Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechanik
  • Kwalifikacja: MEC.05 - Użytkowanie obrabiarek skrawających
  • Data rozpoczęcia: 24 maja 2025 17:36
  • Data zakończenia: 24 maja 2025 17:47

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która komenda odpowiada za przesunięcie punktu odniesienia przedmiotu obrabianego?

A. G33
B. G57
C. G17
D. G95
Odpowiedź G57 jest jak najbardziej trafna, bo ta funkcja w obrabiarkach CNC służy do przesunięcia punktu zerowego naszego przedmiotu. Używając G57, możemy dokładnie określić, gdzie jest ten punkt zerowy w danym układzie współrzędnych. To się mega przydaje, zwłaszcza gdy pracujemy z różnymi detalami, bo dzięki temu każdy z nich można ustawić w swoim miejscu. W branży obróbczej to kluczowe, żeby punkt zerowy był dobrze określony, bo jak go pomylimy, to możemy stracić materiał. Wprowadzając G57, operatorzy łatwiej zarządzają detalami na stole roboczym, co jest zgodne z tym, co robi się najlepiej w obróbce CNC. Dzięki temu możemy mieć większą dokładność i powtarzalność w produkcji.

Pytanie 2

Średnica półfabrykatu do wytworzenia wałka gładkiego wynosi 200 mm, natomiast średnica wałka po obróbce to 184 mm. Jaka powinna być głębokość skrawania, którą operator powinien ustawić, aby przeprowadzić obróbkę dwoma równymi przejściami narzędzia?

A. 5,0 mm
B. 2,5 mm
C. 4,0 mm
D. 1,2 mm
Aby obliczyć głębokość skrawania dla wałka gładkiego, należy najpierw ustalić różnicę pomiędzy średnicą półfabrykatu a średnicą po obróbce. W tym przypadku mamy średnicę półfabrykatu równą 200 mm i średnicę po obróbce wynoszącą 184 mm. Różnica ta wynosi 16 mm, co oznacza, że musimy usunąć łącznie 16 mm materiału. Ponieważ operator planuje wykonać obróbkę w dwóch jednakowych przejściach, należy po prostu podzielić tę wartość przez dwa. Tak więc, 16 mm / 2 = 8 mm. Jednakże, głębokość skrawania nie może przekraczać wartości, która nie tylko zapewnia odpowiednią jakość obróbki, ale również nie prowadzi do uszkodzenia narzędzia. Przyjmuje się, że optymalna głębokość skrawania dla wałków gładkich wynosi 4 mm w jednym przejściu, co w kontekście dwóch przejść jest zgodne z dobrymi praktykami przemysłowymi. Takie podejście sprzyja stabilności obróbki oraz zmniejsza ryzyko powstawania defektów powierzchniowych.

Pytanie 3

Na jakie z wymienionych miejsc w tokarkach CNC może wpływać programista?

A. Miejsca odniesienia narzędzia
B. Punkt zerowy maszyny
C. Punkt bazy wrzeciona
D. Punkt wymiany narzędzia
Punkt wymiany narzędzia w tokarkach CNC jest krytyczny dla efektywności procesu obróbczej, ponieważ decyduje o tym, jakie narzędzie zostanie użyte w danym kroku produkcji. Programista ma bezpośredni wpływ na to, jak ten punkt jest zdefiniowany w programie obróbczej. Ustalenie właściwego punktu wymiany narzędzia pozwala na optymalizację czasu przestoju podczas zmiany narzędzi, co jest szczególnie ważne w produkcji seryjnej. Na przykład, w przypadku programowania w systemie ISO, programista definiuje punkty wymiany, które mogą być umieszczone w sposób, który minimalizuje ruch maszyny i maksymalizuje wydajność. W praktyce, umiejętne zarządzanie tymi punktami może prowadzić do znacznego skrócenia cyklu produkcyjnego oraz zwiększenia precyzji obrabianych części. Dobre praktyki branżowe zalecają także regularne przeglądanie i dostosowywanie tych punktów w celu optymalizacji procesu produkcyjnego, co jest istotne w kontekście zmieniających się wymagań produkcyjnych.

Pytanie 4

W trakcie próby uruchomienia tokarki CNC z hydraulicznym uchwytem samocentrującym na panelu sterującym obrabiarki wyświetlił się komunikat: "przekroczony zakres mocowania". Aby poprawnie uruchomić obrabiarkę, należy

A. usunąć komunikat
B. zwiększyć siłę mocowania obrabianego materiału
C. dostosować zakres mocowania szczęk
D. zlekceważyć komunikat
Dobrze, że zwróciłeś uwagę na mocowanie szczęk, bo to naprawdę ważne, żeby wszystko działało prawidłowo na tokarkach CNC. Jak widzisz, komunikat "przekroczony zakres mocowania" to znak, że coś jest nie tak z ustawieniami w stosunku do materiału, który obrabiasz. Uchwyt samocentrujący ma za zadanie trzymać materiał stabilnie, żeby uniknąć jakichkolwiek nieprzyjemnych drgań czy przemieszczeń podczas pracy. Musisz dobrać mocowanie zgodnie z średnicą i kształtem materiału, bo to wpływa na jakość obróbki. Warto zawsze sprawdzić ustawienia w systemie przed rozpoczęciem, żeby mieć pewność, że wszystko jest w porządku. Ignorowanie komunikatu, czy po prostu zwiększanie siły mocowania, to zły pomysł – to może doprowadzić do uszkodzeń nie tylko materiału, ale też narzędzi, a w skrajnych przypadkach zagrażać bezpieczeństwu. Dlatego pamiętaj, żeby mocowanie było zgodne z zasadami bezpieczeństwa i precyzyjnej obróbki, bo to ma znaczenie!

Pytanie 5

Jakie działania konserwacyjne w obrębie systemu smarowania obrabiarki CNC należy przeprowadzać codziennie?

A. Kontrola poziomu oleju oraz jego uzupełnienie w razie potrzeby
B. Czyszczenie filtra ssącego
C. Usuwanie zanieczyszczeń z wkładu filtra końcówki napełniania
D. Weryfikacja obecności wycieków oleju oraz stanu wszystkich przewodów olejowych
Sprawdzenie stanu oleju i ewentualne jego uzupełnienie jest kluczowym zadaniem w zakresie konserwacji zespołu smarowania obrabiarki CNC, które powinno być wykonywane codziennie. Olej smarowy odgrywa fundamentalną rolę w zapewnieniu efektywnego funkcjonowania maszyny, ponieważ minimalizuje tarcie między ruchomymi częściami, co z kolei zmniejsza zużycie elementów mechanicznych oraz ryzyko ich uszkodzenia. Regularne sprawdzanie poziomu oleju pozwala na bieżąco reagować na potencjalne niedobory, które mogą prowadzić do przegrzewania się komponentów oraz ich przedwczesnego zużycia. W praktyce, należy również obserwować jakość oleju, zwracając uwagę na jego zanieczyszczenia, co może wskazywać na problemy z układem smarowania. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie regularnej konserwacji oraz dokumentacji stanu technicznego sprzętu, co przyczynia się do zwiększenia niezawodności i efektywności procesów produkcyjnych.

