymagających zwiększenia efektywności operacyjnej, takich jak napędy wentylatorów czy pomp. W przemyśle zastosowanie silników synchronicznych z mniejszą liczbą par biegunów może umożliwić osiągnięcie wyższej wydajności energetycznej, co jest zgodne z aktualnymi trendami dążącymi do optymalizacji procesów produkcyjnych oraz redukcji kosztów eksploatacyjnych.

Pytanie 27

Przed rozpoczęciem pomiaru rezystancji izolacji uzwojeń wirnika silnika z pierścieniem w pierwszej kolejności należy

A. sprawdzić ciągłość obwodu wirnika
B. odłączyć rezystory rozruchowe
C. zwierać uzwojenie stojana
D. wymienić szczotki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odłączenie rezystorów rozruchowych przed pomiarem rezystancji izolacji uzwojeń wirnika silnika pierścieniowego jest kluczowym krokiem, aby uniknąć uszkodzeń sprzętu oraz zapewnić dokładność pomiarów. Rezystory rozruchowe są stosowane w obwodach silników w celu kontroli prądu rozruchowego, co oznacza, że są one podłączone do układu w momencie uruchamiania silnika. Jeśli nie zostaną odłączone, mogą powstać niepożądane połączenia, które zakłócą wyniki pomiarów rezystancji izolacji oraz mogą spowodować uszkodzenie miernika. Zgodnie z normą IEC 61557-1 dotyczącą pomiarów ochronnych w instalacjach elektrycznych, należy zawsze dbać o bezpieczeństwo i dokładność pomiarów, co obliguje do odpowiedniego przygotowania układów przed ich wykonaniem. Działania takie są istotne w kontekście zapobiegania awariom, które mogą prowadzić do kosztownych napraw lub przestojów w pracy maszyn. W praktyce, przed każdym pomiarem izolacji, zaleca się także sprawdzenie stanu szczotek i wirnika, ale najpierw kluczowe jest odłączenie obwodów, które mogłyby wpłynąć na pomiar.

Pytanie 28

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Zwiększenie częstotliwości napięcia zasilającego.
B. Przerwa w przewodzie ochronnym w sieci zasilającej.
C. Brak jednej z faz zasilania.
D. Wzrost wartości napięcia z sieci zasilającej.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 29

W systemach z stycznikami kategorii użytkowania DC-6 mogą być wykorzystywane

A. żarówki
B. lampy rtęciowe
C. świetlówki
D. lampy sodowe

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór żarówek jako odpowiedzi na to pytanie jest uzasadniony ze względu na ich zastosowanie w układach ze stycznikami o kategorii użytkowania DC-6. Kategoria ta jest przeznaczona do pracy z obwodami prądu stałego, które są w stanie obsłużyć normalne obciążenia, w tym żarówki. Żarówki charakteryzują się dość prostą charakterystyką obciążeniową, co sprawia, że są odpowiednie do zastosowań w instalacjach elektrycznych, gdzie mogą być włączane i wyłączane za pomocą styczników. Przykładem praktycznego zastosowania mogą być oświetlenie w halach produkcyjnych, gdzie styczniki sterują włączaniem i wyłączaniem grup żarówek w zależności od potrzeb. Warto również zauważyć, że żarówki, w przeciwieństwie do innych typów lamp, takich jak świetlówki, wymagają prostszych układów sterujących, co czyni je bardziej elastycznymi w zastosowaniach przemysłowych. Dla zachowania zgodności z normami bezpieczeństwa i efektywności energetycznej, ważne jest, aby dobierać odpowiednie styczniki oraz obwody zabezpieczające, co również wpływa na niezawodność całego układu oświetleniowego.

