Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 23 lipca 2025 13:29
  • Data zakończenia: 23 lipca 2025 13:42

Egzamin zdany!

Wynik: 20/40 punktów (50,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ciecze hydrauliczne o podwyższonej odporności na ogień, wykorzystywane w miejscach narażonych na wybuch, to ciecze oznaczone symbolami

A. HPG, HTG, HT
B. HV, HLP, HLPD
C. HLP, HFA, HTG
D. HFA, HFC, HFD
Wybór innych odpowiedzi wiąże się z błędnym zrozumieniem klasyfikacji cieczy hydraulicznych oraz ich właściwości. Odpowiedzi HLP oraz HTG odnoszą się do cieczy, które nie mają właściwości trudnopalnych. HLP to oleje hydrauliczne, które mogą być palne i nie są przeznaczone do stosowania w środowiskach o podwyższonym ryzyku pożarowym. Również HTG to oleje typu 'thermo-glycol', które są wykorzystywane do systemów grzewczych, a nie jako cieczy hydraulicznych w warunkach zagrożenia eksplozją. Odpowiedzi takie jak HPG i HT mogą być mylone z cieczami trudnopalnymi, jednak nie odpowiadają standardom wymaganym dla aplikacji, gdzie bezpieczeństwo jest priorytetem. Często błędem myślowym jest przekonanie, że wszystkie oleje mogą być stosowane w każdym warunku, co prowadzi do niebezpiecznych sytuacji w miejscach, gdzie występuje potencjalne ryzyko zapłonu. W celu zapewnienia bezpieczeństwa, kluczowe jest, aby użytkownicy posiadali wiedzę na temat odpowiednich standardów oraz certyfikacji cieczy hydraulicznych, takich jak ISO 12922, które definiują wymagania dotyczące ich palności oraz zastosowania w specyficznych warunkach operacyjnych.

Pytanie 2

Jakie urządzenie pomiarowe wykorzystuje się do określania podciśnienia?

A. Dynamometr
B. Pirometr
C. Wariometr
D. Wakuometr
Wariometr to przyrząd, który służy do pomiaru zmian ciśnienia atmosferycznego, a jego zastosowanie jest szczególnie widoczne w aeronautyce oraz meteorologii. Używany jest często w samolotach do określenia wysokości lotu i jest niezbędnym narzędziem dla pilotów, jednak nie ma zastosowania w pomiarze podciśnienia. Pirometr to urządzenie do pomiaru temperatury na podstawie promieniowania cieplnego, co czyni go całkowicie nieodpowiednim do miary ciśnienia jakiegokolwiek rodzaju. Z kolei dynamometr służy do pomiaru siły lub momentu obrotowego, co również nie ma związku z pomiarem podciśnienia. Te błędne odpowiedzi mogą wynikać z nieprecyzyjnego rozumienia funkcji i zastosowania różnych przyrządów pomiarowych. Kluczowe jest zrozumienie, że każdy przyrząd ma swoje specyficzne zastosowanie i pomylenie ich może prowadzić do nieprawidłowych wyników pomiarów oraz konsekwencji w praktyce inżynieryjnej. W kontekście branżowym, umiejętność rozróżniania pomiędzy różnymi typami przyrządów pomiarowych jest fundamentem dla każdej osoby zajmującej się inżynierią lub zarządzaniem procesami technologicznymi. Właściwe dobieranie narzędzi pomiarowych do specyficznych zadań jest kluczowe dla uzyskania wiarygodnych i dokładnych wyników.

Pytanie 3

W zakładzie produkcyjnym ustalono, że ciśnienie względne powietrza w zbiorniku wynosi +3 bary. Co oznacza, że nadciśnienie pNAD oraz ciśnienie absolutne (bezwzględne) pABS mają wartości:

A. pNAD = 3 bar, pABS = 3 bar
B. pNAD = 3 bar, pABS = 4 bar
C. pNAD = 1 bar, pABS = 2 bar
D. pNAD = 2 bar, pABS = 1 bar
Wartości ciśnienia podane w niepoprawnych odpowiedziach wskazują na nieporozumienia dotyczące podstawowych zasad ciśnienia. Często zdarza się, że mylnie przyjmuje się, iż ciśnienie względne jest równe ciśnieniu absolutnemu, co prowadzi do błędnych obliczeń. Na przykład, odpowiedzi, które wskazują pNAD = 2 bar czy pNAD = 1 bar, ignorują podstawowy fakt, że ciśnienie względne dodaje się do ciśnienia atmosferycznego, a nie je zastępuje. W przypadku gdy pNAD wynosi 2 bary, ciśnienie absolutne wynosiłoby tylko 3 bary, co jest sprzeczne z danymi w pytaniu. Również koncepcja, w której pNAD = 3 bar i pABS = 3 bar, jest błędna, ponieważ ciśnienie absolutne nie może być niższe lub równe ciśnieniu nadciśnienia. W rzeczywistości, aby właściwie zrozumieć relacje między ciśnieniem względnym a ciśnieniem absolutnym, ważne jest, aby wiedzieć, że pABS zawsze musi być równe lub wyższe od pNAD, co wynika z definicji tych parametrów. W praktyce, w inżynierii mechanicznej i procesowej istotne jest zrozumienie i poprawne obliczanie tych ciśnień, aby zapewnić bezpieczeństwo oraz efektywność przy projektowaniu systemów, takich jak zbiorniki ciśnieniowe, które muszą spełniać odpowiednie normy, takie jak dyrektywa ciśnieniowa 2014/68/UE.

Pytanie 4

Przed wykonaniem czynności konserwacyjnych zawsze należy

A. zdjąć obudowę.
B. uziemić urządzenie.
C. odłączyć urządzenie od źródła zasilania.
D. zweryfikować stan izolacji.
Odłączenie urządzenia od prądu to naprawdę ważny krok, zanim zaczniemy cokolwiek robić przy konserwacji. Głównym powodem jest to, że chcemy zadbać o swoje bezpieczeństwo. Jeśli urządzenie jest pod napięciem, to może dojść do porażenia, co naprawdę może skończyć się tragicznie. W elektrotechnice mamy różne przepisy BHP, które mówią, że najpierw trzeba odłączyć zasilanie, zanim weźmiemy się do roboty. Po odłączeniu warto też upewnić się, że ktoś nie włączy sprzętu przypadkiem. Fajnie jest zastosować blokady i oznaczenia, które są zgodne z zasadą Lockout/Tagout (LOTO) - to takie standardy, które pomagają nam zachować bezpieczeństwo w pracy.

