Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 6 sierpnia 2025 21:23
  • Data zakończenia: 6 sierpnia 2025 22:13

Egzamin niezdany

Wynik: 18/40 punktów (45,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie jest przeznaczenie przyłącza oznaczonego literą T na zaworze hydraulicznym 4/2, które ma oznaczenia A, B, P oraz T?

A. Zbiornika sprężonego powietrza
B. Zbiornika oleju hydraulicznego
C. Siłownika jednostronnego działania
D. Siłownika dwustronnego działania
Podłączenie przyłącza T do zbiornika sprężonego powietrza jest niewłaściwie zrozumiane, ponieważ systemy hydrauliczne i pneumatyczne różnią się zasadniczo w swoim działaniu i zastosowaniu. Zbiorniki sprężonego powietrza są przeznaczone do gromadzenia powietrza pod ciśnieniem i są używane w systemach pneumatycznych, gdzie energia jest przekazywana przez sprężone powietrze. Zastosowanie przyłącza T w tym kontekście wprowadzałoby w błąd, ponieważ olej hydrauliczny nie może być użyty w systemie pneumatycznym, co mogłoby prowadzić do uszkodzeń komponentów i awarii całego układu. Z kolei podłączenie do siłownika jednostronnego działania również jest nieprawidłowe, ponieważ taki siłownik potrzebuje jedynie jednego przyłącza do zasilania, a powrót oleju odbywa się przez inne kanały, co nie ma związku z przyłączem T. Siłownik dwustronnego działania wymaga natomiast zarówno zasilania, jak i odprowadzania oleju, ale jego konstrukcja nie przewiduje podłączenia do zbiornika w ten sposób. Zrozumienie funkcji przyłącza T w kontekście zaworu hydraulicznego 4/2 jest fundamentalne dla efektywnego zarządzania systemem hydraulicznym, dlatego kluczowe jest, aby nie mylić jego zastosowania z systemami pneumatycznymi czy z siłownikami, które operują na innych zasadach.

Pytanie 2

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC
A. 1 bar.
B. 0,75 bara.
C. 0,95 bara.
D. 2 bary.
Maksymalna wartość podciśnienia, którą może przyjąć zawór, wynosi 0,95 bara, co jest wyraźnie wskazane w tabeli danych znamionowych dla modelu zaworu MS-18-310/2-HN. W praktyce oznacza to, że zawór może efektywnie działać w szerokim zakresie ciśnień, od -0,95 bara do 8 barów. Takie parametry są kluczowe w projektowaniu systemów, w których stosuje się zawory, ponieważ zrozumienie limitów pracy zaworu pozwala na uniknięcie awarii i zapewnienie jego długotrwałej funkcjonalności. Podciśnienie w zakresie 0,95 bara jest typowe w zastosowaniach przemysłowych, takich jak systemy wentylacyjne czy pompy próżniowe, gdzie kontrolowanie ciśnienia ma kluczowe znaczenie dla efektywności operacyjnej. Warto również pamiętać, że przy wyborze zaworu należy kierować się standardami branżowymi, takimi jak norma ISO 9001, które podkreślają znaczenie dokładnych danych technicznych w celu zapewnienia odpowiedniej jakości i bezpieczeństwa pracy urządzeń.

Pytanie 3

Jakim rodzajem pracy charakteryzuje się silnik oznaczony symbolem S3?

A. Praca ciągła
B. Praca przerywana
C. Praca długotrwała
D. Praca dorywcza
Właściwie zidentyfikowałeś rodzaj pracy silnika oznaczony symbolem S3 jako pracę przerywaną. Praca przerywana odnosi się do pracy, w której silnik działa z przerwami, co pozwala na jego schłodzenie i uniknięcie przegrzania. Taki typ pracy jest typowy dla aplikacji, gdzie silnik nie jest obciążony ciągłym wysiłkiem, na przykład w przypadku użytkowania w maszynach budowlanych czy w urządzeniach mobilnych. Przykładem może być silnik w wózku widłowym, który wykonuje cykle podnoszenia i transportu, a pomiędzy nimi następują krótkie przerwy na schłodzenie. W kontekście norm, praca przerywana jest zgodna z klasyfikacjami zawartymi w dokumentach takich jak IEC 60034-1, które definiują różne tryby pracy maszyn elektrycznych. Dobrą praktyką jest monitorowanie temperatury silnika oraz jego obciążenia, aby zapewnić jego długotrwałą eksploatację bez ryzyka uszkodzeń.

Pytanie 4

Który z poniższych czujników jest elementem serwomechanizmu sterującego ruchem ramienia robota?

A. Mostek tensometryczny
B. Enkoder
C. Pirometr
D. Przepływomierz powietrza
Wybór pirometru, mostka tensometrycznego lub przepływomierza powietrza jako elementów serwomechanizmu ramienia robota opiera się na niewłaściwym zrozumieniu funkcji i zastosowania tych urządzeń. Pirometr jest instrumentem służącym do pomiaru temperatury obiektów na podstawie promieniowania cieplnego, co nie ma związku z kontrolowaniem ruchu mechanicznego. W kontekście robotyki pirometr mógłby być użyty jedynie do monitorowania temperatury elementów, ale nie wpływa na precyzję ruchu ramienia robota. Mostek tensometryczny jest urządzeniem stosowanym do pomiaru odkształceń, czyli zmiany kształtu materiału pod wpływem obciążenia. Choć mógłby teoretycznie wspierać pomiar sił działających na ramię robota, nie bezpośrednio kontroluje jego ruchów. Z kolei przepływomierz powietrza jest używany do mierzenia ilości przepływającego powietrza, co ma zastosowanie głównie w systemach wentylacyjnych lub hydraulicznych, ale nie w kontekście precyzyjnego sterowania ruchem w systemach serwomechanicznych. Powszechnym błędem w analizie zastosowań jest utożsamianie różnych rodzajów czujników i urządzeń pomiarowych z ich funkcjami bez zrozumienia, jakie właściwości są rzeczywiście istotne dla danego zastosowania. W robotyce, kluczowym aspektem jest nie tylko pomiar, ale także efektywne przetwarzanie i wykorzystanie tych danych do precyzyjnego sterowania, co czyni enkodery niezastąpionym elementem w systemach serwomechanicznych.

Pytanie 5

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Litowy
B. Silikonowy
C. Molibdenowy
D. Grafitowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 6

Jakim skrótem literowym określa się język drabinkowy?