Pytanie 30

Podczas wymiany trójfazowego wyłącznika różnicowoprądowego należy mieć na uwadze, że do wyłącznika nie może być podłączony przewód

A. fazowy LI
B. ochronny PE
C. fazowy L2
D. neutralny N

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź dotycząca przewodu ochronnego PE jako nieodpowiedniego do podłączenia do trójfazowego wyłącznika różnicowoprądowego jest poprawna. Przewód ochronny PE ma za zadanie zapewnienie bezpieczeństwa użytkowników poprzez odprowadzenie prądu w przypadku awarii do ziemi, co zmniejsza ryzyko porażenia prądem elektrycznym. Wyłącznik różnicowoprądowy jest zaprojektowany do monitorowania różnicy prądów między przewodami fazowymi a neutralnym. Podłączenie przewodu PE do tego urządzenia nie tylko jest niezgodne z jego przeznaczeniem, ale również może prowadzić do niebezpiecznych sytuacji, w których wyłącznik nie zadziała w przypadku wykrycia różnicy prądu. Zgodnie z normami PN-IEC 61008-1, wyłączniki różnicowoprądowe powinny być podłączane w sposób, który umożliwia ich prawidłowe działanie i spełnienie wymogów związanych z ochroną przeciwporażeniową. Przykładem poprawnej instalacji jest wykorzystanie wyłącznika różnicowoprądowego w połączeniu z przewodami fazowymi i neutralnym, co zapewnia skuteczną ochronę i minimalizuje ryzyko uszkodzeń.

Pytanie 31

Jak wpłynie na ilość wydzielanego ciepła w czasie, w grzejniku elektrycznym, gdy spiralę grzejną zmniejszy się o połowę, a napięcie pozostanie takie samo?

A. Zmniejszy się dwukrotnie
B. Zwiększy się dwukrotnie
C. Zmniejszy się czterokrotnie
D. Zwiększy się czterokrotnie

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że ilość wydzielonego ciepła w jednostce czasu zwiększy się dwukrotnie, jest prawidłowa, ponieważ zmiana długości spirali grzejnej grzejnika elektrycznego wpływa na opór elektryczny. Zgodnie z prawem Ohma, opór R przewodnika jest proporcjonalny do jego długości l, co można zapisać jako R = ρ * (l/A), gdzie ρ to oporność właściwa, a A to pole przekroju poprzecznego. Skrócenie spirali grzejnej o połowę prowadzi do zmniejszenia oporu R. Przy stałym napięciu zasilania (U), moc P wydobywana z grzejnika może być określona wzorem P = U²/R. Zmniejszenie oporu o połowę spowoduje, że moc wzrośnie dwukrotnie, ponieważ w mianowniku wzoru P mamy wartość oporu, która uległa redukcji. W praktyce oznacza to, że grzejnik będzie efektywniej przekazywał ciepło do otoczenia, co jest istotne w kontekście optymalizacji systemów grzewczych, szczególnie w zastosowaniach przemysłowych i budowlanych, gdzie zarządzanie energią ma kluczowe znaczenie.

Pytanie 32

Przed przystąpieniem do prac konserwacyjnych w elektrycznym urządzeniu trwale podłączonym do zasilania, po odcięciu napięcia, jak należy postępować w odpowiedniej kolejności?

A. należy sprawdzić, czy nie ma napięcia, zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy
B. należy zabezpieczyć obwód przed przypadkowym załączeniem, sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy
C. należy zabezpieczyć obwód przed przypadkowym załączeniem, uziemić oraz zewrzeć wszystkie fazy, a następnie sprawdzić, czy nie ma napięcia
D. należy sprawdzić, czy nie ma napięcia, uziemić oraz zewrzeć wszystkie fazy, a następnie zabezpieczyć obwód przed przypadkowym załączeniem