Pytanie 5

Sprężarka przepracowała w ciągu 3 miesięcy 500 godzin od początku jej zainstalowania w systemie. Na podstawie tabeli czynności konserwacyjnych wskaż rodzaj pracy konserwacyjnej, którą należy wykonać, aby utrzymać właściwą sprawność urządzenia.

Tabela czynności konserwacyjnych
Rodzaje prac konserwacyjnychHarmonogram konserwacji
Godziny pracyCo najmniej
ZWYKŁE CZYNNOŚCI KONSERWACYJNEDwa razy w miesiącu
Odprowadzenie kondensatu50Raz w tygodniu
Czyszczenie wstępnego filtra powietrza500Raz w miesiącu
Sprawdzenie poziomu leju, uzupełnienie oleju500
Czyszczenie filtra oleju500
Sprawdzenie pasa transmisyjnego1000Raz w roku
Sprawdzenie zapchania i czyszczenie chłodnicy2000Raz w roku
Wymiana filtra powietrza4000Raz w roku
Wymiana filtra oleju4000Raz w roku
Wymiana filtra na wylocie oleju4000Raz w roku
Wymiana jednokierunkowego zaworu zlewowego4000Raz w roku
A. Sprawdzenie pasa transmisyjnego.
B. Wymiana całego oleju.
C. Czyszczenie filtra oleju.
D. Wymiana filtra oleju.
Czyszczenie filtra oleju to naprawdę ważna sprawa, jeśli chodzi o konserwację sprężarek. Powinno to być robione zgodnie z tym, co mówi producent i co jest uznawane za dobry standard w branży. Jak sprężarka ma za sobą 500 godzin pracy, to czyszczenie filtra ma na celu pozbycie się zanieczyszczeń i brudu, które mogą wpłynąć na jakość oleju. Utrzymanie filtra w czystości to dobra rzecz, bo to nie tylko poprawia wydajność silnika, ale też przedłuża jego trwałość, co jest zgodne z normami jakości. Gdybyśmy tego nie robili, sprężarka mogłaby się przegrzewać, a jej efektywność mogłaby spadać. Przykładem tego może być regularne serwisowanie sprzętu w fabrykach, gdzie niezawodność sprężarek jest kluczowa dla całej produkcji.

Pytanie 6

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 5,1 kW
B. 8,5 kW
C. 85,0 kW
D. 51,0 kW
Moc hydrauliczna siłownika można obliczyć za pomocą wzoru: P = Q * p, gdzie P to moc w watach, Q to natężenie przepływu w litrach na minutę, a p to ciśnienie w barach. W tym przypadku mamy p = 60 barów oraz Q = 85 l/min. Aby obliczyć moc, musimy najpierw przeliczyć jednostki: 1 l/min = 0,001 m³/min, a 60 barów = 6 MPa. Przeliczając natężenie przepływu: Q = 85 l/min * 0,001 m³/l = 0,085 m³/min. Teraz przeliczamy na sekundy: 0,085 m³/min = 0,085/60 m³/s = 0,00141667 m³/s. Teraz możemy obliczyć moc: P = Q * p = 0,00141667 m³/s * 6 MPa = 8,5 kW. Tego typu obliczenia są kluczowe dla inżynierów zajmujących się hydrauliką, ponieważ pozwalają na dobór odpowiednich komponentów systemu hydraulicznego, takich jak pompy i siłowniki, co ma bezpośredni wpływ na efektywność energetyczną oraz funkcjonalność urządzenia. W praktyce, znajomość mocnych punktów siłowników hydraulicznych pozwala na ich właściwe zastosowanie w maszynach przemysłowych, budowlanych czy w aplikacjach mobilnych.

Pytanie 7

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Ciągłości uzwojeń
B. Rezystancji izolacji
C. Napięcia zasilania
D. Poboru prądu
Wykonanie pomiaru napięcia zasilania, choć istotne w diagnozowaniu układów elektrycznych, nie jest wystarczające do zlokalizowania przyczyny zadziałania wyłącznika różnicowoprądowego. Pomiar ten dostarcza informacji o dostępności zasilania, ale nie daje odpowiedzi na pytanie o stan izolacji czy potencjalne upływy prądu. Z kolei pomiar ciągłości uzwojeń jest również niewłaściwą metodą w kontekście zadziałania wyłącznika różnicowoprądowego, ponieważ dotyczy on jedynie sprawdzenia, czy obwody są zamknięte i nie ma przerw w przewodach. Ciągłość uzwojeń nie dostarcza informacji o stanie izolacji, przez co nie pozwala na identyfikację problemu związanego z upływem prądu. Pomiar poboru prądu, chociaż może wskazywać na obciążenie układu, nie identyfikuje problemów izolacyjnych, które są kluczowe dla działania wyłączników różnicowoprądowych. Często w praktyce technicy mogą mylić zjawisko zadziałania wyłącznika z innymi problemami, co prowadzi do nieefektywnych działań naprawczych. Dlatego tak ważne jest, aby zrozumieć, że diagnostyka oparta na rezystancji izolacji jest fundamentem w zapewnieniu bezpieczeństwa i niezawodności systemów mechatronicznych.

Pytanie 8

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. szczelinomierz
B. mikrometr
C. liniał
D. suwmiarka
Mikrometr, suwmiarka i liniał, mimo iż są powszechnie używanymi narzędziami pomiarowymi, nie są idealnymi wyborami do pomiaru luzów między powierzchniami elementów konstrukcyjnych. Mikrometr jest narzędziem przeznaczonym głównie do pomiarów grubości i średnic, gdzie wymagana jest wysoka precyzja w milimetrach lub mikrometrach. Zwykle nie jest w stanie dokładnie zmierzyć luzów w trudnych warunkach, ponieważ jego konstrukcja nie jest przystosowana do pomiarów szczelin. Suwmiarka, choć jest bardziej uniwersalnym narzędziem, również nie jest zalecana do pomiarów luzów. Jej dokładność może być niewystarczająca, a także istnieje ryzyko błędów wynikających z niewłaściwego użytkowania, zwłaszcza przy pomiarach w wąskich lub trudnodostępnych miejscach. Liniał, z kolei, jest narzędziem stosowanym do pomiarów liniowych, ale jego zastosowanie do precyzyjnych pomiarów luzów jest bardzo ograniczone, ponieważ nie pozwala na dokładne określenie niewielkich wartości. Typowym błędem myślowym w tym przypadku jest przekonanie, że każde narzędzie pomiarowe może być użyte zamiennie, co nie jest zgodne z zasadami inżynieryjnymi. Wiedza o właściwym doborze narzędzi do specyficznych pomiarów jest kluczowa w wielu dziedzinach inżynierii, a stosowanie niewłaściwych narzędzi może prowadzić do błędów w produkcji, które mogą mieć poważne konsekwencje dla bezpieczeństwa i efektywności mechanizmów.