Pytanie 6

Zakończenie podprogramu ze skokiem do początku oznaczane jest za pomocą funkcji

A. M03
B. M08
C. M17
D. M30
Odpowiedź M17 jest poprawna, ponieważ odnosi się do końca podprogramu z możliwością powrotu na jego początek, co jest istotnym elementem programowania w kontekście automatyki i systemów sterowania. M17, jako instrukcja w kontekście programowania maszyn CNC, oznacza zakończenie podprogramu i powrót do miejsca wywołania. Praktyczne zastosowanie tej instrukcji można zaobserwować w procesach produkcyjnych, gdzie wielokrotne powtarzanie tego samego cyklu roboczego jest niezbędne do efektywnej produkcji. Dzięki zastosowaniu M17 operatorzy mogą tworzyć skrypty, które automatyzują powtarzające się zadania, co zwiększa wydajność i precyzję operacji. Standardy G-code, do których należy M17, są powszechnie stosowane w branży obróbczej, co czyni tę wiedzę niezbędną dla profesjonalistów zajmujących się programowaniem maszyn CNC. Zrozumienie działania tej instrukcji oraz jej poprawne zastosowanie w praktyce przyczynia się do lepszego zarządzania cyklami produkcyjnymi oraz redukcji błędów operacyjnych.

Pytanie 7

Jakie oprzyrządowanie jest stosowane do toczenia wałów o dużej długości?

A. długie łoże tokarki
B. uchwyt i kieł
C. uchwyt specjalny
D. podtrzymka
Odpowiedzią na pytanie jest podtrzymka, która jest kluczowym oprzyrządowaniem stosowanym w toczeniu wałów o znacznej długości. Podtrzymka mechanicznie wspiera wał w trakcie obróbki, co jest szczególnie istotne w przypadku długich elementów, które mogą ulegać odkształceniom lub drganiom. Dzięki zastosowaniu podtrzymki, można znacząco zwiększyć precyzję toczenia oraz uzyskać wyższą jakość powierzchni obrabianego elementu. W praktyce, podtrzymki mogą być regulowane, co pozwala na dostosowanie ich do różnych średnic wałów. W branży produkcyjnej oraz w warsztatach rzemieślniczych, stosowanie podtrzymek jest powszechną praktyką, która zapewnia stabilność procesu obróbczo-wytwórczego. Dobre praktyki wskazują, że ich użycie nie tylko zwiększa efektywność pracy, ale także przyczynia się do wydłużenia żywotności narzędzi skrawających przez minimalizację drgań i poprawę parametrów skrawania.

Pytanie 8

To urządzenie jest używane do skrawania powierzchni płaskich oraz kształtowych, takich jak gwinty, rowki czy koła zębate. Narzędzie na nim zamocowane wykonuje ruch obrotowy?

A. strugarka poprzeczna
B. wiertarka stołowa
C. tokarka karuzelowa
D. frezarka uniwersalna
Frezarka uniwersalna to maszyna skrawająca, która jest szeroko stosowana w przemyśle obróbczo-mechanicznym. Jej główną funkcją jest obróbka skrawaniem powierzchni płaskich oraz kształtowych, co obejmuje m.in. rowki, gwinty czy koła zębate. Opis wskazuje na ruch obrotowy narzędzia, co jest charakterystyczne dla procesów frezarskich, w których obrabiane przedmioty są często umieszczane w uchwytach pod stałym kątem, a narzędzie wykonuje ruch obrotowy wzdłuż swojej osi. Frezarki uniwersalne są wyposażone w różne narzędzia skrawające, co pozwala na elastyczne dostosowanie do specyficznych potrzeb produkcyjnych. W praktyce, frezarki te są wykorzystywane do wytwarzania komponentów w motoryzacji, lotnictwie oraz w produkcji maszyn, co sprawia, że znajomość ich działania jest kluczowa dla inżynierów i techników. Dobrą praktyką w obróbce na frezarkach jest stosowanie odpowiednich parametrów skrawania, takich jak prędkość obrotowa narzędzia oraz posuw, co wpływa na jakość obróbki oraz trwałość narzędzi.

Pytanie 9

Jakie maszyny wykorzystuje się w obróbce seryjnej do przetwarzania otworów o kształcie np.: wielowypustowym?

A. dłutownice
B. przeciągarki
C. tokarki CNC
D. honownice
Przeciągarki są maszynami wykorzystywanymi do obróbki otworów kształtowych, takich jak otwory wielowypustowe, które wymagają precyzyjnego dopasowania i wysokiej jakości powierzchni. Ich konstrukcja pozwala na wykonywanie skomplikowanych kształtów przy zachowaniu dużej dokładności wymiarowej. Przeciągarki stosują narzędzia o wysokiej twardości, które przekształcają materiał poprzez przesuwanie go wzdłuż formy narzędzia, co idealnie nadaje się do produkcji seryjnej detali o dużej powtarzalności. W praktyce, przemysł motoryzacyjny często wykorzystuje przeciągarki do obróbki otworów w częściach silników, gdzie dokładność i wytrzymałość są kluczowe. Standardy takie jak ISO 2768 definiują wymagania tolerancyjne, które przeciągarki są w stanie spełnić, co czyni je idealnym rozwiązaniem do produkcji seryjnej w branży. Dodatkowo, przeciągarki umożliwiają efektywne usuwanie materiału, co przekłada się na optymalizację procesu produkcyjnego i redukcję kosztów operacyjnych.

Pytanie 10

Aby precyzyjnie umiejscowić imadło maszynowe na stole frezarki, wykorzystuje się

A. mimośrodowe dźwignie
B. pozycjonujące kołki
C. ustalające kamienie
D. wahliwe podkładki
Kamienie ustalające to elementy, które zapewniają stabilność i precyzyjne pozycjonowanie imadła maszynowego na stole frezarki. Ich główną funkcją jest eliminacja luzów oraz zapewnienie stałej pozycji, co jest kluczowe podczas obróbki materiałów. W praktyce, kamienie ustalające montuje się w odpowiednich punktach na stole frezarki, a imadło jest do nich dociskane, co pozwala na uzyskanie wysokiej dokładności obróbczej. Użycie kamieni ustalających jest zgodne z dobrymi praktykami w obróbce skrawaniem, gdzie precyzja i stabilność są kluczowe dla jakości wykonania. Przykładem zastosowania mogą być operacje frezarskie, gdzie wymagana jest wysoka dokładność wymiarowa detali. W standardach ISO dotyczących obróbki skrawaniem podkreśla się znaczenie stabilności narzędzi oraz ich prawidłowego zamocowania, co ma na celu uniknięcie błędów w wymiarach oraz poprawę bezpieczeństwa pracy.

Pytanie 11

Która komenda umożliwia wybór płaszczyzny interpolacji w osiach XY?

A. G17
B. G01
C. G90
D. G91
G17 jest kodem G, który definiuje płaszczyznę interpolacji w osiach XY w programowaniu CNC. Wybór tej płaszczyzny jest kluczowy dla prawidłowego wykonywania ruchów narzędzia skrawającego w procesie obróbczo-ustawczym. Kiedy używamy G17, wskazujemy, że wszystkie ruchy narzędzia będą odbywać się w płaszczyźnie XY, co jest standardem w produkcji komponentów, gdzie precyzyjność w tych osiach jest szczególnie istotna. Na przykład, podczas frezowania lub toczenia elementów, operatorzy często muszą wykonać złożone ścieżki narzędzia w tej płaszczyźnie, co wymaga precyzyjnego skonfigurowania maszyny. Stosowanie G17 minimalizuje ryzyko błędów w trajektorii narzędzia, co z kolei prowadzi do większej efektywności i zgodności z wymaganiami jakościowymi. Znajomość i umiejętność zastosowania kodeksów G jest podstawą pracy w branży obróbczej i stanowi element dobrej praktyki w programowaniu maszyn CNC.