A. IL
B. STL
C. LD
D. FBD
Język drabinkowy, znany jako LD, to jeden z najpopularniejszych języków w automatyce przemysłowej. Używa się go często do programowania sterowników PLC. Struktura tego języka wygląda jak drabinka, gdzie po bokach są zasilania, a w środku masz linie, które pokazują logikę działania. To strasznie ułatwia wszystko, bo dzięki temu operatorzy mogą szybko zrozumieć, co się dzieje w systemie. Przykładowo, jeśli chcemy, żeby silnik ruszał w zależności od czujnika, to właśnie w diagramie drabinkowym można to zobaczyć i łatwo poprawić, gdy coś nie działa. W praktyce LD jest zgodny z normą IEC 61131-3, która ustala zasady dla różnych języków programowania w automatyce, dlatego jest w zasadzie standardem w tej branży. W moim zdaniu to naprawdę dobry wybór do prostszych układów.

Pytanie 7

Po wykonaniu otworów w płaskowniku, które są potrzebne do zrealizowania połączenia śrubowego, należy pozbyć się metalowych zadziorów. Jak się nazywa ta czynność?

A. Wygładzanie
B. Gratowanie
C. Szlifowanie
D. Powiercanie
Gratowanie to proces, który ma na celu usunięcie ostrych krawędzi oraz resztek metalu powstałych podczas wiercenia otworów. Jest to kluczowy etap obróbki, który zapewnia dalsze bezpieczeństwo oraz precyzję w wykonaniu połączeń śrubowych. Proces ten polega na mechanicznej obróbce krawędzi otworów, co pozwala na wygładzenie powierzchni oraz eliminację wszelkich zadziorów, które mogą negatywnie wpływać na jakość połączenia. Gratowanie jest nie tylko zalecane, ale w wielu przypadkach wymagane przez normy branżowe, takie jak ISO 2768, które określają tolerancje i wymagania dotyczące obróbki mechanicznej. Przykładem zastosowania gratowania jest przemysł motoryzacyjny, gdzie połączenia śrubowe muszą być nie tylko mocne, ale także estetyczne i bezpieczne dla użytkowników. Poprawne gratowanie zmniejsza ryzyko uszkodzeń śrub oraz podzespołów, co przekłada się na dłuższą żywotność całej konstrukcji. Warto zatem stosować odpowiednie narzędzia, takie jak gratowniki ręczne lub automatyczne, które zapewniają efektywność i powtarzalność procesu.

Pytanie 8

Jakiego rodzaju materiału należy użyć do produkcji narzędzi do mechanicznej obróbki skrawaniem, takich jak frezy?

A. Brąz
B. Stal szybkotnącą
C. Żeliwo szare
D. Mosiądz
Stal szybkotnąca, znana również jako stal HSS (high-speed steel), jest materiałem o wysokiej twardości i odporności na ścieranie, co czyni ją idealnym wyborem do produkcji narzędzi skrawających takich jak frezy. Jej zdolność do zachowania wysokiej wydajności przy dużych prędkościach obróbczych sprawia, że jest powszechnie stosowana w przemyśle metalowym. Przykładowo, narzędzia wykonane z stali szybkotnącej mogą pracować w temperaturach przekraczających 600°C, co znacznie zwiększa ich efektywność w mechanicznej obróbce metali. Ponadto, stal HSS posiada doskonałe właściwości cieplne, co umożliwia jej użycie w formach skrawających, które są narażone na intensywne warunki pracy. Dzięki tym właściwościom, stal szybkotnąca jest zgodna z normami ISO oraz innymi standardami jakości, co czyni ją najlepszym wyborem do produkcji narzędzi skrawających.

Pytanie 9

Osoba obsługująca elektryczne urządzenie prądu stałego o nominalnym napięciu 60 V oraz III klasie ochronności jest narażona na

A. poranienie prądem elektrycznym w momencie kontaktu ręką z nieizolowanymi elementami aktywnymi
B. poranienie prądem elektrycznym podczas dotykania ręką nieizolowanego zacisku PEN
C. poranienie prądem elektrycznym w trakcie dotykania ręką metalowej obudowy
D. odczuwalne efekty przepływu prądu przy kontakcie ręką z nieizolowanymi elementami aktywnymi
Odpowiedzi wskazujące na porażenie prądem elektrycznym w różnych kontekstach nie uwzględniają specyfiki klasy ochronności III oraz właściwego zrozumienia ryzyka związanych z pracą z urządzeniami elektrycznymi. Porażenie prądem elektrycznym może wystąpić w sytuacjach, gdy pracownik ma kontakt z nieizolowanymi elementami aktywnymi, jednak kluczowe jest zrozumienie, że w przypadku urządzeń z III klasą ochronności ryzyko to jest odpowiednio zminimalizowane. Pierwsza z niewłaściwych odpowiedzi odnosi się do kontaktu z nieizolowanym zaciskiem PEN. W praktyce, zacisk PEN jest elementem instalacji elektrycznej, który pełni rolę zarówno neutralnego, jak i ochronnego, a jego nieizolowane wbudowanie w system może być niezgodne z zasadami projektowymi. Kolejna niepoprawna koncepcja sugeruje, że kontakt z metalową obudową urządzenia skutkuje porażeniem prądem, co w kontekście odpowiednich zabezpieczeń i prawidłowego uziemienia nie powinno mieć miejsca. Ważne jest, aby zrozumieć, że w przypadku prawidłowo skonstruowanych urządzeń klasy III, wszelkie elementy przewodzące powinny być odpowiednio izolowane lub uziemione w celu zapewnienia bezpieczeństwa użytkowników. Typowym błędem jest zatem założenie, że jakikolwiek kontakt z elementami urządzenia o napięciu 60 V musi automatycznie prowadzić do porażenia, co jest sprzeczne z zasadami bezpieczeństwa elektrycznego oraz dobrą praktyką inżynieryjną.

Pytanie 10

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 4,001 bar
B. 5,001 bar
C. 2,001 bar
D. 3,001 bar
Przeliczanie ciśnienia z mmHg na bary to dość prosta sprawa, ale trzeba pamiętać o kilku rzeczach. Wiesz, 1 mmHg to 133,4 Pa, a 1 bar to 100 000 Pa. Jak chcesz to obliczyć dla 1500 mmHg, to najpierw mnożysz: 1500 mmHg razy 133,4 Pa/mmHg, co daje 200100 Pa. Potem dzielisz tą wartość przez 100 000 Pa/bar, żeby dostać bary, czyli 200100 Pa podzielone przez 100 000 Pa/bar równa się 2,001 bar. To jest mega ważne, bo w inżynierii chemicznej czy meteorologii takie przeliczenia są w zasadzie na porządku dziennym. Jeśli projektujesz coś, co wymaga konkretnego ciśnienia, jak na przykład system hydrauliczny, to musisz wiedzieć, jak to przeliczać, żeby wszystko działało jak należy.