Pytanie 9

W celu oceny stanu technicznego przycisku S1 wykonano pomiary rezystancji, których wyniki przedstawiono w tabeli. Na ich podstawie można stwierdzić, że przycisk S1 posiada zestyk

Nazwa elementuWartość rezystancji zestyków [Ω]
Przed przyciśnięciemPo przyciśnięciu
Przycisk S10,22
A. sprawny NO.
B. niesprawny NO.
C. niesprawny NC.
D. sprawny NC.
Przycisk S1, który oceniłeś jako sprawny NC, działa tak, że w spoczynku obwód jest zamknięty. To się zgadza z tym, jak powinien działać. Jeśli rezystancja wynosi 0,22 Ω przed naciśnięciem, to znaczy, że wszystko jest ok, bo obwód faktycznie jest zamknięty – to jest bardzo ważne dla zestyków NC. Kiedy naciśniesz przycisk, rezystancja skacze do ∞ Ω, co oznacza otwarcie obwodu, i to też jest typowe dla NO. Przyciski NC używa się w różnych sytuacjach, na przykład w automatyce przemysłowej, gdzie potrzebujesz, żeby maszyny się zatrzymywały w razie awarii. Dobrze jest wiedzieć, że w systemach awaryjnego zatrzymywania przyciski te w normalnych warunkach są zamknięte dla bezpieczeństwa, a w nagłych sytuacjach otwierają się, co chroni przed zagrożeniem. Wiedza o tym, jak działają przyciski NC, jest naprawdę istotna, nie tylko dla bezpieczeństwa, ale także w kontekście norm, które obowiązują w branży inżynieryjnej. To wszystko ma ogromne znaczenie w codziennej pracy.

Pytanie 10

Jaką powierzchnię czynną ma tłok siłownika generującego siłę 1 600 N przy ciśnieniu 1 MPa oraz sprawności wynoszącej 0,8?

A. 1 000 mm2
B. 1 500 mm2
C. 2 000 mm2
D. 3 000 mm2
Często można spotkać się z błędami w obliczeniach powierzchni tłoka, które wynikają z nieprawidłowego zrozumienia relacji między siłą, ciśnieniem a powierzchnią. Osoby, które udzieliły odpowiedzi wskazujących na 3000 mm², 1500 mm² czy 1000 mm², mogą nie uwzględniać istotnego czynnika, jakim jest współczynnik sprawności. Taki współczynnik uwzględnia rzeczywiste straty energii w systemie hydraulicznym, a jego zignorowanie prowadzi do błędnych obliczeń. W przypadku odpowiedzi 3000 mm² mogło dojść do błędnego założenia, że siła wytwarzana przez tłok jest wyższa niż w rzeczywistości, co jest niezgodne z podanymi danymi. Osoba, która wskazała 1500 mm², najprawdopodobniej obliczyła powierzchnię czynną bez uwzględnienia ciśnienia lub zastosowała niewłaściwe jednostki. Natomiast wskazanie 1000 mm² może wynikać z mylnego założenia, że współczynnik sprawności działa w odwrotny sposób niż w rzeczywistości. W rzeczywistości, aby uzyskać pożądaną siłę, musimy uwzględnić sprawność jako element redukujący efektywną moc. Dlatego kluczowe jest zrozumienie i prawidłowe stosowanie wzorów, a także znajomość jednostek miary, aby uniknąć takich pomyłek. Zastosowanie odpowiedniej metodologii obliczeniowej oraz znajomość standardów inżynieryjnych może znacząco poprawić jakość i trafność naszych wyników.

Pytanie 11

Aby zrealizować lutowanie na płytce drukowanej, konieczne jest użycie stacji lutowniczej oraz

A. obcinacze i odsysacz
B. obcinacze i szczypce
C. lampy UV i odsysacz
D. lampy UV i szczypce
Wybór obcinaczy i odsysacza, lampy UV i szczypców, czy lampy UV i odsysacza wskazuje na niezrozumienie podstawowych narzędzi oraz procesów wymaganych do lutowania. Odsysacz jest używany głównie do usuwania nadmiaru cyny z połączeń lutowanych, jednak nie jest to element niezbędny do samego wykonania lutowania, lecz narzędzie pomocnicze, które stosuje się w przypadku błędów lub poprawy połączeń. Niezrozumienie jego roli prowadzi do błędnego wniosku, że jest on kluczowy w standardowym procesie lutowania. Lampa UV, z kolei, jest stosowana w kontekście technologii lutowania w obszarze materiałów fotooptycznych i nie ma zastosowania w tradycyjnym lutowaniu komponentów elektronicznych, które wykorzystują cynę. Zastosowanie lampy UV w tym kontekście jest zupełnie nieadekwatne, co pokazuje brak znajomości standardów lutowania oraz technologii, które są podstawą w inżynierii elektronicznej. W praktyce, poprawne zrozumienie procesu lutowania wymaga znajomości narzędzi i ich właściwego zastosowania, co jest kluczowe dla uzyskania wysokiej jakości połączeń lutowanych.

Pytanie 12

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
B. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
C. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
D. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
No cóż, wiesz, przygotowanie sprężonego powietrza to nie taka prosta sprawa. W swojej odpowiedzi pomyliłeś kolejność działań. Najpierw powinno się osuszyć i przefiltrować powietrze, a dopiero potem nasycać je olejem. Jak zrobisz to inaczej, to wprowadzasz zanieczyszczenia do układu, co może potem prowadzić do sporych problemów. Przykładowo, zanieczyszczony olej może zatykać elementy pneumatyczne, i później tylko kłopoty. A jeśli chodzi o redukcję ciśnienia, to też ważne jest, żeby zrobić to po osuszeniu, bo inaczej wilgoć zostaje w powietrzu, a to już w ogóle nie powinno mieć miejsca. Krytyczna jest ta kolejność, żeby zapewnić, że powietrze jest naprawdę czyste i gotowe do użycia, bo w przeciwnym razie to może zrobić więcej złego niż dobrego w systemie pneumatycznym.