Pytanie 12

Który typ materiału używanego na ostrza narzędzi skrawającychnie nadaje się do obróbki stopów z żelazem?

A. Diament naturalny
B. Stal szybkotnąca
C. Węgliki spiekane
D. Ceramika narzędziowa
Stal szybkotnąca, węgliki spiekane oraz ceramika narzędziowa to materiały, które są szeroko stosowane w obróbce skrawaniem, lecz ich zastosowanie w kontekście obróbki stopów żelaznych różni się znacznie. Stal szybkotnąca, znana z dobrego połączenia twardości i elastyczności, jest powszechnie używana do produkcji narzędzi skrawających. Jej wytrzymałość na wysokie temperatury oraz zdolność do utrzymania ostrości sprawiają, że jest idealnym materiałem do obróbki metali. Węgliki spiekane, będące jednymi z najbardziej twardych materiałów, oferują doskonałą odporność na ścieranie, co czyni je odpowiednimi do intensywnych procesów skrawania. Ceramika narzędziowa, z kolei, ma wysoką twardość, ale jej kruchość ogranicza zastosowanie w obróbce niektórych materiałów. Niemniej jednak, wszystkie te materiały są zaprojektowane z myślą o obróbce metali i są w stanie znieść warunki pracy, które panują podczas skrawania żelaza. Typowym błędem myślowym jest założenie, że wszystkie materiały skrawające mogą być używane zamiennie, co jest nieprawdziwe. Każdy materiał ma swoje specyficzne właściwości, które determinują jego zastosowanie. Właściwy dobór materiału narzędziowego jest kluczowy dla efektywności obróbki, co podkreślają standardy ISO oraz normy branżowe dotyczące narzędzi skrawających.

Pytanie 13

Cykle stałe są wykorzystywane na przykład do programowania

A. gwintowania nożem
B. uruchomienia obrabiarki CNC
C. zatrzymania obrabiarki CNC
D. określania narzędzi
Cykle stałe, w kontekście programowania obrabiarek CNC, to zbiory instrukcji, które mają na celu realizację określonych operacji w sposób zautomatyzowany i powtarzalny. Gwintowanie nożem jest jednym z kluczowych zastosowań cykli stałych, ponieważ wymaga precyzyjnego i kontrolowanego ruchu narzędzia. W standardzie G-code, który jest powszechnie używany w programowaniu CNC, cykle gwintujące, takie jak G76, G85 czy G32, umożliwiają efektywne i powtarzalne wykonanie gwintów o różnych parametrach. Odpowiednie skonfigurowanie tych cykli pozwala na zminimalizowanie błędów i zwiększenie wydajności produkcji. Przykładowo, przy produkcji śrub o wysokiej precyzji, zastosowanie cykli gwintujących pozwala na zachowanie tolerancji wymiarowych oraz poprawne wykończenie powierzchni gwintu, co jest kluczowe dla funkcjonalności końcowego produktu. W praktyce, operatorzy obrabiarek CNC często korzystają z cykli stałych, aby uprościć programowanie i zredukować czas przestoju maszyn, co przekłada się na wyższą efektywność procesów produkcyjnych.

Pytanie 14

Która maszyna narzędziowa wykonuje główny ruch roboczy w formie posuwisto-zwrotnej, a narzędzie porusza się w ruchu obrotowym oraz wgłębnym?

A. Szlifierka do płaszczyzn
B. Przeciągarka
C. Honownica
D. Strugarka wzdłużna
Honownica to maszyna, która wykonuje ruch posuwisto-zwrotny, ale głównie poprawia wymiary wewnętrzne otworów i chropowatość. Nie obraca narzędzia, co w tym przypadku jest kluczowe. Przeciągarka z kolei służy do obróbki długich elementów i przesuwa narzędzie wzdłuż materiału, więc też nie spełnia wymagań. Z kolei strugarka wzdłużna, jak przeciągarka, jest skupiona na formowaniu na długich elementach, a jej ruch nie jest posuwisto-zwrotny w tradycyjnym sensie, bo to bardziej ruch jednostajny. Szlifierka do płaszczyzn łączy cechy obu, skupiając się na precyzyjnych powierzchniach. Jeśli nie rozumiemy ruchów roboczych i zastosowań różnych obrabiarek, to łatwo możemy popełnić błąd w projektowaniu procesów produkcyjnych i przy wyborze narzędzi, co w perspektywie prowadzi do słabszej jakości i większych problemów z produkcją.

Pytanie 15

Funkcja gwintowania G33 wymaga

A. wskazania parametrów średnicy gwintu oraz liczby przejść.
B. ręcznego zaprogramowania każdego etapu działania narzędzia.
C. wskazania parametrów średnicy gwintu oraz głębokości skrawania przy każdym etapie.
D. wskazania parametrów średnicy gwintu, liczby przejść oraz głębokości skrawania przy każdym etapie.
Podanie parametrów średnicy gwintu i liczby przejść bez uwzględnienia ręcznego programowania narzędzia prowadzi do istotnych nieporozumień w zakresie procesu toczenia gwintu G33. W praktyce, sama znajomość średnicy gwintu i liczby przejść nie jest wystarczająca, ponieważ gwinty wymagają precyzyjnego dostosowania parametrów skrawania do konkretnego materiału oraz geometrii narzędzia. Użytkownicy często zapominają, że każdy materiał ma swoje unikalne właściwości skrawne, które mogą znacząco wpłynąć na wydajność obróbki. Ponadto, przejścia narzędzia muszą być dobrze zaplanowane, aby uniknąć problemów związanych z przeciążeniem narzędzia lub zbyt małą głębokością skrawania, co może prowadzić do niewłaściwego kształtu gwintu. Ręczne programowanie pozwala na elastyczne dostosowywanie głębokości skrawania oraz prędkości posuwu w odpowiedzi na zmieniające się warunki obróbcze. Typowym błędem jest przekonanie, że automatyzacja bez odpowiedniego nadzoru operatora wystarczy do osiągnięcia pożądanych efektów. Bez osobistego nadzoru i programowania na poziomie przejścia, jakość wykończenia i dokładność gwintu mogą być znacznie poniżej wymaganych standardów, co może prowadzić do odrzucenia detali podczas kontroli jakości.