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź jest prawidłowa, ponieważ kolejność wykonywania czynności przed rozpoczęciem prac konserwacyjnych w urządzeniu elektrycznym ma kluczowe znaczenie dla bezpieczeństwa. Najpierw zabezpieczamy obwód przed przypadkowym załączeniem, co oznacza, że wyłączamy wszelkie źródła zasilania i stosujemy odpowiednie blokady. Następnie sprawdzamy brak napięcia, co można zrobić za pomocą odpowiednich narzędzi, takich jak wskaźniki napięcia lub multimetru. Uziemienie i zwarcie wszystkich faz to kolejne kroki, które mają na celu minimalizację ryzyka porażenia prądem oraz wyładowań elektrycznych. Zgodnie z normą PN-EN 50110-1, te działania stanowią integralną część procedur pracy w instalacjach elektrycznych. Przykładowo, w zakładach przemysłowych, gdzie pracuje się z dużymi maszynami, takie procedury są stosowane, aby zapewnić bezpieczeństwo pracowników i uniknąć poważnych wypadków. Dodatkowo, przestrzeganie tych zasad pomaga w zachowaniu zgodności z wymogami BHP oraz normami branżowymi.

Pytanie 33

Jakiego urządzenia pomiarowego należy użyć do określenia prędkości obrotowej wału silnika?

A. Higrometru termo.
B. Prądnicy tachometrycznej.
C. Tensometru mostkowego.
D. Pirometru

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna to przyrząd pomiarowy, który jest powszechnie stosowany do pomiaru prędkości obrotowej wałów silników. Działa na zasadzie generowania napięcia elektrycznego proporcjonalnego do prędkości obrotowej wału, co pozwala na łatwe i precyzyjne odczyty. Przykładem zastosowania prądnicy tachometrycznej są silniki elektryczne w przemyśle, gdzie monitorowanie prędkości obrotowej jest kluczowe dla zapewnienia optymalnej pracy maszyny oraz ochrony przed przeciążeniem. Standardy branżowe, takie jak IEC 60034, zalecają stosowanie prądnic tachometrycznych w systemach automatyzacji i sterowania, co podkreśla ich znaczenie w zapewnianiu efektywności energetycznej i bezpieczeństwa eksploatacji. Dodatkowo, prądnice tachometryczne mogą być używane w systemach feedbackowych, co pozwala na automatyczne dostosowywanie parametrów pracy silnika w odpowiedzi na zmieniające się warunki operacyjne.

Pytanie 34

Jakie urządzenie jest wykorzystywane do ochrony przewodów instalacyjnych przed skutkami przeciążeń?

A. Wyłącznik nadprądowy
B. Ochrona przeciwprzepięciowa
C. Izolacyjny rozłącznik
D. Przekaźnik cieplny

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy jest kluczowym urządzeniem stosowanym w instalacjach elektrycznych do ochrony przewodów instalacyjnych przed skutkami przeciążeń oraz zwarć. Działa on na zasadzie monitorowania prądu przepływającego przez obwód i automatycznie odłącza zasilanie w przypadku, gdy wartość prądu przekroczy ustaloną wartość nominalną. Dzięki temu zapobiega przegrzewaniu się przewodów oraz ryzyku pożaru. Przykładowo, w domowej instalacji elektrycznej, wyłącznik nadprądowy może chronić obwód, na którym znajduje się sprzęt AGD, co jest zgodne z normą PN-EN 60898. Często stosuje się go w połączeniu z innymi zabezpieczeniami, tworząc kompleksowy system ochrony. W przypadku nadmiernego obciążenia, wyłącznik nadprądowy zadziała w ułamku sekundy, co jest kluczowe dla bezpieczeństwa użytkowników. Dążąc do zapewnienia wysokiego poziomu bezpieczeństwa w instalacjach, należy regularnie kontrolować stan wyłączników nadprądowych oraz dostosowywać ich parametry do wymagań obciążeniowych danego obwodu.

Pytanie 35

W celu sprawdzenia poprawności działania wyłączników różnicowoprądowych zmierzono ich różnicowe prądy zadziałania i wyniki zamieszczono w przedstawionej tabeli. Który z wyłączników spełnia warunek prądu zadziałania IA = (0,5÷1,00) IΔN?