Pytanie 11

Silnik krokowy (skokowy) nie reaguje na próby zmiany prędkości obrotów. Możliwą przyczyną nieprawidłowego działania silnika może być

A. nadmierne obciążenie silnika
B. zbyt wysokie napięcie zasilające
C. wysyłanie impulsów sterujących w błędnej kolejności
D. brak modyfikacji częstotliwości impulsów z kontrolera
Silnik krokowy, aby poprawnie zmieniać prędkość obrotową, wymaga odpowiedniego sterowania impulsami, które muszą być podawane z określoną częstotliwością. Gdy częstotliwość impulsów ze sterownika pozostaje niezmieniona, silnik nie jest w stanie dostosować swojej prędkości obrotowej do pożądanych wartości. W praktyce oznacza to, że jeśli na przykład wymagamy od silnika przyspieszenia lub zwolnienia, a częstotliwość impulsów nie zostaje zwiększona ani zmniejszona, silnik pozostaje w tej samej prędkości obrotowej. Dobrym przykładem zastosowania tej zasady jest w systemach CNC, gdzie zmiana prędkości obrotowej silnika krokowego jest kluczowa dla precyzyjnego wykonywania operacji obróbczych. Zgodnie z dobrymi praktykami w projektowaniu systemów sterowania, należy zapewnić odpowiednie algorytmy regulacji, które będą automatycznie dostosowywać częstotliwość impulsów na podstawie wymagań aplikacji, co gwarantuje optymalną pracę silnika i jego efektywność.

Pytanie 12

Aby uzyskać precyzyjny pomiar natężenia prądu elektrycznego w systemach mechatronicznych, należy zastosować amperomierz

A. z jak największą rezystancją wewnętrzną
B. z jak najmniejszą rezystancją wewnętrzną
C. z rezystancją wewnętrzną o dowolnej wielkości, ponieważ nie wpływa ona na rezultaty pomiaru
D. z rezystancją wewnętrzną równą rezystancji obciążenia
Wybór amperomierza z rezystancją wewnętrzną równą rezystancji odbiornika jest mylny, ponieważ takie podejście prowadzi do sytuacji, w której amperomierz nie będzie w stanie dokładnie odzwierciedlić rzeczywistego natężenia prądu płynącego przez odbiornik. W rzeczywistości, jeśli rezystancja wewnętrzna amperomierza jest porównywalna z rezystancją odbiornika, to znaczna część prądu popłynie przez amperomierz, co zniekształci pomiar. Kolejnym błędem jest przekonanie, że rezystancja wewnętrzna amperomierza może być dowolna i nie wpływa na wynik pomiaru. Tego typu myślenie nie uwzględnia fundamentalnego faktu, że przyrządy pomiarowe zawsze wpływają na badany obwód. Zastosowanie amperomierza z dużą rezystancją wewnętrzną w obwodzie o niskiej impedancji spowoduje, że pomiar będzie znacząco zaniżony, a wyniki staną się nieprzydatne. Przykładem mogą być układy zasilające silniki elektryczne, gdzie niewłaściwy dobór amperomierza może prowadzić do nieprawidłowej analizy stanu pracy silnika, a w konsekwencji do jego uszkodzenia. W praktyce, aby uniknąć takich problemów, należy kierować się zasadą, że amperomierze powinny być projektowane z jak najmniejszą rezystancją wewnętrzną, co zapewnia ich prawidłowe działanie i wiarygodność wyników.

Pytanie 13

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
D. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
No cóż, wiesz, przygotowanie sprężonego powietrza to nie taka prosta sprawa. W swojej odpowiedzi pomyliłeś kolejność działań. Najpierw powinno się osuszyć i przefiltrować powietrze, a dopiero potem nasycać je olejem. Jak zrobisz to inaczej, to wprowadzasz zanieczyszczenia do układu, co może potem prowadzić do sporych problemów. Przykładowo, zanieczyszczony olej może zatykać elementy pneumatyczne, i później tylko kłopoty. A jeśli chodzi o redukcję ciśnienia, to też ważne jest, żeby zrobić to po osuszeniu, bo inaczej wilgoć zostaje w powietrzu, a to już w ogóle nie powinno mieć miejsca. Krytyczna jest ta kolejność, żeby zapewnić, że powietrze jest naprawdę czyste i gotowe do użycia, bo w przeciwnym razie to może zrobić więcej złego niż dobrego w systemie pneumatycznym.

Pytanie 14

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Buty z izolującą podeszwą
B. Ochronne okulary
C. Opaskę uziemiającą
D. Fartuch ochronny z bawełny
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 15

Podczas inspekcji systemu podnośnika hydraulicznego zauważono, że olej się spienia i jest wydobywany przez odpowietrznik zbiornika. Co może być przyczyną tej usterki?

A. Nieszczelność w przewodzie ssawnym pompy
B. Wytarte pierścienie uszczelniające rozdzielaczy
C. Wytarte pierścienie uszczelniające tłokowe
D. Nieszczelność zaworu bezpieczeństwa
Wybór odpowiedzi dotyczącej zużytych pierścieni uszczelniających rozdzielaczy, tłokowych pierścieni uszczelniających czy nieszczelnego zaworu bezpieczeństwa nietrafnie wskazuje na przyczynę spieniania oleju w układzie hydraulicznym. Pierścienie uszczelniające rozdzielaczy odpowiadają za kontrolowanie przepływu oleju, ale ich zużycie objawia się najczęściej przeciekiem oleju, a nie wytwarzaniem bąbelków powietrza. Podobnie, zużycie tłokowych pierścieni uszczelniających może prowadzić do utraty ciśnienia, co również nie jest bezpośrednio związane z problemem spieniania. Z kolei nieszczelny zawór bezpieczeństwa, choć może wpłynąć na ciśnienie w układzie, nie jest bezpośrednią przyczyną dostawania się powietrza do oleju. Niesprawność ta powoduje raczej niebezpieczne wzrosty ciśnienia niż spienienie oleju. Wysokiej jakości diagnostyka układów hydraulicznych powinna koncentrować się na wszystkich elementach, aby uniknąć błędnych wniosków. Typowym błędem myślowym w tym przypadku jest mylenie objawów i przyczyn, co często prowadzi do niewłaściwego rozwiązywania problemów i nieefektywnej konserwacji. Zamiast tego, kluczowe jest zrozumienie mechanizmu działania układu hydraulicznego oraz rzetelna analiza źródeł problemów, co pozwala na skuteczne ich usuwanie.

Pytanie 16

Jaki czujnik powinno się wykorzystać do pomiaru wartości natężenia pola magnetycznego?