Pytanie 13

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Smarownica, manometr, reduktor, filtr powietrza
B. Reduktor, manometr, filtr powietrza, smarownica
C. Filtr powietrza, manometr, reduktor, smarownica
D. Manometr, reduktor, smarownica, filtr powietrza
Wybór innej kolejności montażu elementów składowych w zespole przygotowania sprężonego powietrza prowadzi do wielu problemów funkcjonalnych oraz technicznych. Na przykład, umieszczając manometr przed reduktorem, możemy wprowadzać odczyty ciśnienia, które nie będą odzwierciedlały rzeczywistego ciśnienia roboczego w systemie, ponieważ nie uwzględniają one redukcji ciśnienia, jaką wprowadza reduktor. Taki błąd może prowadzić do nieprawidłowych ustawień, które w rezultacie obniżają efektywność pracy narzędzi pneumatycznych. Ponadto montaż filtra powietrza na początku układu, jak sugerują niektóre odpowiedzi, może spowodować, że zanieczyszczenia będą wprowadzane do smarownicy, co może negatywnie wpłynąć na jej działanie oraz na jakość smarowania. To z kolei może prowadzić do szybszego zużycia narzędzi i komponentów. Kluczowym aspektem jest również zrozumienie, że każdy z elementów ma swoje specyficzne funkcje i powinien być zamontowany w odpowiedniej kolejności, aby system działał optymalnie. Nieprzemyślana kolejność montażu elementów składowych może skutkować także zwiększeniem kosztów serwisowania i napraw, a także obniżeniem efektywności energetycznej całego systemu. Dlatego tak ważne jest, aby stosować się do ustalonych standardów i dobrych praktyk w zakresie instalacji systemów sprężonego powietrza.

Pytanie 14

Jaką czynność zrealizuje polecenie COMPILE w kontekście programowania systemów mechatronicznych?

A. Konwersja kodu binarnego na format dziesiętny
B. Pobranie programu z kontrolera
C. Przesłanie programu do kontrolera
D. Przetłumaczenie programu na kod binarny
Wywołanie polecenia COMPILE w kontekście programowania urządzeń mechatronicznych może być mylone z innymi czynnościami związanymi z zarządzaniem programem. Nie należy utożsamiać kompilacji z przesyłaniem programu do sterownika, gdyż te operacje są od siebie odrębne. Przesłanie programu do sterownika odbywa się po etapie kompilacji, a jego celem jest zainstalowanie odpowiednio przetłumaczonego kodu binarnego w pamięci urządzenia. Zrozumienie tego procesu jest kluczowe, aby uniknąć błędów w programowaniu. Kolejnym typowym nieporozumieniem jest mylenie kompilacji z tłumaczeniem kodu binarnego na format zrozumiały dla człowieka, jak kod decymalny. Tego rodzaju operacje, nazywane dekompilacją, są rzadko praktykowane w kontekście programowania urządzeń mechatronicznych, ponieważ zazwyczaj pracujemy w odwrotnym kierunku, przetwarzając kod źródłowy na binarny. Ostatnią pomyłką jest pomylenie kompilacji z pobieraniem programu ze sterownika, co jest kolejnym krokiem w cyklu życia oprogramowania, ale nie jest bezpośrednio związane z procesem kompilacji. Kluczowym elementem skutecznego programowania jest zrozumienie tych różnic oraz umiejętność ich zastosowania w praktyce.

Pytanie 15

Nie wolno stosować gaśnicy do gaszenia pożaru sprzętu elektrycznego, który jest pod napięciem

A. halonowej
B. śniegowej
C. proszkowej
D. pianowej
Użycie gaśnic halonowych, proszkowych czy śniegowych do gaszenia pożarów urządzeń elektrycznych pod napięciem jest niewłaściwe z kilku powodów. Gaśnice halonowe, choć skuteczne w gaszeniu pożarów, nie są już produkowane z uwagi na ich negatywny wpływ na warstwę ozonową. Ponadto, w przypadku halonu, nie ma pewności co do pełnego usunięcia zagrożenia elektrycznego, co może prowadzić do groźnych sytuacji. Gaśnice proszkowe, mimo że mogą gasić pożary elektryczne, pozostawiają po sobie resztki chemiczne, które mogą być szkodliwe dla delikatnych urządzeń elektronicznych i mogą prowadzić do ich uszkodzenia. Dodatkowo, proszek jest materiałem, który, w przypadku niewłaściwego użycia, może prowadzić do rozprzestrzenienia ognia lub zwiększenia ryzyka porażeń prądem. Użycie gaśnic śniegowych, które wykorzystują dwutlenek węgla, również niesie ze sobą ryzyko, ponieważ CO2 nie ma żadnych właściwości izolacyjnych i może nie być wystarczające w sytuacjach z wyższym napięciem. Powszechnym błędem jest mylenie skuteczności różnych typów gaśnic w kontekście ich zastosowania w pożarach elektrycznych. Wiedza na temat odpowiedniego typu gaśnicy ma kluczowe znaczenie dla zapewnienia bezpieczeństwa, a niewłaściwy wybór może prowadzić do poważnych konsekwencji.

Pytanie 16

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Nasadowego
B. Dynamometrycznego
C. Imbusowego
D. Płaskiego
Odpowiedzi płaskiego, nasadowego i dynamometrycznego są nieprawidłowe z różnych powodów. Klucz płaski, choć jest popularnym narzędziem, nie sprawdzi się w przypadku śrub z gniazdem sześciokątnym, ponieważ jego konstrukcja nie pasuje do kształtu gniazda. W takich sytuacjach zastosowanie klucza płaskiego może prowadzić do poślizgu i uszkodzenia zarówno narzędzia, jak i śruby. Klucz nasadowy, mimo iż jest użyteczny w wielu zastosowaniach, również nie jest odpowiedni, ponieważ jego gniazdo nie jest zoptymalizowane do pracy ze śrubami imbusowymi. Klucze nasadowe są przeznaczone głównie do śrub z łbem sześciokątnym zewnętrznym. Klucz dynamometryczny, z kolei, jest narzędziem służącym do przykręcania śrub z określonym momentem obrotowym, co oznacza, że jest stosowany w sytuacjach, gdzie ważne jest precyzyjne dokręcenie. Jednakże, bez odpowiedniego klucza do wstępnego luzowania takich śrub, dynamometryczny nie będzie miał zastosowania. Dlatego klucz imbusowy jest jedynym narzędziem, które zapewnia efektywne i bezpieczne wykręcanie śrub z łbem walcowym i gniazdem sześciokątnym, dzięki czemu unikamy błędów i potencjalnych uszkodzeń.

Pytanie 17

Elementy z komponentów przeznaczone do montażu urządzenia powinny być posegregowane na stanowisku roboczym według

A. kolejności montażu
B. wielkości
C. poziomu złożoności
D. kształtu
Twoja odpowiedź, która mówi o układaniu części według kolejności montażu, jest naprawdę trafna. Wiesz, to mega ważne, bo jak wszystko jest dobrze zorganizowane na stanowisku pracy, to cały proces idzie sprawniej. Jak masz części poukładane po kolei, to szybciej je znajdziesz i mniejsze ryzyko, że coś sknocisz. Na przykład, w produkcji często korzysta się z metod takich jak 'Just-in-Time', które pomagają w efektywnym dostępie do elementów, kiedy akurat ich potrzebujesz. Warto też pamiętać o dobrych praktykach jak 5S, które podkreślają jak ważny jest porządek. Jeśli narzędzia i części są ustawione według kolejności montażu, to nie tylko przyspiesza pracę, ale i sprawia, że praca jest bezpieczniejsza. Dobrze jest też używać wizualnych oznaczeń i instrukcji w pobliżu, bo to naprawdę pomaga utrzymać całość w porządku i zapewnia jakość oraz terminowość.