Pytanie 16

Łożyska silnika elektrycznego tokarki uniwersalnej według przedstawionej instrukcji smarowania należy konserwować

Lp.Zespół smarowanyGatunek smaruSposób smarowaniaCzęstotliwość
1ŁożeOlej maszynowy
Shell Tonna 33
Smarować przez rozlanie i rozmazanie.Codziennie
2Śruba pociągowa, nakrętka pod nakrętką--//--Smarować przez polanie na całej długościCodziennie
3Prowadnik śruby pociągowej--//--Oliwiarka smarowniczki kulkoweCodziennie
4Koła zębate gitara, wejście wałka--//--Oliwiarka smarowniczka kulkowa wejścia wałkaRaz na tydzień
5Sanie wzdłużne, poprzeczne, prowadnice, pokrętła, dźwignie--//--Oliwiarka smarowniczki kulkoweCodziennie
6Konik tuleja konika--//--Oliwiarka smarowniczki kulkoweCodziennie
7Suport wzdłużny mechanizmyOlej maszynowy
Shell Tonna 33
Oliwiarka smarowniczki kulkoweCodziennie
8WrzeciennikOlej maszynowy
Shell Tellus 22
Wypełnić korpus wrzeciennikaWymiana co dwa miesiące eksploatacji
9Wrzeciennik
(pozostałe modele)
--//--Oliwiarka ( po zdjęciu pokrywy górnej lub bocznej )Raz na tydzień
10Łożyska silnika elektrycznegoSmar stały
LT 4
W razie potrzeby lub przy wymianie łożyskRaz na pół roku

A. raz na dwa miesiące.
B. raz na pół roku.
C. raz na tydzień.
D. codziennie.
Odpowiedź "raz na pół roku" jest poprawna, ponieważ zgodnie z instrukcją smarowania dla łożysk silnika elektrycznego tokarki uniwersalnej, konserwacja tych elementów powinna odbywać się co pół roku. Regularne przeglądy oraz smarowanie łożysk są kluczowe dla zapewnienia ich prawidłowego działania oraz wydłużenia ich żywotności. W przypadku tokarek, które są intensywnie eksploatowane, odpowiednie smarowanie przyczynia się do zmniejszenia tarcia oraz zużycia, co ma bezpośredni wpływ na precyzję obróbki. W praktyce, wiele zakładów stosuje harmonogramy konserwacji, które uwzględniają nie tylko smarowanie, ale również kontrolę stanu łożysk oraz ich wymianę w przypadku wykrycia uszkodzeń. Przykładowo, jeśli łożysko nie jest odpowiednio smarowane, może dojść do przegrzewania, co prowadzi do uszkodzeń i w konsekwencji awarii maszyny. Dlatego tak ważne jest przestrzeganie zaleceń producenta dotyczących konserwacji.

Pytanie 17

Jakie urządzenie należy zastosować do zmierzenia średnicy wałka O26±0,02?

A. suwmiarki z podziałką 0,05.
B. średnicówki mikrometrycznej.
C. mikrometru o zakresie pomiaru 25-50 mm/0,01.
D. mikrometru wysokościomierza.
Mikrometr o zakresie pomiaru 25-50 mm z dokładnością 0,01 mm jest idealnym narzędziem do pomiaru średnicy wałka O26±0,02 mm. Jego konstrukcja pozwala na precyzyjne pomiary, co jest kluczowe w aplikacjach inżynieryjnych, gdzie tolerancje są istotne. Mikrometry są zaprojektowane z myślą o dokładności, dzięki czemu mogą być używane w laboratoriach metrologicznych, produkcji i innych dziedzinach przemysłowych. Przy pomiarze wałka o średnicy 26 mm, mikrometr zapewnia nie tylko precyzję, ale także powtarzalność wyników, co jest niezwykle istotne w procesach kontroli jakości. W praktyce, mikrometry są często stosowane do pomiaru części w branży motoryzacyjnej oraz w produkcji maszyn, gdzie szczegółowe wymagania dotyczące wymiarów są niezbędne. Zastosowanie mikrometru o odpowiednim zakresie pomiaru gwarantuje, że dokonane pomiary są zgodne z normami ISO, co umożliwia dalsze wykorzystanie tych wyników w dokumentacji technicznej oraz w analizach jakościowych.

Pytanie 18

Sposób realizacji procesów obróbczych do wykonania gwintu wewnętrznego na tokarce uniwersalnej powinien obejmować następujące etapy:

A. nawiercanie, wiercenie, fazowanie krawędzi, gwintowanie
B. wiercenie, nawiercanie, gwintowanie
C. nawiercanie, wiercenie, gwintowanie, fazowanie krawędzi
D. wiercenie, gwintowanie, fazowanie krawędzi
Odpowiedź, którą wybrałeś, czyli nawiercanie, wiercenie, fazowanie krawędzi i gwintowanie, jest całkiem trafna. Dobrze oddaje to, jak powinny wyglądać etapy przy robieniu gwintu wewnętrznego na tokarce. Zaczynamy od nawiercania, co pomaga nam przygotować otwór o mniejszej średnicy – to w sumie ułatwia potem wiercenie. Potem wiercimy, żeby zrobić otwór o odpowiedniej wielkości, co jest bardzo ważne przed gwintowaniem. Fajnie, że pamiętasz o fazowaniu krawędzi, bo to usuwa ostre krawędzie i chroni narzędzie gwintujące, a także sprawia, że zaczynamy gwintowanie bez problemów. Na końcu mamy gwintowanie, które tak naprawdę polega na robieniu gwintu wewnętrznego, co pozwala nam połączyć elementy zewnętrzne. Cała ta sekwencja działa zgodnie z zasadami obróbczo-technologicznymi i dzięki temu nasze produkty mają lepszą jakość i precyzję, a to jest mega ważne w mechanice i inżynierii.

Pytanie 19

Mocno odkształcone plastycznie fragmenty materiału, które przylegają do powierzchni natarcia w sąsiedztwie krawędzi ostrza, nazywają się

A. powłoka ochronna
B. wiór
C. zakrzepły metal
D. narost
Odpowiedź 'narost' jest poprawna, ponieważ odnosi się do zjawiska, które występuje w procesie obróbki skrawaniem. Narost to warstwa silnie odkształconego materiału, która gromadzi się na powierzchni natarcia narzędzia skrawającego. Powstaje w wyniku wysokich temperatur i ciśnień, które mają miejsce w strefie skrawania, szczególnie w pobliżu krawędzi ostrza. Narosty mogą wpływać na trwałość narzędzia oraz jakość obróbki, dlatego istotne jest ich kontrolowanie i minimalizowanie. W praktyce, wybór odpowiednich parametrów skrawania, takich jak prędkość obróbcza czy posuw, może znacząco wpłynąć na ilość powstających narostów. W przemyśle stosuje się różne metody, takie jak chłodzenie narzędzi czy odpowiednie materiały skrawające, aby ograniczać ten efekt. Zrozumienie zjawiska narostu jest kluczowe dla inżynierów zajmujących się obróbką materiałów, ponieważ pozwala na optymalizację procesów wytwarzania oraz poprawę jakości wyrobów.

Pytanie 20

Jaki instrument jest przeznaczony do oceny parametrów chropowatości oraz falistości powierzchni?

A. Transametr.
B. Profilometr.
C. Twardościomierz.
D. Wydolnik.
Profilometr to całkiem przydatne urządzenie, które pozwala nam dokładnie mierzyć chropowatość i falistość powierzchni. W praktyce to ma ogromne znaczenie w wielu branżach, takich jak inżynieria mechaniczna czy obróbka materiałów. Wiesz, że są dwa rodzaje profilometrów? Możemy spotkać te kontaktowe, gdzie igła się przesuwa po próbce i zapisuje zmiany wysokości, a także te bezkontaktowe, które korzystają z technologii optycznych, jak interferometria. Chropowatość to kluczowy parametr, który, według norm ISO 4287 i ISO 1302, ma wpływ na różne właściwości, takie jak tarcie czy odporność na korozję. Na przykład w przemyśle motoryzacyjnym, precyzyjne mierzenie chropowatości cylindrów silników wpływa na ich wydajność, co czyni ten pomiar naprawdę ważnym w produkcji.