A. Tensometryczny
B. Pojemnościowy
C. Ultradźwiękowy
D. Hallotronowy
Wybór nieodpowiednich czujników do pomiaru pola magnetycznego może prowadzić do poważnych pomyłek w analizie i diagnostyce. Czujniki tensometryczne, na przykład, są przeznaczone do mierzenia sił i odkształceń, a więc nie mają zastosowania w detekcji pól magnetycznych. Działają na zasadzie zmian oporu elektrycznego w odpowiedzi na deformację mechaniczną, co czyni je skutecznymi w zastosowaniach takich jak pomiar siły wywieranej na strukturę, ale nie w pomiarze pól magnetycznych. Z kolei czujniki pojemnościowe mierzą zmiany pojemności elektrycznej wynikające z obecności obiektów w ich polu działania. Używane są często w czujnikach dotykowych i systemach wykrywania obecności, ale nie nadają się do pomiaru natężenia pola magnetycznego. Czujniki ultradźwiękowe opierają się na zasadzie odbicia fal dźwiękowych i są stosowane w detekcji odległości oraz w systemach automatyzacji, ale także nie mają zastosowania w detekcji pól magnetycznych. Dlatego ważne jest zrozumienie, który czujnik najlepiej odpowiada wymaganiom danej aplikacji, aby zapewnić dokładność i niezawodność pomiarów. Wybór odpowiedniego czujnika powinien opierać się na specyfikacji technicznej oraz wymaganiach konkretnego zastosowania w branży.

Pytanie 17

Jaki czujnik jest stosowany do pomiaru prędkości obrotowej wału silnika?

A. Prądnica tachometryczna
B. Potencjometr obrotowy
C. Mostek tensometryczny
D. Selsyn trygonometryczny
No więc, selesyn trygonometryczny, mostek tensometryczny i potencjometr obrotowy to elementy, które nie są do pomiaru prędkości obrotowej wału silnika. Selesyn trygonometryczny jest używany do przenoszenia informacji o położeniu, ale nie do pomiaru prędkości. Z kolei mostek tensometryczny służy do mierzenia odkształceń, co sprawia, że lepiej się nadaje do analizy sił czy obciążeń, a nie prędkości obrotowej. Potencjometr obrotowy znowu mierzy kąt obrotu, generując napięcie proporcjonalne do tego kąta, ale nie daje nam informacji o tym, jak szybko ten kąt się zmienia. Często w kontekście pomiaru prędkości pojawiają się błędne założenia co do tych urządzeń, co może prowadzić do kiepskiego projektowania systemów pomiarowych. Jak wybierasz czujniki do analizy prędkości obrotowej, ważne jest, żeby rozumieć, że prądnica tachometryczna daje najbardziej precyzyjne dane dzięki swojej konstrukcji i zasadzie działania, co czyni ją standardem w branży.

Pytanie 18

Jakie zadanie w obwodach elektronicznych realizuje transoptor?

A. Dodaje napięcia
B. Wytwarza sygnały sinusoidalne
C. Zwiększa prąd
D. Izoluje galwanicznie sygnały
Funkcje, które podałeś w innych odpowiedziach, nie są zgodne z tym, co naprawdę robią transoptory. Na przykład generowanie przebiegów sinusoidalnych, które sugerujesz, nie dotyczy transoptorów, bo one nie wytwarzają sygnałów – tylko je przesyłają i izolują. A ta idea sumowania napięć? Również nie jest trafiona. Transoptory nie służą do sumowania sygnałów elektrycznych, lecz do separacji i ochrony między różnymi układami. Co do wzmacniania prądu, to jest to zadanie dla wzmacniaczy, a nie transoptorów, które nie zwiększają prądu, tylko zapewniają izolację. Wiele błędów myślowych może wynikać z tego, że nie do końca rozumiesz, jak działają elementy elektroniczne i jakie mają zastosowania. W elektronice ważne jest, by zrozumieć, że każdy element ma swoje właściwości i spełnia konkretne funkcje – to klucz do dobrego projektowania systemów elektronicznych.

Pytanie 19

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 9 kN
B. 2 kN
C. 6 kN
D. 12 kN
Aby obliczyć siłę naporu działającą na tłok siłownika, należy skorzystać ze wzoru F = p * S, gdzie F to siła, p to ciśnienie, a S to powierzchnia przekroju tłoka. W naszym przypadku ciśnienie p wynosi 2 MPa, co należy przeliczyć na pascale: 2 MPa = 2 * 10^6 Pa. Powierzchnia S wynosi 0,003 m². Podstawiając wartości do wzoru, otrzymujemy F = 2 * 10^6 Pa * 0,003 m² = 6000 N, co jest równoważne 6 kN. Zrozumienie tego działania ma fundamentalne znaczenie w hydraulice, gdzie siły generowane przez ciśnienie są kluczowe dla działania maszyn i systemów. Na przykład w układach hydraulicznych w samochodach, takich jak hamulce czy podnośniki, prawidłowe obliczenie siły pozwala na efektywne i bezpieczne działanie tych mechanizmów. Zastosowanie ciśnienia i przekroju tłoka jest również istotne przy projektowaniu urządzeń takich jak prasy hydrauliczne czy siłowniki, gdzie precyzyjna manipulacja siłą jest niezbędna.

Pytanie 20

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. oba przyciski są sprawne.
B. oba przyciski są uszkodzone.
C. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.
D. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 21

Z czego składa się pneumohydrauliczny wzmacniacz ciśnienia?

A. przemiennik pneumohydrauliczny oraz siłownik pneumatyczny
B. siłownik pneumatyczny połączony szeregowo z siłownikiem hydraulicznym
C. przemiennik pneumohydrauliczny oraz siłownik hydrauliczny
D. akumulator hydrauliczny połączony szeregowo z pneumatycznym siłownikiem
Prawidłowa odpowiedź wskazuje na połączenie siłownika pneumatycznego z siłownikiem hydraulicznym, co jest kluczowym elementem w konstrukcji pneumohydraulicznych wzmacniaczy ciśnienia. Tego rodzaju wzmacniacze wykorzystują siłę sprężonego powietrza do generowania ciśnienia hydraulicznego, co pozwala na efektywne przetwarzanie energii. Przykładem zastosowania pneumohydraulicznych wzmacniaczy ciśnienia są systemy automatyki przemysłowej, gdzie precyzyjne sterowanie ruchem jest niezbędne. W praktyce, dzięki zastosowaniu siłowników pneumatycznych i hydraulicznych, możliwe jest osiągnięcie większej siły roboczej przy jednoczesnym wykorzystaniu mniejszej ilości energii. Tego rodzaju rozwiązania są zgodne z normami ISO oraz dobrymi praktykami w dziedzinie hydrauliki i pneumatyki, co zapewnia ich skuteczność oraz niezawodność w długoterminowym użytkowaniu. Zastosowanie takiego rozwiązania w przemyśle umożliwia realizację złożonych procesów technologicznych, a także zwiększa bezpieczeństwo operacji, minimalizując ryzyko awarii.