WyłącznikWynik pomiaru różnicowego prądu zadziałania IΔ
P302 25-10-AC25 mA
P202 25-30-AC25 mA
P304 40-30-AC40 mA
P304 40-100-AC40 mA
A. P304 40-30-AC
B. P304 40-100-AC
C. P302 25-10-AC
D. P202 25-30-AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik P202 25-30-AC jest poprawny, ponieważ jego prąd zadziałania wynosi 25 mA, co mieści się w przedziale I_A = (0,5÷1,00) I_ΔN dla tego urządzenia. Obliczając ten zakres, przyjmujemy, że nominalny prąd różnicowy I_ΔN wynosi 30 mA, co daje zakres zadziałania od 15 mA do 30 mA. Wyłączniki różnicowoprądowe są kluczowymi elementami w systemach zabezpieczeń elektrycznych, chroniącymi przed porażeniem prądem elektrycznym oraz pożarami spowodowanymi upływem prądu. Regularne sprawdzanie ich działania, zgodne z normami takimi jak PN-EN 61008, jest niezbędne w każdej instalacji elektrycznej. Właściwy dobór wyłączników i ich odpowiednie ustawienia mają kluczowe znaczenie dla bezpieczeństwa użytkowników i niezawodności systemu. Zastosowanie wyłącznika P202 25-30-AC w praktyce pozwala na efektywne zabezpieczenie obwodów w różnych aplikacjach, w tym w budynkach mieszkalnych, biurowych oraz przemysłowych.

Pytanie 36

Które z podanych wskazówek nie odnosi się do projektanta oraz wykonawcy nowej instalacji elektrycznej w lokalu mieszkalnym?

A. Oddzielić obwody oświetlenia od obwodów z gniazdami wtykowymi
B. Gniazda wtykowe w kuchni należy zasilać z oddzielnego obwodu
C. Odbiorniki o dużej mocy, które są zainstalowane na stałe, powinny być zasilane z wydzielonych obwodów
D. Gniazda wtykowe w każdym pomieszczeniu zasilane powinny być z oddzielnego obwodu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Gniazda wtykowe każdego pomieszczenia zasilać z osobnego obwodu to zalecenie, które nie znajduje zastosowania w standardach dotyczących instalacji elektrycznych w pomieszczeniach mieszkalnych. Według norm PN-IEC 60364-1 oraz wytycznych związanych z projektowaniem instalacji elektrycznych, obwody gniazd wtykowych mogą być grupowane, aby zminimalizować koszty i uprościć instalację. Zazwyczaj zaleca się, aby gniazda wtykowe w jednym pomieszczeniu były zasilane z jednego obwodu, co pozwala na efektywne wykorzystanie energii oraz ogranicza liczbę wymaganych obwodów w rozdzielnicy. Przykładowo, w typowej kuchni lub salonie, gdzie wykorzystuje się wiele gniazd wtykowych, projektowanie obwodów z wykorzystaniem jednego obwodu dla danego pomieszczenia jest praktycznym rozwiązaniem. Ponadto, stosując się do takich zasad, można uniknąć niepotrzebnej komplikacji w instalacji oraz eksploatacji, co sprzyja bezpieczeństwu użytkowania."

Pytanie 37

Podczas badania skuteczności działania dwóch wyłączników różnicowoprądowych, których znamionowy prąd różnicowy wynosi 30 mA, uzyskano wyniki przedstawione w tabeli:
Przy założeniu, że prąd wyzwalający nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego oraz nie powinien przekraczać wartości znamionowego prądu różnicowego, o działaniu tych wyłączników można powiedzieć, że