Pytanie 21

Na proces łamania wióra podczas obróbki przy użyciu płytki wieloostrzowej największy wpływ ma

A. powierzchnia przyłożenia.
B. pomocnicza powierzchnia przyłożenia.
C. powierzchnia natarcia.
D. promień narzędzia.
Powierzchnia natarcia to naprawdę ważny element, jeśli chodzi o obróbkę wiórową. To na niej narzędzie ma bezpośredni kontakt z materiałem, co ma spore znaczenie dla całego procesu skrawania. Kształt i geometria tej powierzchni wpływają na kąt natarcia, a to z kolei decyduje o tym, jakie siły działają na wiór podczas obróbki. Jak dobrze zaprojektujesz tę powierzchnię, to wióry będą się lepiej odprowadzać i mniej się łamać, co jest mega ważne, zwłaszcza przy twardych materiałach. Gdy dobierzesz odpowiednie parametry, jak prędkość skrawania i posuw, łatwiej osiągniesz lepszą wydajność i jakość detali. W inżynierii kluczowe jest, żeby wybierać narzędzia skrawające z odpowiednią geometrią i regularnie je ostrzyć. Wiedza o tym, jak powierzchnia natarcia wpływa na skrawanie, jest więc niezbędna dla każdego, kto pracuje z obróbką skrawaniem.

Pytanie 22

Jakie środki należy zastosować do codziennej konserwacji stołu frezarki?

A. smar plastyczny
B. nafta techniczna
C. olej maszynowy
D. wazelina techniczna
Olej maszynowy to podstawa, jeśli chodzi o dbanie o stół frezarki. Dzięki niemu wszystko działa lepiej i dłżej. Zmniejsza tarcie między ruchomymi częściami, co jest mega ważne, bo jak coś się zatarcie, to mogą być spore kłopoty. Wiele firm od sprzętu poleca użycie odpowiednich olejów, bo to naprawdę poprawia działanie całego mechanizmu. Fajnie jest też używać oleju o właściwej lepkości, zwłaszcza jak pracujesz na dużych obciążeniach. Olej syntetyczny jest super, bo ma lepsze właściwości smarujące. Poza tym dobrze penetruje, więc dociera w miejsca, które są najbardziej narażone na zużycie. Tak naprawdę regularne smarowanie jest kluczowe, jeśli chcesz, żeby frezarka służyła jak najdłużej i działała jak należy.

Pytanie 23

Jaką czynność powinien wykonać operator po zakończeniu pracy?

A. Nawet smarowanie punktów smarowania
B. Konserwacja prowadnic obrabiarki
C. Uzupełnienie płynu chłodzącego w zbiorniku
D. Rozmontowanie imaka narzędziowego
Konserwacja prowadnic obrabiarki jest kluczowym elementem zapewnienia prawidłowego funkcjonowania maszyn. Czynność ta obejmuje regularne czyszczenie, smarowanie oraz sprawdzanie stanu technicznego prowadnic, co wpływa na ich żywotność oraz precyzję obróbczych operacji. Prowadnice, będące istotnym elementem systemu prowadzenia ruchu, muszą być utrzymywane w odpowiednim stanie, aby zminimalizować zużycie oraz ryzyko wystąpienia błędów podczas obróbki. Na przykład, w przypadku obrabiarki CNC, zaniedbanie konserwacji prowadnic może prowadzić do odchylenia od zadanych wymiarów, co w konsekwencji skutkuje wadliwymi wyrobami. Zgodnie z normami ISO, regularne przeglądy i konserwacja maszyn są niezbędne do utrzymania efektywności produkcji oraz zmniejszenia kosztów eksploatacyjnych. Warto również wprowadzać harmonogramy konserwacji, które uwzględniają specyfikę i intensywność użytkowania sprzętu, co pozwoli na optymalne zarządzanie środkami produkcji.

Pytanie 24

Który zespół tokarki konwencjonalnej podlega smarowaniu raz na tydzień? Skorzystaj z danych przedstawionych w tabeli.

Tabela smarowania i konserwacji tokarki konwencjonalnej
Lp.Zespół smarowanyGatunek smaruSposób smarowaniaCzęstotliwość
1ŁożeOlej maszynowy
Shell Tonna 33
Smarować przez rozlanie
i rozmazanie
Codziennie
2Śruba pociągowa, półnakrętka-//-Smarować przez polanie na całej długościCodziennie
3Wspornik śruby pociągowej-//-Oliwiarka, smarowniczki kulkoweCodziennie
4Koła zębate gitary, wejście wałka-//-Oliwiarka, smarowniczka kulkowa wejścia wałkaRaz na tydzień
5Sanie wzdłużne, poprzeczne, prowadnice, pokrętła, dźwignie-//-Oliwiarka, smarowniczki kulkoweCodziennie
6Konik, tuleja konika-//-Oliwiarka, smarowniczki kulkoweCodziennie
7Suport wzdłużny-//-Oliwiarka, smarowniczki kulkoweCodziennie
8Łożyska silnika elektrycznegoSmar stały ŁT 4W razie potrzeby lub przy wymianie łożyskRaz na pół roku

A. Łożyska silnika elektrycznego.
B. Koła zębate gitary.
C. Suport wzdłużny.
D. Wspornik śruby pociągowej.
Koła zębate gitary to kluczowy zespół w mechanizmie tokarki konwencjonalnej, który wymaga regularnego smarowania co tydzień, aby zapewnić bezawaryjną i wydajną pracę urządzenia. W kontekście konserwacji sprzętu, smarowanie tych elementów jest niezwykle istotne dla minimalizacji tarcia i zużycia, co z kolei wpływa na żywotność tokarki. Praktyczne zastosowanie tej wiedzy polega na regularnym sprawdzaniu poziomu smaru oraz stanu technicznego kół zębatych. Warto również zwrócić uwagę na odpowiednie rodzaje smarów rekomendowane przez producentów, które powinny być stosowane zgodnie z ich zaleceniami. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie regularnej konserwacji maszyn jako kluczowego elementu systemu zarządzania jakością. Niezapewnienie odpowiedniego smarowania może prowadzić do awarii mechanicznych, co narazi zakład na wysokie koszty napraw oraz przestoje w produkcji.

Pytanie 25

Jakie oznaczenie bloku programu wskazuje na ruch narzędzia po łuku?

A. G01 A135 Z-100
B. G00 X100 Z100
C. G03 X20 Z-10 I0 K10
D. G33 Z4 K1
Odpowiedź G03 X20 Z-10 I0 K10 jest poprawna, ponieważ kod G03 w języku programowania CNC oznacza ruch po łuku w kierunku przeciwnym do ruchu wskazówek zegara. W kontekście tej instrukcji, X20 i Z-10 wskazują na końcowe położenie osi X i Z, a parametry I0 i K10 definiują odpowiednio przesunięcie w kierunku osi X i Z, co wpływa na promień łuku. Ruch łukowy jest istotny w programowaniu CNC, ponieważ pozwala na uzyskanie gładkich, ciągłych kształtów, które są niezbędne w precyzyjnej obróbce materiałów. Na przykład, w procesach frezowania lub toczenia, umiejętność programowania ruchów łukowych znacząco podnosi jakość wykonania elementów, eliminując ostre krawędzie, a tym samym zwiększając żywotność narzędzia. W branży obróbczej standardem jest stosowanie takich ruchów w celu optymalizacji procesów produkcyjnych i zwiększenia efektywności maszyn. Przykładem zastosowania ruchów łukowych może być produkcja elementów mechanicznych, gdzie dokładność kształtów jest kluczowa dla ich prawidłowego działania.