Pytanie 22

Jakie wymiary biorą pod uwagę dopuszczalne odchylenia w realizacji elementu mechanicznego?

A. Nominalne
B. Jednostronne
C. Rzeczywiste
D. Graniczne
Odpowiedzi "Nominalne", "Rzeczywiste" oraz "Jednostronne" nie uwzględniają prawidłowych koncepcji odnoszących się do tolerancji wykonania elementów mechanicznych. Wymiar nominalny to teoretyczna wartość, która nie bierze pod uwagę ewentualnych błędów wykonawczych. W praktyce, stosowanie jedynie wymiarów nominalnych prowadziłoby do niezgodności w produkcie, gdyż nie zabezpieczałoby to elementów przed nieprawidłowościami w procesie ich wytwarzania. Z kolei wymiary rzeczywiste opisują rzeczywisty wymiar wykonanej części, który może się różnić od wymiaru nominalnego oraz są wynikiem procesów produkcyjnych, a ich analiza jest istotna na etapie kontroli jakości. Wymiar jednostronny z kolei odnosi się do systemu tolerancji, który definiuje jedynie jeden kierunek tolerancji, co w wielu zastosowaniach nie jest wystarczające, ponieważ nie uwzględnia błędów w innym kierunku, co może prowadzić do problemów z pasowaniem. Stosowanie takich koncepcji w projektowaniu elementów mechanicznych często prowadzi do niewłaściwego zrozumienia zasad tolerancji oraz ich wpływu na finalną jakość produktu. Kluczowe jest zrozumienie, że tolerancje graniczne są niezbędne dla zapewnienia, że części będą funkcjonować poprawnie razem w odpowiednich warunkach eksploatacyjnych.

Pytanie 23

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. otwiera i zamyka przepływ oleju.
B. steruje kierunkiem przepływu oleju.
C. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
D. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 24

Wskaż jednostkę głównego parametru prądnicy tachometrycznej (stałej prądnicy)?

A. Hz
B. V
C. obr./min
D. V/(obr./min)
Wybór jednostek V, obr./min oraz Hz jako odpowiedzi na pytanie o podstawowy parametr prądnicy tachometrycznej jest nieuzasadniony, ponieważ nie oddają one w pełni relacji pomiędzy napięciem a prędkością obrotową. Napięcie (V) samo w sobie nie informuje o prędkości obrotowej, a jego wartość w kontekście prądnicy tachometrycznej jest ściśle powiązana z tym parametrem. Z kolei obr./min, choć odnosi się do prędkości obrotowej, nie jest jednostką wyjściową prądnicy, lecz raczej miarą obrotów. Natomiast Hz, czyli herce, jest jednostką częstotliwości i również nie ma związku z parametrami prądnicy tachometrycznej, której zadaniem jest pomiar prędkości obrotowej w kontekście generowania sygnałów elektrycznych. Typowym błędem myślowym, który prowadzi do tych niepoprawnych wyborów, jest ignorowanie kontekstu zastosowania prądnicy. Użytkownicy często koncentrują się na pojedynczych jednostkach, nie biorąc pod uwagę ich wzajemnych relacji i zastosowania w praktyce. Dlatego kluczowe jest zrozumienie, że prądnica tachometryczna operuje na zasadzie transformacji energii mechanicznej na sygnał elektryczny, który jest proporcjonalny do prędkości obrotowej, co najlepiej obrazuje jednostka V/(obr./min). W kontekście inżynieryjnym, zrozumienie tej relacji jest fundamentalne dla prawidłowego projektowania i wdrażania systemów automatyki.

Pytanie 25

Zamiana diody prostowniczej na płycie zasilacza wymaga

A. wylutowania uszkodzonej diody oraz wlutowania nowej diody
B. wycięcia uszkodzonej diody, wylutowania jej końcówek oraz wlutowania nowej diody
C. wylutowania uszkodzonej diody, oczyszczenia otworów na płycie, uformowania i pobielenia końcówek nowej diody i jej wlutowania
D. wycięcia uszkodzonej diody, uformowania i pobielenia końcówek nowej diody, a następnie jej wlutowania
Wybór odpowiedzi oznaczonej numerem 4 jest prawidłowy, ponieważ obejmuje wszystkie kluczowe etapy wymiany diody prostowniczej na płycie zasilacza. Pierwszym krokiem jest wylutowanie uszkodzonej diody, co jest niezbędne do usunięcia elementu, który nie działa poprawnie. Następnie ważne jest oczyszczenie otworów na płycie, aby upewnić się, że nie ma resztek lutowia, które mogą wpływać na jakość połączenia nowej diody. Kolejnym krokiem jest uformowanie i pobielenie końcówek nowej diody, co zapewnia lepszą adhezję podczas lutowania oraz zmniejsza ryzyko utlenienia. Ostatecznie, wlutowanie nowej diody powinno być przeprowadzone zgodnie z zasadami dobrego lutowania, aby zapewnić niezawodność i trwałość połączenia. Przestrzeganie tych kroków jest zgodne z rekomendacjami standardów IPC dotyczących montażu elektronicznego, co gwarantuje długotrwałe i bezpieczne funkcjonowanie urządzenia.

Pytanie 26

Poziom przezroczystej, nieprzewodzącej cieczy w zbiorniku można zmierzyć za pomocą czujnika

A. piezoelektrycznego
B. ultradźwiękowego
C. refleksyjnego
D. indukcyjnego
Pomiar poziomu cieczy przezroczystej i nieprzewodzącej przy użyciu czujników refleksyjnych to nie najlepszy pomysł. Dlaczego? Bo te urządzenia działają na zasadzie odbicia światła, a kiedy mamy do czynienia z przezroczystymi cieczami, takimi jak woda, światło po prostu przechodzi przez medium. To prowadzi do tego, że mamy bardzo małe odbicie, więc pomiary są mało dokładne. Czujniki indukcyjne z kolei są stworzone do wykrywania materiałów przewodzących prąd, a więc do nieprzewodzących cieczy się zupełnie nie nadają. Ich użycie ogranicza się głównie do pomiarów poziomu metalowych obiektów, co zupełnie nie działa w przypadku cieczy. A czujniki piezoelektryczne, chociaż są w różnych aplikacjach, to nie sprawdzają się do pomiaru poziomu cieczy - działają na zasadzie mierzenia ciśnienia, a ich zastosowanie w przypadku przezroczystych cieczy może prowadzić do błędów, bo mają inne właściwości fizyczne. Czasem użytkownicy mogą myśleć, że te czujniki są do wszystkiego, a to nieprawda. Kluczowe jest zrozumienie, co mierzymy i dostosowanie technologii pomiarowej do właściwości cieczy, bo to naprawdę ważne w inżynierii pomiarowej.