Pytanie 18

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, sterowanego przez PLC, co należy zrobić?

A. zatrzymać zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu oraz przewody pneumatyczne
B. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz PLC
C. odłączyć przewody zasilające do sterownika oraz przewody pneumatyczne od elektrozaworu
D. wprowadzić sterownik PLC w stan STOP, a następnie wyłączyć zasilanie elektryczne i pneumatyczne układu
Wprowadzenie sterownika PLC w tryb STOP oraz wyłączenie zasilania elektrycznego i pneumatycznego układu to kluczowe kroki przed rozpoczęciem wymiany zaworu elektropneumatycznego. Takie podejście minimalizuje ryzyko błędów oraz zapewnia bezpieczeństwo podczas prac serwisowych. W trybie STOP sterownik nie wykonuje żadnych operacji, co zapobiega niekontrolowanemu działaniu urządzeń. Wyłączenie zasilania elektrycznego oraz pneumatycznego jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa pracy z systemami pneumatycznymi i automatyki. Przykładowo, w przemyśle automatycznym często stosuje się blokady mechaniczne i elektryczne, aby upewnić się, że urządzenia są całkowicie unieruchomione. Dobrym standardem jest również przeprowadzenie analizy ryzyka przed rozpoczęciem takich prac oraz oznaczenie strefy roboczej, aby zminimalizować ryzyko wypadków. W ten sposób, poprzez zastosowanie odpowiednich procedur, można uniknąć niebezpiecznych sytuacji i zapewnić bezpieczne warunki pracy.

Pytanie 19

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. m/s
B. obr/min
C. rad/s
D. km/h
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.

Pytanie 20

Jaką rolę odgrywają cewki w systemach elektrycznych?

A. Zbierają energię w polu elektrycznym
B. Tworzą przeszkodę elektryczną
C. Zbierają energię w polu magnetycznym
D. Tworzą przeszkodę optyczną
Cewki, czyli induktory, mają naprawdę ważną rolę w naszych obwodach elektrycznych, bo gromadzą energię w polu magnetycznym. Jak przez nie płynie prąd, wokół nich tworzy się pole magnetyczne, a jego siła zależy od natężenia prądu. Co ciekawe, kiedy ten prąd się zmienia, energia w polu magnetycznym może być uwalniana, co jest podstawą działania wielu urządzeń elektronicznych. Cewki znajdziesz niemal wszędzie – w filtrach, transformatorach czy obwodach rezonansowych. Weźmy na przykład filtry LC: cewki w nich blokują niepożądane częstotliwości w sygnałach audio i radiowych, przez co uzyskujemy lepszy dźwięk. Z resztą, w projektowaniu obwodów cewki są często używane w aplikacjach zabezpieczających przed przepięciami, co jest naprawdę istotne dla ochrony naszych komponentów elektronicznych.

Pytanie 21

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO8 oraz AI2
B. DI32/DO16 oraz AI4
C. DI16/DO8 oraz AI4
D. DI16/DO16 oraz AI2
Modułowy sterownik PLC z konfiguracją DI32/DO16 oraz AI4 to naprawdę dobry wybór. W układzie mechatronicznym masz aż 18 czujników binarnych, 4 przetworniki analogowe i 11 elementów, które działają w trybie dwustanowym. Dzięki DI32 masz więcej niż dość wejść cyfrowych, żeby połączyć wszystkie czujniki, a nawet zostaje ci trochę zapasu na przyszłość. Z kolei 16 wyjść cyfrowych (DO16) spokojnie obsłuży te 11 elementów wykonawczych, co daje ci możliwość rozszerzenia systemu, jeśli zajdzie taka potrzeba. No i te 4 wejścia analogowe (AI4) są akurat na przetworniki, co pozwala ci na monitorowanie i analizowanie sygnałów, a to jest kluczowe w mechatronice. Przykład? Chociażby automatyka przemysłowa, gdzie trzeba mieć na oku zarówno analogowe sygnały, jak i różne urządzenia wykonawcze.

Pytanie 22

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. oblać dłoń wodą utlenioną i nałożyć opatrunek
C. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
D. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 23

Który z programów przekształca kod napisany w danym języku programowania na kod maszynowy stosowany przez mikrokontroler?

A. Emulator
B. Debugger
C. Deasembler
D. Kompilator
Odpowiedzi, które wybrałeś, nie są związane z procesem tłumaczenia kodu źródłowego na kod maszynowy. Symulator to narzędzie, które imituje działanie mikrokontrolera, pozwalając na testowanie programów bez potrzeby fizycznego wgrania ich do urządzenia. Jego rola polega na umożliwieniu deweloperom analizy działania ich kodu w bezpiecznym środowisku, ale nie wykonuje ono konwersji kodu. Deasembler, z drugiej strony, to narzędzie, które przekształca kod maszynowy z powrotem na formę bardziej zrozumiałą dla ludzi, ale nie generuje kodu maszynowego z kodu źródłowego. Właściwie używa się go w kontekście analizy istniejącego kodu, a nie w procesie tworzenia oprogramowania. Debugger to narzędzie używane do identyfikacji i naprawy błędów w kodzie. Choć jest kluczowe w procesie programowania, jego zadaniem nie jest tłumaczenie kodu, lecz raczej monitorowanie działania programu w czasie rzeczywistym i umożliwienie analizy stanów oraz wartości zmiennych. Zrozumienie różnicy pomiędzy tymi narzędziami jest kluczowe dla każdego programisty, aby stosować odpowiednie podejścia i narzędzia w procesie tworzenia oprogramowania.