Pytanie 26

Zabierak chomątkowy jest wykorzystywany do przekazywania momentu obrotowego na

A. tokarce
B. dłutownicy
C. frezarce
D. przeciągarce
Zabierak chomątkowy, znany również jako zabierak do tokarzy, jest kluczowym elementem w obrabiarkach typu tokarce. Jego główną funkcją jest przenoszenie momentu obrotowego z wrzeciona na obrabiany materiał. W tokarce, zabierak umożliwia precyzyjne obrabianie materiałów poprzez wywieranie odpowiedniego nacisku i przyspieszenia. Przykładowo, podczas obróbki metalu w procesie toczenia, zabierak chomątkowy zapewnia stabilność oraz dokładność cięcia, co przekłada się na wysoką jakość wyprodukowanych elementów. W kontekście standardów branżowych, zastosowanie zabieraka chomątkowego jest zgodne z normami ISO dotyczącymi obrabiarek, które podkreślają znaczenie precyzyjnego przenoszenia momentu obrotowego. Dodatkowo, przy odpowiednim doborze i konserwacji zabieraka, można znacząco zwiększyć żywotność narzędzi i efektywność procesu obróbczo.

Pytanie 27

Elementem służącym do zmiany kierunku ruchu mechanicznego sań wzdłużnych przy zachowaniu kierunku obrotu wrzeciona jest

A. nawrotnica
B. skrzynka suportowa
C. wałek pociągowy
D. gitara
Skrzynka suportowa jest istotnym elementem w mechanizmach obróbczych, jednak jej funkcja nie sprowadza się do zmiany kierunku przesuwu sań bez zmiany kierunku obrotów wrzeciona. Skrzynka suportowa umożliwia przekazywanie ruchu z wrzeciona na narzędzie skrawające, ale nie jest zaprojektowana do zmiany kierunku ruchu mechanicznego bez zmiany kierunku obrotu. Gitara, w kontekście pytania, jest instrumentem muzycznym i nie ma znaczenia w obróbce mechanicznej, więc nie można jej uznać za odpowiedni mechanizm do zmiany kierunku przesuwu. Wałek pociągowy, z kolei, jest elementem układów napędowych w niektórych maszynach, ale ma ograniczone zastosowanie w kontekście precyzyjnego zarządzania kierunkiem ruchu sań wzdłużnych. W praktyce, błędne zrozumienie funkcji tych mechanizmów może prowadzić do nieefektywnego projektowania maszyn oraz niepoprawnego doboru elementów w procesie obróbki. Kluczowe jest zrozumienie, że różne mechanizmy mają określone funkcje i zastosowania, a ich mylne utożsamianie może skutkować problemami w produkcji oraz obniżeniem jakości wykonanej pracy.

Pytanie 28

Ile może wynieść wartość prędkości skrawania przy toczeniu płytką wieloostrzową o gatunku NTP15 stali węglowej konstrukcyjnej o zawartości węgla C równej 0,4%. Skorzystaj z danych w tabeli.

MateriałTwardość
HB
NTP15 NTP25 NTP35
Posuw mm/obr
0,1÷0,80,15÷0,80,2÷1,0
Prędkość skrawania mm/min
Stal węglowa konstrukcyjna
ogólnego przeznaczenia
C0,2%
C0,4%
C0,7%
135430÷230380÷185280÷150
180385÷200370÷175245÷90
230150÷80-200÷70
Stal niskostopowa
wyżarzona
ulepszona
180350-170300÷150180÷90
300220÷110185÷100135÷90
Stal szybkotnąca wyżarzona250220-110200÷125100÷55

A. 120 m/min
B. 160 m/min
C. 220 m/min
D. 80 m/min
Poprawna odpowiedź to 220 m/min, co wynika z zastosowania płytki wieloostrzowej o gatunku NTP15 do toczenia stali węglowej konstrukcyjnej o zawartości węgla 0,4% i twardości HB 180. W tym przypadku przyjęte normy i doświadczenia technologiczne wskazują, że optymalna prędkość skrawania dla tego gatunku stali powinna wynosić od 385 m/min do 200 m/min, a 220 m/min jest wartością, która znajduje się w tym zakresie. Tego typu prędkości skrawania pozwalają na osiągnięcie wysokiej efektywności obróbczej, a także na uzyskanie odpowiedniej jakości powierzchni obrabianych elementów. Przykładowo, przytoczone parametry skrawania są zgodne z normami przemysłowymi, które sugerują, że przy toczeniu stali węglowej warto stosować wyższe prędkości skrawania, aby zminimalizować czas obróbczy oraz poprawić wydajność produkcji. Dodatkowo, dobra praktyka zaleca kontrolę parametrów obróbczych, aby uniknąć przegrzania narzędzi skrawających, co może prowadzić do ich szybszego zużycia. Zastosowanie odpowiednich parametrów skrawania przyczynia się również do poprawy jakości końcowej produktu oraz wydajności całego procesu obróbki.

Pytanie 29

Na podstawie fragmentu dokumentacji techniczno-ruchowej tokarki zasilanej z sieci o napięciu znamionowym wynoszącym 230 V określ najmniejszą i największą wartość napięcia zasilania zapewniającą bezpieczną pracę maszyny.

...

4. Nie należy pracować na maszynie, gdy napięcie sieci waha się więcej niż -15% do +10% napięcia znamionowego sieci.

5. Kontrolę stanu elementów sterowniczych (działanie przycisków, mikro wyłączników, itp.) należy dokonywać co 2 do 3 miesięcy.

...

A. Min. 215 V, maks. 240 V
B. Min. 195,5 V, maks. 253 V
C. Min. 185,5 V, maks. 253 V
D. Min. 207 V, maks. 264,5 V
Poprawna odpowiedź wynika z analizy dopuszczalnych wahań napięcia zasilającego dla tokarki, które zostały określone na podstawie norm i standardów branżowych. Zgodnie z dokumentacją techniczno-ruchową maszyna z napięciem znamionowym 230 V może działać w zakresie napięcia od -15% do +10% wartości nominalnej. Obliczenia pokazują, że dolna granica wynosi 195,5 V (230 V - 15% z 230 V), natomiast górna granica to 253 V (230 V + 10% z 230 V). Takie wahania są istotne dla bezpieczeństwa i stabilności pracy maszyn, ponieważ zbyt niskie napięcie może prowadzić do niewystarczającej mocy napędowej, co w dłuższym czasie może uszkodzić silnik, podczas gdy zbyt wysokie napięcie może doprowadzić do przegrzania układów elektrycznych. Przykładem zastosowania tej wiedzy jest odpowiednie ustawienie zabezpieczeń napięciowych, co potwierdza znaczenie przestrzegania określonych norm, takich jak IEC 61000, dotyczących kompatybilności elektromagnetycznej. Takie podejście zapewnia nie tylko efektywność, ale także bezpieczeństwo operacyjne.

Pytanie 30

Które urządzenie obróbcze zapewnia wysoką precyzję wymiarów, kształtów oraz niską chropowatość powierzchni obrabianych elementów?