Pytanie 27

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa
A. kompresor olejowy.
B. silnik hydrauliczny.
C. pompę hydrauliczną.
D. silnik elektryczny.
Wybór silnika hydraulicznego, kompresora olejowego czy silnika elektrycznego jako odpowiedzi jest niepoprawny z kilku kluczowych powodów. Silnik hydrauliczny i silnik elektryczny pełnią zupełnie inne funkcje w systemach mechanicznych. Silnik hydrauliczny jest odpowiedzialny za przetwarzanie energii hydraulicznej na ruch mechaniczny, jednak nie charakteryzuje się parametrami opisanymi w tabeli, takimi jak wydajność w l/min czy ciśnienie nominalne. Z kolei kompresor olejowy ma na celu sprężanie cieczy, co również jest niezgodne z parametrami związanymi z pompami hydraulicznymi. Kompresory są projektowane z myślą o innych zastosowaniach, głównie w obiegu powietrza lub gazów, dlatego ich parametry nie są zbieżne z tymi, które są typowe dla pomp. Typowy błąd myślowy polega na myleniu funkcji różnych urządzeń hydraulicznych z ich właściwościami technicznymi. Aby zrozumieć, dlaczego taka pomyłka występuje, warto zwrócić uwagę na różnice w zastosowaniu tych urządzeń oraz ich podstawowe zasady działania. Przykładowo, parametry hydrauliczne, takie jak ciśnienie i wydajność, są kluczowe dla pomp, ale nie mają bezpośredniego związku z silnikami czy kompresorami. Zrozumienie tych podstawowych różnic jest niezbędne w przemyśle, aby prawidłowo dobierać urządzenia do konkretnych zadań.

Pytanie 28

Osoba obsługująca urządzenie generujące drgania, takie jak młot pneumatyczny, powinna być przede wszystkim wyposażona

A. w rękawice antywibracyjne
B. w odzież ochronną
C. w gogle ochronne
D. w hełm ochronny
Rękawice antywibracyjne to naprawdę ważna rzecz dla ludzi, którzy pracują z maszynami, które drżą, jak na przykład młot pneumatyczny. Te drgania mogą prowadzić do poważnych problemów zdrowotnych, na przykład do zespołu wibracyjnego, który uszkadza nerwy i stawy. Dlatego właśnie te rękawice są zaprojektowane tak, żeby pochłaniać te drgania, co bardzo pomaga w zmniejszeniu ich wpływu na dłonie i ramiona. Z własnego doświadczenia powiem, że dzięki nim praca staje się znacznie bardziej komfortowa, a czas, kiedy można bezpiecznie używać sprzętu, naprawdę się wydłuża. Widzisz to często w budownictwie, gdzie pracownicy używają młotów wyburzeniowych. Normy ISO 5349 mówią, że takie rękawice to dobry sposób na to, żeby zminimalizować ryzyko zdrowotne związane z długotrwałym narażeniem na drgania.

Pytanie 29

Jakie urządzenie powinno być wykorzystane do weryfikacji szczelności instalacji pneumatycznej?

A. Optyczny detektor nieszczelności
B. Detektor gazów
C. Detektor z lampą UV
D. Ultradźwiękowy wykrywacz nieszczelności
Ultradźwiękowy wykrywacz nieszczelności jest narzędziem szczególnie efektywnym w diagnozowaniu wycieków w instalacjach pneumatycznych. Działa na zasadzie analizy dźwięku, który generowany jest przez przepływ powietrza przez nieszczelności. W porównaniu do innych metod, wykrywacze ultradźwiękowe mają tę przewagę, że mogą wykrywać nieszczelności w trudnodostępnych miejscach, gdzie inne urządzenia mogą nie być w stanie zidentyfikować problemu. Przykładami ich zastosowania są inspekcje w zakładach produkcyjnych, gdzie utrzymanie ciśnienia w instalacjach pneumatycznych jest kluczowe dla efektywności operacyjnej. W branży przemysłowej standardy, takie jak ISO 50001, podkreślają znaczenie monitorowania i optymalizacji systemów pneumatycznych w celu zmniejszenia strat energii, co czyni ultradźwiękowe wykrywacze nieszczelności narzędziem zgodnym z najlepszymi praktykami w tym zakresie. Dodatkowo, użycie tego typu detektora pozwala na wczesne wykrycie problemów, co może prowadzić do znacznych oszczędności kosztów związanych z utrzymaniem i naprawą uszkodzeń.

Pytanie 30

Aby zmierzyć nierówności osiowe (bicie) obracającej się tarczy, należy użyć

A. mikrometru
B. suwmiarki
C. średnicówki mikrometrycznej
D. czujnika zegarowego
Czujnik zegarowy jest narzędziem pomiarowym, które umożliwia precyzyjne określenie nierówności osiowej (bicia) wirujących tarcz. Działa na zasadzie pomiaru odległości, przy czym jego igła stykowa przesuwa się wzdłuż powierzchni obrabianego elementu, rejestrując wszelkie wahania. Dzięki wysokiej dokładności, czujniki zegarowe są standardowo stosowane w inżynierii mechanicznej do oceny i kontrolowania jakości elementów rotacyjnych. W praktyce, czujnik zegarowy jest niezbędny do ustawienia tarczy w maszynach takich jak tokarki czy frezarki. Użytkownik umieszcza czujnik w odpowiedniej pozycji, a następnie obraca tarczę, co pozwala na odczyt bicia. Każde odchylenie od idealnej osi wskazuje na konieczność korekcji ustawienia, co jest kluczowe dla zapewnienia nie tylko precyzyjnego działania maszyny, ale także wydłużenia jej żywotności oraz zapewnienia bezpieczeństwa pracy. Wysoka jakość czujników zegarowych oraz ich precyzyjne kalibracje są zgodne z najlepszymi praktykami w branży mechanicznej.

Pytanie 31

Jakie środki ochrony osobistej powinien używać pracownik obsługujący tokarkę precyzyjną?