Numer wyłącznika różnicowoprądowegoRzeczywisty, zmierzony prąd różnicowy
120 mA
210 mA
A. pierwszy działa prawidłowo, a drugi działa nieprawidłowo.
B. pierwszy i drugi działają prawidłowo.
C. pierwszy działa nieprawidłowo, a drugi działa prawidłowo.
D. pierwszy i drugi działają nieprawidłowo.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik różnicowoprądowy nr 1 działa jak należy, bo jego prąd wyzwalający to 20 mA. Mieści się to w akceptowalnym zakresie, bo prąd nie powinien być mniejszy niż 0,5 znamionowego prądu różnicowego. Dla wyłącznika 30 mA to oznacza, że musi być minimalnie 15 mA. Działanie takiego wyłącznika ocenia się pod kątem ochrony przed porażeniem prądem, co jest naprawdę ważne. W praktyce, wyłączniki różnicowoprądowe są kluczowe w instalacjach elektrycznych, bo zapewniają bezpieczeństwo wszystkich użytkowników. Regularne kontrolowanie i testowanie tych urządzeń to podstawa, żeby mieć pewność, że działają zgodnie z normami, na przykład PN-EN 61008-1, która określa wymagania dla tych wyłączników. Warto też prowadzić dokumentację pomiarów i regularnie je kalibrować, bo to zapewnia, że systemy ochrony przed porażeniem są niezawodne.

Pytanie 38

Aby przygotować instalację elektryczną oświetlenia do przeprowadzenia pomiarów rezystancji izolacji, konieczne jest odłączenie zasilania oraz

A. zamknąć łączniki instalacyjne i wykręcić żarówki
B. zamknąć łączniki instalacyjne i wkręcić żarówki
C. otworzyć łączniki instalacyjne i wykręcić żarówki
D. otworzyć łączniki instalacyjne i wkręcić żarówki

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zamknięcie łączników i wykręcenie żarówek to naprawdę kluczowy krok przy przygotowywaniu instalacji elektrycznej do pomiarów rezystancji izolacji. Robiąc to, unikasz ryzyka przypadkowego załączenia prądu, co mogłoby narobić sporych szkód w sprzęcie pomiarowym oraz stwarzać niebezpieczeństwo dla osoby przeprowadzającej pomiary. Normy, jak PN-IEC 60364, mówią, że izolację trzeba sprawdzać przy wyłączonym zasilaniu, żeby wszystko było bezpieczne i wyniki były wiarygodne. Wykręcenie źródeł światła zmniejsza ryzyko przewodzenia prądu lub nieprzyjemnych napięć, co jest szczególnie ważne w mocnych instalacjach. Takie praktyki stosuje się np. w obiektach komercyjnych, gdzie bezpieczeństwo ludzi jest na pierwszym miejscu. Dobre przygotowanie instalacji do badań to nie tylko spełnienie przepisów, ale też sposób na to, żeby system elektryczny działał długo i bezawaryjnie.

Pytanie 39

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 4 lata
B. 5 lat
C. 6 lat
D. 8 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 40

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Zewrzeć zaciski silnika z zaciskiem ochronnym
B. Otworzyć łącznik załączający silnik
C. Obciążyć silnik momentem znamionowym
D. Podłączyć napięcie zasilające

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak dla mnie, otwarcie łącznika przed pomiarem rezystancji uzwojeń w silniku trójfazowym to bardzo ważny krok. Dzięki temu unikamy poważnych uszkodzeń sprzętu, a także dbamy o swoje bezpieczeństwo podczas testów. Kiedy łącznik jest otwarty, można spokojnie zmierzyć rezystancję uzwojeń, co jest kluczowe, żeby ocenić stan ich izolacji i wychwycić ewentualne zwarcia międzyzwojowe. Warto wiedzieć, że takie praktyki są potwierdzone przez normy jak IEC 60034-1, które mocno podkreślają, że trzeba mieć bezpieczny dostęp do obwodów przed rozpoczęciem pomiarów. Otwarcie łącznika to także zabezpieczenie przed przypadkowym uruchomieniem silnika, co mogłoby prowadzić do nieprzyjemnych sytuacji. Pamiętaj, żeby używać odpowiednich narzędzi, jak megohmometr, do pomiaru rezystancji izolacji. To pozwoli uzyskać dokładne wyniki i ocenić stan izolacji. Regularne przeglądy silników w zakładach przemysłowych to najlepszy sposób na wczesne wykrywanie usterek i lepsze zarządzanie kosztami eksploatacji.