A. Tokarka uniwersalna
B. Szlifierka do wałków
C. Strugarka wzdłużna
D. Wiertarka słupowa
Szlifierka do wałków jest urządzeniem, które zapewnia wysoką precyzję wymiarów, kształtu oraz minimalną chropowatość powierzchni obrabianych przedmiotów. Dzięki zastosowaniu odpowiednich narzędzi ściernych oraz precyzyjnych mechanizmów przesuwu, szlifierki są w stanie wykonywać obróbkę materiałów z tolerancjami rzędu mikrometrów. W praktyce, szlifierki do wałków są używane w przemyśle motoryzacyjnym oraz maszynowym do obróbki wałków, które muszą spełniać wysokie normy jakościowe. Dobrą praktyką jest stosowanie odpowiednich parametrów ścierania, takich jak prędkość obrotowa oraz dobór właściwych narzędzi, co pozwala na uzyskanie gładkiej powierzchni oraz zmniejszenie ryzyka uszkodzeń materiałów. W branży często korzysta się z norm ISO dotyczących jakości powierzchni, co wskazuje na znaczenie stosowania odpowiednich technologii obróbczych dla zapewnienia wysokiej jakości produktów.

Pytanie 31

Jakie narzędzie należy zastosować do pomiaru wałka o średnicy ϕ16h7(-0,018)?

A. mikrometru wewnętrznego
B. macek wewnętrznych
C. suwmiarki uniwersalnej
D. sprawdzianu szczękowego
Sprawdzian szczkowy to naprawdę przydatne narzędzie, jeśli chodzi o kontrolę średnicy wałków, na przykład wałka o średnicy ϕ16h7(-0,018). Taki wałek ma swoje tolerancje, a to znaczy, że jego rzeczywista średnica może się różnić w określonych granicach. Dzięki sprawdzianowi szczkowym możemy szybko i dokładnie sprawdzić, czy wałek mieści się w tych tolerancjach. Cały proces polega na umieszczeniu wałka między szczękami sprawdzianu i sprawdzeniu, czy średnica jest zgodna z wymaganiami normy. W moim doświadczeniu, korzystanie z takich narzędzi to standard w kontroli jakości, szczególnie w mechanice i produkcji precyzyjnej. Tego typu sprawdziany są często spotykane w warsztatach i fabrykach, gdzie służą do oceny wymiarów detali, co jest kluczowe, żeby wszystko dobrze współgrało w maszynach. Dobrze to widać na przykładzie wałków w układach napędowych, gdzie precyzyjne wymiary są bardzo ważne, żeby wszystko działało sprawnie i żeby unikać awarii.

Pytanie 32

Największą korzyścią współrzędnościowej maszyny pomiarowej jest

A. odporność na zanieczyszczenia mierzonych obiektów
B. krótki czas pomiaru prostych obiektów
C. zdolność do pomiaru elementów poruszających się
D. precyzyjny pomiar części o złożonych kształtach, takich jak korpus
Współrzędnościowe maszyny pomiarowe (CMM) są niezwykle efektywne w pomiarze elementów o skomplikowanych kształtach, takich jak korpusy. Ich główną zaletą jest zdolność do precyzyjnego określania wymiarów i kształtów, co jest kluczowe w branżach takich jak motoryzacja, lotnictwo i produkcja narzędzi. CMM wykorzystują różne metody pomiarowe, w tym pomiar dotykowy i bezdotykowy, co pozwala na dokładne uchwycenie detali nawet w najbardziej złożonych geometrach. Przykładem zastosowania jest pomiar kształtów i wymiarów elementów silników lotniczych, gdzie precyzja jest krytyczna dla bezpieczeństwa i wydajności. Dodatkowo, standardy takie jak ISO 10360 definiują metody pomiaru i wymagania dotyczące dokładności, co sprawia, że CMM stają się niezastąpione w zapewnianiu wysokiej jakości produktów. W związku z tym, ich zdolność do precyzyjnego pomiaru skomplikowanych kształtów czyni je fundamentem nowoczesnych procesów kontrolnych w przemyśle.

Pytanie 33

Do przytrzymywania noży tokarskich o kształcie kwadratowym lub prostokątnym na tokarce uniwersalnej stosuje się

A. tulejka redukcyjna
B. imak nożowy
C. głowica narzędziowa
D. trzpień tokarski
Imak nożowy to specjalistyczne narzędzie wykorzystywane do mocowania noży tokarskich o przekroju kwadratowym lub prostokątnym na tokarce uniwersalnej. Dzięki swojej konstrukcji, imak nożowy zapewnia stabilne i precyzyjne mocowanie narzędzi skrawających, co jest kluczowe dla uzyskania wysokiej jakości obróbki. W praktyce, imaki nożowe są często stosowane w przemyśle do wykonywania skomplikowanych operacji tokarskich, gdzie wymagana jest duża dokładność oraz powtarzalność. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie precyzyjnego mocowania narzędzi w procesie produkcyjnym, co przyczynia się do minimalizacji odpadów oraz zwiększenia efektywności produkcji. Warto również zauważyć, że dobór odpowiedniego imaka nożowego, dostosowanego do specyfiki obrabianego materiału oraz rodzaju operacji, jest kluczowy dla uzyskania optymalnych rezultatów. Przykładowo, w obróbce stali nierdzewnej, dobór imaka nożowego o odpowiednim kącie natarcia i twardości narzędzia może znacząco wpłynąć na jakość powierzchni oraz trwałość narzędzia.

Pytanie 34

Emulsję wodno-olejową po użyciu można

A. przelać przez gęste sito i stosować do ochrony narzędzi pomiarowych
B. czasowo przechowywać w wyznaczonym miejscu do chwili przekazania firmie zajmującej się utylizacją
C. wykorzystać jako środek ochronny dla prowadnic w obrabiarkach konwencjonalnych
D. zastosować do obróbki cieplno-chemicznej elementów metalowych
Odpowiedź dotycząca czasowego składowania zużytego chłodziwa w wyznaczonym miejscu do momentu przekazania firmie utylizującej jest prawidłowa, ponieważ zgodnie z przepisami ochrony środowiska oraz normami dotyczącymi postępowania z odpadami, takie substancje klasyfikowane są jako odpady niebezpieczne. Odpady te mogą zawierać substancje szkodliwe dla zdrowia ludzi oraz środowiska, dlatego ich przechowywanie powinno odbywać się w sposób bezpieczny i zgodny z przepisami. W praktyce, należy zapewnić odpowiednią lokalizację do składowania, która spełnia normy dotyczące zabezpieczenia przed wyciekami i zanieczyszczeniem gleby oraz wód gruntowych. Często stosuje się pojemniki o odpowiednich certyfikatach, które umożliwiają bezpieczne przechowywanie płynów. Przykładami dobrych praktyk w tej dziedzinie są regularne kontrole stanu technicznego pojemników oraz współpraca z certyfikowanymi firmami zajmującymi się utylizacją odpadów. Tego rodzaju postępowanie nie tylko minimalizuje ryzyko dla zdrowia, ale również przyczynia się do ochrony środowiska i przestrzegania obowiązujących przepisów prawnych.

Pytanie 35

Aby sprawdzić wykonanie wymiaru ϕ40H7, jakiego narzędzia należy użyć?