Pytanie 24

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Żeliwo białe
B. Stal wysokowęglowa
C. Stal niskowęglowa
D. Żeliwo szare
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 25

Czujnik indukcyjny, którego dane techniczne przedstawiono w tabeli, może pracować w układzie elektrycznym o następujących parametrach:

Typ czujnikaindukcyjny
Konfiguracja wyjścia2-przewodowy NO
Zasięg0÷4 mm
Napięcie zasilania15÷34V DC
Obudowa czujnikaM12
Przyłączeprzewód 2 m
Klasa szczelnościIP67
Prąd pracy max.25 mA
Temperatura pracy-25÷70°C
Rodzaj czoławysunięte
Częstotliwość przełączania maks.300 Hz
A. napięcie zasilania 15 V DC i prąd pracy 0,02 A
B. napięcie zasilania 24 V DC i prąd pracy 0,02 A
C. napięcie zasilania 24 V DC i prąd pracy 30 mA
D. napięcie zasilania 20 V AC i prąd pracy 0,02 A
Poprawna odpowiedź to napięcie zasilania 24 V DC i prąd pracy 30 mA. Czujniki indukcyjne są szeroko stosowane w automatyce przemysłowej, a ich prawidłowe zasilanie jest kluczowe dla ich funkcjonalności. Napięcie 24 V DC jest standardowym poziomem zasilania w wielu systemach automatyzacji, co ułatwia integrację czujników z innymi komponentami. W przypadku czujnika, ważne jest również, aby prąd roboczy nie przekraczał dopuszczalnych wartości, co w tym przypadku wynosi 30 mA. Przykładem zastosowania czujników indukcyjnych w praktyce może być detekcja obecności obiektów metalowych w linii produkcyjnej, co pozwala na automatyzację procesów, zwiększenie wydajności i redukcję ryzyka błędów ludzkich. Stosowanie czujników o odpowiednich parametrach technicznych zgodnych z wymaganiami systemu to najlepsza praktyka w obszarze inżynierii automatyki, co zapewnia niezawodność i bezpieczeństwo operacji.

Pytanie 26

Jeśli na tłok siłownika o powierzchni S = 0,003 m2 działa ciśnienie czynnika wynoszące 2 MPa, to jaka jest siła działająca na tłok?

A. 2 kN
B. 9 kN
C. 6 kN
D. 12 kN
Wybór błędnej odpowiedzi często wynika z nieprawidłowego zastosowania wzoru na siłę wywieraną przez ciśnienie. Wiele osób może mylnie założyć, że siła jest równoznaczna z ciśnieniem, co prowadzi do niepoprawnych obliczeń. Na przykład, przy wyborze 2 kN, może to sugerować, że ktoś pomylił jednostki lub nie uwzględnił prawidłowej powierzchni tłoka. Z kolei wybór 12 kN może wynikać z błędnego pomnożenia ciśnienia przez powierzchnię, w sytuacji gdy dana osoba nie przeliczyła jednostek na pascale. Ważne jest, aby pamiętać, że ciśnienie to siła działająca na jednostkę powierzchni, a zatem do obliczenia całkowitej siły musimy pomnożyć ciśnienie przez odpowiednią powierzchnię. W przypadku ciśnienia 2 MPa, co odpowiada 2 * 10^6 Pa, oraz powierzchni 0,003 m², obliczenia prowadzą jednoznacznie do wyniku 6 kN. Typowe błędy myślowe przy takich zadaniach obejmują niedokładne przeliczenia jednostek, błędne zrozumienie zależności między ciśnieniem, siłą i powierzchnią oraz pomijanie istotnych danych w zadaniu. Kluczowe jest, aby podczas rozwiązywania problemów hydraulicznych stosować właściwe wzory i zachować ostrożność w przeliczaniu jednostek, co ma ogromne znaczenie w kontekście projektowania i eksploatacji systemów hydraulicznych.

Pytanie 27

W trakcie inspekcji efektywności systemu sterującego urządzeń transportujących elementy aluminiowe, w środowisku produkcyjnym o podwyższonym poziomie hałasu powinno się używać

A. ochronników słuchu
B. kasku ochronnego
C. okularów ochronnych
D. rękawic dielektrycznych
Ochronniki słuchu są kluczowym elementem ochrony osobistej w środowisku pracy, gdzie poziom hałasu przekracza dopuszczalne normy. W przypadku kontroli sprawności układu sterowania urządzenia transportującego kształtki aluminiowe, które mogą generować wysokie poziomy hałasu, zastosowanie ochronników słuchu jest niezbędne dla minimalizacji ryzyka uszkodzenia słuchu. Zgodnie z normami takimi jak PN-N-01307:2013, każdy pracownik narażony na hałas o poziomie przekraczającym 85 dB powinien stosować odpowiednie środki ochrony. Ochronniki słuchu mogą występować w różnych formach, takich jak nauszniki lub wkładki douszne, dostosowane do specyfiki pracy. W praktyce, ich stosowanie nie tylko chroni zdrowie pracownika, ale również zwiększa komfort pracy, umożliwiając lepszą koncentrację na wykonywanych zadaniach. Dbanie o zdrowie pracowników poprzez stosowanie wymaganych środków ochrony osobistej jest nie tylko kwestią zgodności z przepisami, ale także wpływa na ogólną wydajność i morale w zespole.

Pytanie 28

Do jakiej kategorii pomiarów można zakwalifikować pomiar długości gwintowanego fragmentu śruby przy użyciu przymiaru kreskowego?

A. Złożonych
B. Bezpośrednich
C. Uwikłanych
D. Pośrednich
Pomiar długości nagwintowanego odcinka śruby nie może być klasyfikowany jako złożony, uwikłany ani pośredni. Pojęcia te odnoszą się do różnych metod pomiarowych, które obejmują bardziej skomplikowane procesy lub obliczenia. Złożone pomiary wymagają zastosowania kilku różnych narzędzi lub metod do uzyskania końcowego wyniku, co w przypadku bezpośredniego pomiaru długości nie ma miejsca. Uwikłane pomiary odnoszą się do sytuacji, gdzie wyniki są zależne od wielu czynników, co nie ma zastosowania w prostym pomiarze długości. Natomiast pomiary pośrednie polegają na obliczaniu jednego wymiaru na podstawie innych wymiarów, co również nie dotyczy pomiaru bezpośredniego, gdzie mierzona wartość uzyskiwana jest natychmiast. Osiągając niewłaściwą odpowiedź, można wpaść w pułapkę myślową, zakładając, że każdy pomiar, który wymaga użycia narzędzi, musi być złożony lub pośredni. W rzeczywistości prostota pomiaru bezpośredniego w kontekście narzędzi i metod jest kluczowa dla zapewnienia efektywności i dokładności w procesach inżynieryjnych.

Pytanie 29

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Dokładność pozycjonowania.
B. Najwyższa prędkość ruchu dla poszczególnych osi.
C. Liczba wrzecion.
D. Gramatura wtrysku.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 30

Ile powinna wynosić średnica tłoka siłownika pneumatycznego z jednostronnym tłoczyskiem, aby przy zasilaniu powietrzem o ciśnieniu 8 barów można uzyskać przy wysuwaniu tłoczyska siłę 160 N (przyjmując sprawność siłownika 100%)?