A. Okulary ochronne
B. Czapkę z daszkiem
C. Maskę osłaniającą twarz
D. Rękawice i nauszniki ochronne
Rękawice i ochronniki słuchu, choć są również istotnymi elementami ochrony osobistej, nie zastępują specjalistycznych okularów ochronnych w kontekście obsługi tokarki precyzyjnej. Rękawice mogą chronić dłonie przed ostrymi krawędziami i innymi mechanicznymi urazami, ale w przypadku pracy z maszynami obrotowymi, ich noszenie może stwarzać dodatkowe ryzyko. Pracownicy powinni być świadomi, że luźne rękawice mogą zostać wciągnięte przez ruchome elementy maszyny, co stanowi poważne zagrożenie dla bezpieczeństwa. Ochronniki słuchu mają na celu ochronę przed hałasem, jednak nie chronią oczu przed odłamkami ani szkodliwymi substancjami. Maska na twarz, choć może być użyteczna w niektórych warunkach, nie jest standardowym środkiem ochrony w kontekście obróbki metali. Czapka z daszkiem, mimo że może być używana jako element odzieży roboczej, nie zapewnia żadnej ochrony przed zagrożeniami związanymi z pracą przy tokarkach. Właściwe zrozumienie i zastosowanie środków ochrony osobistej jest kluczowe do zapewnienia bezpieczeństwa w miejscu pracy, a wybór odpowiednich narzędzi ochronnych powinien być oparty na ocenach ryzyka oraz obowiązujących normach branżowych.

Pytanie 32

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Spawania
B. Zgrzewania
C. Klejenia
D. Zaginania
Spawanie, zgrzewanie i klejenie to techniki, które są powszechnie stosowane do trwałego łączenia elementów wykonanych z tworzyw sztucznych, co czyni je nieodpowiednimi odpowiedziami na zadane pytanie. Spawanie polega na stosowaniu wysokiej temperatury w celu stopienia krawędzi dwóch elementów, co stoi w sprzeczności z celem pytania, ponieważ łączy je na trwałe. Zgrzewanie natomiast wykorzystuje ciepło i ciśnienie do połączenia materiałów, co jest typowe dla cienkowarstwowych tworzyw sztucznych, takich jak polietylen czy polipropylen. Te metody są szczególnie cenione w przemyśle, ponieważ pozwalają na uzyskanie mocnych i odpornych na czynniki zewnętrzne połączeń. Klejenie, z użyciem odpowiednich adhezyjnych substancji chemicznych, również umożliwia trwałe łączenie elementów z tworzyw sztucznych, a współczesne technologie oferują szeroki wachlarz klejów, które zapewniają różne właściwości, takie jak elastyczność czy odporność na wysokie temperatury. Typowe błędy myślowe prowadzące do wyboru tych odpowiedzi mogą wynikać z mylenia procesów formowania z procesami łączenia. Ważne jest zrozumienie, że każdy z tych procesów ma swoje specyficzne zastosowania i nie każdy z nich jest odpowiedni do trwałego łączenia elementów wykonanych z tworzyw sztucznych.

Pytanie 33

Aby zmierzyć napięcie na cewce elektrozaworu o nominalnym Un = 24 V, zastosowano analogowy woltomierz z 75 podziałami na skali, ustawiony na zakres 30 V. Ile podziałów wskaże ten woltomierz, jeśli napięcie na cewce elektrozaworu jest poprawne?

A. 60
B. 24
C. 30
D. 75
Odpowiedzi, które wskazują na 24, 75 lub 30 działek, oparte są na błędnych założeniach dotyczących sposobu pomiaru napięcia. W przypadku odpowiedzi 24 działki, może występować mylne przekonanie, że każda działka odpowiada napięciu 1 V - jednak w rzeczywistości, z uwagi na zakres 30 V i 75 działek, wartość, która przypada na jedną działkę, to 0,4 V. Natomiast odpowiedź 75 działek sugeruje, że woltomierz mógłby wskazać maksymalną wartość zakresu, co nie jest możliwe, gdyż mierzymy napięcie 24 V, a nie jego maksymalne dozwolone napięcie. Z kolei 30 działek odnosi się do błędnego założenia, że napięcie 24 V odpowiada 30% zakresu 30 V, co jest nieprawidłowe, ponieważ stanowiłoby to wartość mniejszą od rzeczywistego odczytu. W praktyce istotne jest zrozumienie, że pomiar napięcia wymaga nie tylko wiedzy na temat używanego narzędzia, ale także o jego właściwościach i układzie skali. Typowe błędy myślowe, które prowadzą do tych niepoprawnych odpowiedzi, to brak zrozumienia mechanizmu działania woltomierzy, co może skutkować nieprawidłową interpretacją danych pomiarowych. Prawidłowe zrozumienie skali oraz wartości mierzonych jest kluczowe, aby uniknąć nieporozumień i zapewnić dokładność pomiarów, co jest niezwykle ważne w inżynierii elektrotechnicznej.

Pytanie 34

Której z podanych metod nie wykorzystuje się do trwałego łączenia elementów wykonanych z plastiku?

A. Spawania
B. Zgrzewania
C. Klejenia
D. Zaginania
Spawanie to technika, która polega na łączeniu dwóch elementów poprzez ich lokalne stopienie, co umożliwia uzyskanie trwałego połączenia. W kontekście tworzyw sztucznych, spawanie często wykorzystuje się w procesach produkcyjnych, gdzie materiał jest podgrzewany do temperatury topnienia, a następnie łączony z innym elementem. Ta metoda jest szczególnie ceniona w przypadku dużych konstrukcji, gdzie wymagana jest wysoka wytrzymałość połączeń. Klejenie, z drugiej strony, polega na zastosowaniu specjalnych substancji, które penetrują powierzchnie materiałów i tworzą silne wiązania chemiczne. Kleje stosowane do tworzyw sztucznych są projektowane tak, aby zapewnić optymalne wiązanie, co czyni je odpowiednimi do użycia w różnych warunkach. Zgrzewanie, podobnie jak spawanie, jest procesem, który wykorzystuje ciepło do połączenia elementów, co sprawia, że jest efektywną techniką w przemyśle, szczególnie przy produkcji komponentów z tworzyw sztucznych. Typowe błędy myślowe, które mogą prowadzić do mylnych wniosków, obejmują mylenie zginania z technikami łączenia. Zginanie, mimo że może być użyteczne w formowaniu materiałów, nie wprowadza trwałych połączeń, co jest kluczowe w kontekście postawionego pytania. W związku z tym, niezrozumienie różnicy pomiędzy modyfikacją kształtu a łączeniem elementów może prowadzić do błędnych wyborów w procesie projektowania i produkcji.