F = P · S
S = π · r2
A. 10 mm
B. 16 mm
C. 20 mm
D. 32 mm
Wybór odpowiedzi innej niż 16 mm może wynikać z niepoprawnego podejścia do obliczenia siły oraz średnicy tłoka w siłowniku pneumatycznym. Istnieje ryzyko, że osoby odpowiadające na to pytanie zrezygnowały z bezpośredniego stosowania wzorów, skupiając się jedynie na intuicji lub zniekształconych założeniach. Na przykład, wybór 32 mm sugeruje, że respondenci mogą błędnie oceniać, jak ciśnienie powietrza i siła wpływają na rozmiar tłoka, co prowadzi do przeszacowania wymagań dla danego systemu. Z kolei odpowiedzi 10 mm i 20 mm mogą wynikać z niepełnego zrozumienia zależności między polem powierzchni a siłą, co skutkuje wyborem wartości, które są niewystarczające dla uzyskania wymaganej siły 160 N przy ciśnieniu 8 barów. Niezrozumienie matematyki związanej z geometrią koła, a także pomijanie fizycznych zasad działania siłowników pneumatycznych, prowadzi do błędnych wyborów. Prawidłowe zrozumienie tych koncepcji jest fundamentem projektowania efektywnych i niezawodnych systemów pneumatycznych, a znajomość standardów takich jak ISO 1219 jest kluczowe w kontekście branżowym.

Pytanie 31

Tyrystor, w którym anoda ma dodatni potencjał, a katoda i bramka mają potencjał ujemny, znajduje się w stanie

A. nasycenia
B. przewodzenia
C. zaporowym
D. blokowania
Tyrystor, kiedy anoda ma dodatni potencjał, a bramka i katoda mają potencjał ujemny, jest w stanie blokowania. To znaczy, że nie przewodzi prądu, mimo że teoretycznie mógłby. Takie blokowanie jest naprawdę ważne w sytuacjach, gdzie trzeba kontrolować przepływ prądu, jak na przykład w prostownikach czy w różnych układach regulacji mocy. Żeby tyrystor zaczął przewodzić, trzeba najpierw podać impuls napięcia na bramkę, co zmienia jego stan na przewodzenie. W praktyce blokowanie tyrystora pomaga unikać niechcianych przepływów prądu, co jest istotne dla bezpieczeństwa obwodów i zasilaczy. Dzięki temu, że tyrystory są tak często używane w elektronice, szczególnie w zarządzaniu energią, warto wiedzieć, jak działają w stanie blokowania, bo to naprawdę ma ogromne znaczenie.

Pytanie 32

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Sygnał radiowy
B. Kabel UTP
C. Kabel telefoniczny
D. Światłowód
Światłowód to najskuteczniejsze medium wykorzystywane do komunikacji w środowiskach, gdzie występują silne zakłócenia elektromagnetyczne. Jego konstrukcja oparta na szkle lub tworzywie sztucznym pozwala na przesyłanie sygnałów świetlnych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi, które mogą wpływać na inne media transmisyjne, takie jak kable miedziane. W praktyce, zastosowanie światłowodów w halach przemysłowych, w pobliżu dużych maszyn czy urządzeń generujących pole elektromagnetyczne, zapewnia stabilną i niezawodną komunikację. Przykładem może być wdrożenie infrastruktury światłowodowej w fabrykach produkcyjnych, gdzie precyzyjna i szybka wymiana danych pomiędzy różnymi sekcjami jest kluczowa dla efektywności procesów produkcyjnych. Światłowody są także zgodne z wieloma normami, takimi jak ISO/IEC 11801, które definiują standardy kablowe i zapewniają wysoką jakość sygnału oraz bezpieczeństwo w instalacjach telekomunikacyjnych. Dodatkowo, światłowody są odporne na działanie wysokich temperatur oraz chemikaliów, co czyni je idealnym rozwiązaniem w trudnych warunkach przemysłowych.

Pytanie 33

Jakie ciśnienie w barach odpowiada 1 500 mmHg, przy założeniu, że 1 bar = 100 000 Pa, a 1 mmHg = 133,4 Pa?

A. 2,001 bar
B. 3,001 bar
C. 5,001 bar
D. 4,001 bar
Czasami przy przeliczaniu ciśnienia można się pogubić i nie zwrócić uwagi na to, że jednostki są różne. Na przykład, gdy próbujesz przeliczyć 1500 mmHg na bary, możesz po prostu spojrzeć na liczby i myśleć, że coś się zgadza. A to wcale nie jest takie jasne. Musisz pamiętać, że milimetry rtęci i paskale to dwa różne rodzaje jednostek. Bez odpowiedniego przeliczenia, możesz łatwo popełnić błąd. Wiele osób myśli, że same mmHg wystarczą, żeby od razu przejść na bary, ale to nie tak działa. Każda jednostka ma swoje zastosowanie i nie można ich porównywać bez wcześniejszej konwersji. Spoko, że są standardy branżowe, które mówią o tych sprawach, ale chodzi o to, żeby wiedzieć, co robić przed przeliczeniami, żeby nie było nieporozumień w przyszłości.

Pytanie 34

Która budowa siłownika hydraulicznego umożliwia uzyskanie największego skoku przy niewielkiej długości cylindra?

A. Tłokowa z dwustronnym tłoczyskiem
B. Teleskopowa
C. Tłokowa z jednostronnym tłoczyskiem
D. Nurnikowa
Nurnikowe siłowniki hydrauliczne, w odróżnieniu od teleskopowych, mają jedną, prostą konstrukcję z jednym cylindrem, co ogranicza ich zdolność do osiągania dużych skoków przy małych długościach. Ich konstrukcja jest prostsza, co może prowadzić do błędnych wniosków, że są bardziej efektywne w każdym zastosowaniu. W rzeczywistości, ich zastosowanie jest ograniczone do sytuacji, gdzie skok nie jest kluczowy, a siła działania jest priorytetem. Tłokowa konstrukcja z dwustronnym tłoczyskiem również nie jest optymalna, gdyż wymaga znacznej długości cylindra, aby osiągnąć duży skok, co czyni ją nieodpowiednią w prostych przestrzeniach. Z kolei tłokowa konstrukcja z jednostronnym tłoczyskiem, pomimo że może być bardziej kompaktowa, również nie osiąga skoku porównywalnego z teleskopowym rozwiązaniem. Często występuje mylne przekonanie, że każda konstrukcja może być używana zamiennie, co prowadzi do błędnych decyzji w doborze siłowników do konkretnego zastosowania. W przemyśle hydrauliki, dobrą praktyką jest zawsze analizowanie specyfikacji i potrzeb danego projektu, co pozwala na skuteczne dopasowanie siłowników do wymagań.

Pytanie 35

Wzmacniacz charakteryzuje się pasmem przepustowym wynoszącym w = 12 750 Hz oraz częstotliwością górną fg= 13 500 Hz. Jaką minimalną wartość częstotliwości fd w zakresie przenoszenia sygnałów należy osiągnąć, aby były one wzmacniane?

A. Od 6 375 Hz
B. Od 6 750 Hz
C. Od 750 Hz
D. Od 350 Hz
Wybór wartości z zakresu 6 375 Hz, 6 750 Hz lub 350 Hz jako minimalnej częstotliwości dolnej może wynikać z nieporozumienia dotyczącego definicji szerokości pasma przepustowego oraz sposobu obliczania częstotliwości dolnej. Często w praktyce błędnie przyjmuje się, że częstotliwość dolna jest obliczana na podstawie jedynie jednostkowych wartości, co może prowadzić do rozbieżności w wynikach. Szerokość pasma dla wzmacniacza określa, jakie pasmo częstotliwości sygnałów będzie wzmacniane i jest obliczana jako różnica między częstotliwością górną a dolną. W tym przypadku, mając szerokość pasma 12 750 Hz i częstotliwość górną 13 500 Hz, poprawne obliczenie częstotliwości dolnej prowadzi do 750 Hz. Wybór wyższych wartości, jak 6 375 Hz czy 6 750 Hz, ignoruje fakt, że wzmacniacz nie będzie aktywowany w tym zakresie, co prowadzi do pominięcia istotnych sygnałów. Natomiast wybór 350 Hz także jest błędny, ponieważ nie uwzględnia, że częstotliwość dolna jest zawsze wyższa niż zero w kontekście wzmacniaczy, które operują na rzeczywistych sygnałach. Takie błędne podejście często prowadzi do nieprawidłowego doboru sprzętu audio lub telekomunikacyjnego, co w rezultacie może obniżyć jakość sygnału i wydajność systemu. Zrozumienie tych koncepcji jest kluczowe dla skutecznego projektowania systemów elektronicznych oraz ich odpowiednich zastosowań w praktyce.

Pytanie 36

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 10,0 V
B. 7,5 V
C. 3,0 V
D. 4,5 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 37

Aby z dużą precyzją identyfikować jedynie obiekty metalowe w odległości do 5 mm, należy zastosować czujnik

A. indukcyjny
B. mechaniczny
C. temperatury
D. ultradźwiękowy
Czujniki indukcyjne są idealnym rozwiązaniem do wykrywania obiektów metalowych, zwłaszcza w bardzo małych odległościach, takich jak 5 mm. Działają na zasadzie indukcji elektromagnetycznej, co pozwala im na detekcję zmian w polu elektromagnetycznym wywołanych obecnością metalu. Dzięki swojej wysokiej czułości i precyzji, czujniki te są szeroko stosowane w automatyce przemysłowej, na przykład w aplikacjach związanych z detekcją obecności części metalowych na liniach montażowych, a także w systemach zabezpieczeń. Standardy branżowe zalecają stosowanie czujników indukcyjnych w sytuacjach, gdzie wymagane jest szybkie i niezawodne wykrywanie metalowych obiektów, co jest szczególnie istotne w środowiskach produkcyjnych. Ich odporność na zanieczyszczenia i działanie czynników zewnętrznych czyni je idealnym wyborem w trudnych warunkach przemysłowych. Ponadto, czujniki te charakteryzują się długą żywotnością oraz niskimi kosztami eksploatacyjnymi, co czyni je bardzo efektywnym rozwiązaniem.

Pytanie 38

Wielkością charakterystyczną układu elektrycznego, mierzona w watach, jest jaka?

A. moc czynna
B. energia elektryczna
C. moc bierna
D. moc pozorna
Moc czynna, wyrażana w watach, to taki kluczowy parametr, który mówi nam o tym, jak wydajnie działa nasz układ elektryczny. To ta moc, która naprawdę przeobraża się w użyteczną pracę - na przykład w silnikach, lampach czy grzałkach. Bez wątpienia, moc czynna jest najważniejsza, gdy chcemy ocenić, jak efektywnie nasze systemy elektryczne wykorzystują energię. Z tego co się orientuję, w normach takich jak IEC 60038, moc czynna jest opisana jako iloczyn napięcia, natężenia prądu oraz cosinusa kąta fazowego. Czyli wychodzi na to, że moc czynna = U * I * cos(φ). Moim zdaniem, wiedza o mocy czynnej jest niezbędna, gdy dobieramy odpowiednie zabezpieczenia w instalacjach elektrycznych, bo pomaga to nie tylko w projektowaniu tych systemów, ale też pozwala na lepszą ocenę strat energii.

Pytanie 39

Jakie urządzenie powinno być zastosowane do zasilania silnika indukcyjnego klatkowego w układzie trójfazowym, aby umożliwić ustawienie maksymalnych wartości prądu rozruchowego oraz płynne dostosowanie prędkości obrotowej silnika?

A. Prostownika sterowanego trójpulsowego
B. Przełącznika gwiazda-trójkąt
C. Przemiennika częstotliwości
D. Softstartu
Wykorzystanie przełącznika gwiazda-trójkąt jest podejściem stosowanym głównie w przypadku silników o dużej mocy przy uruchamianiu. Jego celem jest zmniejszenie prądu rozruchowego poprzez przejście z połączenia w gwiazdę (gdzie silnik przy uruchamianiu pracuje z obniżoną mocą) do połączenia w trójkąt, co umożliwia pełne obciążenie. Jednakże, ta metoda nie pozwala na regulację prędkości obrotowej silnika, co czyni ją nieodpowiednią w kontekście wymagań przedstawionego pytania. Z kolei softstart to urządzenie, które także reguluje prąd rozruchowy, ale jego funkcjonalność kończy się po uruchomieniu silnika, co oznacza, że nie zapewnia on dalszej regulacji prędkości obrotowej. Dodatkowo, prostownik sterowany trójpulsowy jest komponentem używanym do prostowania prądu przemiennego, ale nie dostarcza funkcji regulacji prędkości obrotowej ani nie pozwala na kontrolowanie prądu rozruchowego w sposób wymagany do optymalizacji pracy silnika. Wybór nieodpowiednich urządzeń do zasilania silników może prowadzić do niewłaściwego ich działania, a także do zwiększenia zużycia energii, co jest niezgodne z nowoczesnymi standardami efektywności energetycznej, takimi jak ISO 50001. Dlatego znajomość i umiejętność prawidłowego doboru urządzeń jest kluczowa w inżynierii elektrycznej.

Pytanie 40

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)
A. 35 bar
B. 350 bar
C. 525 bar
D. 70 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.