Pytanie 35

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. użycia stałego napięcia w obwodzie sterowania silnika
C. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
D. braku jednej fazy zasilającej silnik
Skojarzenie uzwojeń silnika w gwiazdę zamiast w trójkąt nie jest przyczyną zadziałania wyłącznika silnikowego, lecz wynika z różnicy w napięciu oraz charakterystyce obciążenia. W przypadku silników małej mocy, skojarzenie w gwiazdę zmniejsza napięcie na uzwojeniach, co jest korzystne przy rozruchu. Włączenie silnika pod niewielkim obciążeniem, co również sugeruje niepoprawna odpowiedź, nie powinno powodować zadziałania wyłącznika, o ile obciążenie jest w granicach dopuszczalnych parametrów silnika. Nieprawidłowe myślenie w tym kontekście często prowadzi do przekonania, że każdy typ obciążenia jest równie niebezpieczny dla silnika, podczas gdy rzeczywistość jest bardziej złożona. Zastosowanie stałego napięcia w obwodzie sterownia silnika jest również błędnym założeniem, gdyż silniki asynchroniczne są zaprojektowane do pracy z napięciem przemiennym. Stosowanie napięcia stałego w takim kontekście prowadziłoby do uszkodzenia silnika, co jest sprzeczne z zasadami jego działania. Kluczowe jest zrozumienie, że prawidłowe zasilanie i odpowiednie parametry pracy silnika to fundamenty jego efektywności i bezpieczeństwa.

Pytanie 36

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. ochrony ramienia robota przed kolizjami z operatorem
B. przemieszczania obiektu w przestrzeni
C. chronienia ramienia robota przed przeciążeniem
D. chwytania obiektu z odpowiednią siłą
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 37

Jakie są etapy podstawowych cykli działania sterownika PLC?

A. Inicjalizacja sterownika, aktualizacja stanu wyjść, aktualizacja stanu wejść, wykonanie programu
B. Aktualizacja stanu wejść, inicjalizacja sterownika, aktualizacja stanu wyjść, wykonanie programu
C. Inicjalizacja sterownika, aktualizacja stanu wejść, wykonanie programu, aktualizacja stanu wyjść
D. Aktualizacja stanu wyjść, inicjalizacja sterownika, wykonanie programu, uaktualnianie stanu wejść
Wybór niewłaściwych sekwencji cykli pracy sterownika PLC może prowadzić do licznych błędów w działaniu systemu, co ma bezpośredni wpływ na efektywność procesów automatyki. W przypadku pierwszej z niepoprawnych odpowiedzi, sekwencja zaczyna się od aktualizacji stanu wyjść przed odczytem stanu wejść, co jest fundamentalnym błędem. Sterownik PLC powinien najpierw poznać aktualny stan otoczenia (wejść), zanim podejmie decyzje, które wyjścia należy aktywować. W drugim przykładzie, sekwencja rozpoczyna się od aktualizacji stanu wejść, co jest poprawne, ale inicjalizacja sterownika powinna zająć miejsce przed tym krokiem, aby zapewnić, że wszystkie parametry są odpowiednio ustawione. Trzecia odpowiedź pokazuje, że aktualizacja stanu wyjść następuje przed wykonaniem programu, co jest sprzeczne z zasadą logiki sterowania, gdyż decyzje dotyczące wyjść powinny być oparte na obliczeniach i analizach przeprowadzonych w trakcie wykonania programu. Wreszcie, ostatnia odpowiedź wprowadza dodatkowy chaos, gdyż zaczyna się od aktualizacji stanu wyjść oraz nie uwzględnia sekwencji wykonania programu. Takie podejścia mogą prowadzić do nieprzewidywalnych rezultatów, błędów w automatyce oraz problemów z bezpieczeństwem. Kluczowe jest, aby zrozumieć, że każdy z tych kroków jest od siebie zależny, a ich odpowiednia sekwencja jest fundamentem prawidłowego działania systemów sterowania.

Pytanie 38

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Nurnikowa
B. Tłokowa z dwustronnym tłoczyskiem
C. Tłokowa z jednostronnym tłoczyskiem
D. Teleskopowa
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 39

Wskaż urządzenie, które można wykorzystać do pomiaru ciśnienia wywieranego przez ciecz na ścianki zbiornika?

A. Pirometr
B. Tachometr
C. Tensometr
D. Żyroskop
Zrozumienie, które urządzenie może być użyte do pomiaru ciśnienia cieczy, wymaga wiedzy o charakterystyce i zastosowaniach różnych czujników. Tachometr, na przykład, jest narzędziem służącym do pomiaru prędkości obrotowej wirujących elementów, a jego zastosowanie jest ograniczone do systemów monitorowania i sterowania prędkości. Użycie tachometru do pomiaru ciśnienia cieczy jest błędne, ponieważ nie jest on w stanie zmierzyć sił działających na ścianki zbiornika ani odkształceń materiału. Żyroskop, z kolei, jest urządzeniem wykorzystywanym do pomiaru kątowych prędkości obrotowych i orientacji, co czyni go nieodpowiednim w kontekście pomiarów ciśnienia. W zastosowaniach, gdzie ciśnienie cieczy ma kluczowe znaczenie, jego wykorzystanie może prowadzić do poważnych błędów w diagnozowaniu i kontrolowaniu procesów. Pirometr, natomiast, służy do pomiaru temperatury na podstawie promieniowania podczerwonego i nie ma zastosowania w kontekście ciśnienia cieczy. Użytkownicy często mylą funkcje tych urządzeń, co prowadzi do niewłaściwych wniosków. Kluczem do prawidłowego wyboru czujnika jest zrozumienie ich specyficznych zastosowań oraz mechanizmów działania, co pozwala na efektywne wykorzystanie technologii w różnych dziedzinach przemysłu.

Pytanie 40

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc pozorna
B. energia elektryczna
C. moc czynna
D. moc bierna
Moc bierna, energia elektryczna i moc pozorna to terminy, które sporo osób myli z mocą czynną. Słuchaj, moc bierna ma związek z elementami, które są indukcyjne i pojemnościowe w układzie elektrycznym i nie generują żadnej realnej pracy, tylko tak sobie 'krążą' w systemie. Więc moc bierna, mierzona w warach, nie przyczynia się do wykonywania pracy i przez to jest jakoś mniej istotna, jeśli chodzi o wydajność urządzeń. Z drugiej strony, energia elektryczna to całkowita ilość energii, którą zużywają urządzenia w określonym czasie, a mierzymy to w kilowatogodzinach (kWh). To też jest coś innego niż moc, która to jest miarą chwilową. Co do mocy pozornej, ona jest określona jako iloczyn napięcia i natężenia prądu bez brania pod uwagę kąta fazowego. To jest taka całkowita miara, ale nie pokazuje nam rzeczywistej wydajności systemu, bo nie bierze pod uwagę strat związanych z mocą bierną. Często ludzie mylą te pojęcia i to prowadzi do błędnych wniosków o efektywności i kosztach eksploatacji instalacji elektrycznych. W konsekwencji, ignorowanie tych różnic może skutkować nieodpowiednim projektowaniem instalacji i wyższymi opłatami za energię, ponieważ moc bierna może obciążać dostawców energii.