A. czujnika zegarowego
B. sprawdzianu tłoczkowego dwugranicznego
C. suwmiarki klasycznej
D. sprawdzianu szczękowego regulowanego
Sprawdzian tłoczkowy dwugraniczny jest narzędziem pomiarowym dedykowanym do sprawdzania wymiarów cylindrycznych, takich jak ϕ40H7. W przypadku tolerancji H7, kluczowe jest zapewnienie, że wymiar zewnętrzny obrabianego elementu mieści się w określonym zakresie. Sprawdzian tłoczkowy dwugraniczny składa się z dwóch tłoczków, które mają różne średnice, co umożliwia efektywne sprawdzenie zarówno górnej, jak i dolnej granicy wymiarowej. Przykładowo, jeśli chcemy zweryfikować otwór o średnicy 40 mm, to sprawdzian pozwoli określić, czy otwór nie jest ani za mały, ani za duży, co jest kluczowe dla prawidłowego funkcjonowania elementów mechanicznych. Użycie tego narzędzia jest zgodne z normą ISO 286, która definiuje tolerancje wymiarowe i pasowania. W praktyce, zastosowanie sprawdzianu tłoczkowego dwugranicznego zwiększa dokładność pomiarów i minimalizuje ryzyko pomyłek, co jest niezwykle istotne w precyzyjnej obróbce.

Pytanie 36

Aby zmierzyć średnicę wałka Ø28±0,01, jaka metoda pomiarowa będzie odpowiednia?

A. suwmiarka uniwersalna (0 do 140/0,05)
B. suwmiarka uniwersalna (0 do 140/0,02)
C. średnicówka mikrometryczna (25 do 30/0,01)
D. mikrometr zewnętrzny (25 do 50/0,01)
Mikrometr zewnętrzny o zakresie pomiarowym od 25 do 50 mm oraz dokładności 0,01 mm jest idealnym narzędziem do precyzyjnego pomiaru średnicy wałka o nominalnej średnicy Ø28 mm z tolerancją ±0,01 mm. Mikrometry są zaprojektowane do pomiarów z dokładnością, która znacznie przewyższa to, co oferują suwmiarki, co czyni je bardziej odpowiednimi do zastosowań wymagających wysokiej precyzji. W przypadku wałków mechanicznych, mikrometry często są standardowym narzędziem używanym w warsztatach i laboratoriach metrologicznych. Dzięki temu, że mikrometr ma śrubę mikrometryczną, umożliwia on bardzo precyzyjne dostosowanie do wymiaru, co pozwala na dokładne odczyty. Oprócz tego, ważne jest, aby pamiętać o odpowiednim użytkowaniu mikrometru – przed pomiarem należy go skalibrować, a także dbać o czystość i stan ostrzy, aby uniknąć błędów pomiarowych. Stosowanie mikrometrów zewnętrznych jest zgodne z normami metrologicznymi, co zapewnia wysoką jakość pomiarów i ich powtarzalność.

Pytanie 37

Rodzaj obróbki, w której element obrabiany pozostaje w spoczynku, a narzędzie wieloostrzowe wykonując ruch prostoliniowy usuwa cały nadmiar materiału podczas jednego przejścia, to

A. honowanie
B. przeciąganie
C. gwintowanie
D. rozwiercanie
Przeciąganie to proces obróbczy, w którym narzędzie wieloostrzowe porusza się wzdłuż nieruchomego przedmiotu obrabianego, zbierając naddatek materiału podczas jednego przejścia. Ta metoda jest szczególnie użyteczna w produkcji elementów o dużych wymaganiach co do dokładności wymiarowej oraz jakości powierzchni. Przeciąganie jest wykorzystywane głównie do obróbki otworów, rowków oraz kształtów o dużej długości i małej średnicy. Przykładem zastosowania może być obróbka wałów, w których istotne jest uzyskanie precyzyjnych tolerancji oraz gładkości powierzchni. W porównaniu do innych metod obróbczych, przeciąganie pozwala na uzyskanie lepszej struktury materiału dzięki odpowiedniemu doborowi narzędzi oraz parametrów obróbczych, co przekłada się na wydajność oraz jakość finalnego produktu. Dobrze zaplanowane procesy przeciągania powinny być zgodne z normami technologicznymi oraz standardami jakości, co świadczy o profesjonalnym podejściu do obróbki.

Pytanie 38

W trakcie której obróbki element obrabiany pozostaje nieruchomy, a narzędzie porusza się w głąb bez obrotu?

A. Frezowanie
B. Toczenie
C. Szlifowanie
D. Przeciąganie
Przeciąganie to taka technika obróbcza, gdzie przedmiot jest unieruchomiony, a narzędzie po prostu działa w głąb, bez kręcenia się. W tym procesie narzędzie to prosty, sztywny element, który przesuwa się w kierunku osi przedmiotu, co pozwala stworzyć otwory lub kanały o naprawdę precyzyjnych kształtach. Jest to metoda często stosowana w produkcji, gdy potrzebujemy dużej dokładności wymiarowej i ładnego wykończenia. Na przykład, robi się tak otwory na osie w częściach maszyn albo wałki i rury długie. Przeciąganie docenia się w przemyśle, bo tutaj liczy się jakość, a standardy jak ISO 9001 mówią, że precyzja i powtarzalność są mega ważne. Dzięki tej technice możemy spełnić takie wymagania tolerancji, co jest kluczowe w produkcji części mechanicznych. Szczególnie w branży motoryzacyjnej i lotniczej, gdzie liczy się bezpieczeństwo i niezawodność, przeciąganie to istotny element całego procesu produkcyjnego.

Pytanie 39

Jak powinien wyglądać prawidłowo skonfigurowany blok z interpolacją kołową, która jest zgodna z ruchem wskazówek zegara w frezarce CNC?

A. G03 I0 K5 X-65 Y50
B. G01 X20 Y50
C. G02 I0 J5 X-65 Y50
D. G33 Z5 K2
Odpowiedź G02 I0 J5 X-65 Y50 jest prawidłowa, ponieważ stosuje kod G02, który jest przeznaczony do interpolacji kołowej w kierunku zgodnym z ruchem wskazówek zegara. W tym przypadku, I0 i J5 określają odpowiednio przesunięcie w osi X i Y w stosunku do punktu startowego, co oznacza, że łuk ma promień 5 jednostek w kierunku osi Y, a nie przesunięcie w osi X. Koordynaty końcowe to X-65 i Y50, co jest zgodne z położeniem na płaszczyźnie XY. Tego rodzaju kodowanie jest kluczowe w programowaniu maszyn CNC, szczególnie w obróbce, gdzie precyzyjne ruchy są niezbędne do uzyskania wysokiej jakości detali. Przykładowo, ten kod może być użyty w procesie frezowania elementów o okrągłych kształtach, gdzie wymagane jest precyzyjne odwzorowanie krzywizn. W kontekście dobrych praktyk w programowaniu CNC, stosowanie właściwych kodów G oraz dokładne określenie parametrów interpolacji są fundamentalne dla zminimalizowania ryzyka błędów w produkcji oraz zwiększenia efektywności operacji.

Pytanie 40

Jakie działanie wywołuje funkcja M05 w programie sterującym?

A. wstrzymanie obrotów
B. uruchomienie chłodziwa
C. zakończenie działania programu
D. uruchomienie obrotów w lewo
Funkcja M05 w programie sterującym jest odpowiedzialna za zatrzymanie obrotów narzędzia w maszynach CNC, co jest kluczowe w wielu procesach obróbczych. Zatrzymanie obrotów może być zlecone w różnych warunkach, takich jak zakończenie operacji lub w sytuacji awaryjnej, gdy wymagana jest natychmiastowa interwencja. Przykładowo, po przeprowadzeniu określonej sekwencji cięcia, operator może użyć M05 do zatrzymania wrzeciona przed zmianą narzędzia, co zapewnia bezpieczeństwo i precyzję. Standardy przemysłowe, takie jak ISO 6983, definiują kod G i M, a ich prawidłowe użycie jest kluczowe dla efektywności i bezpieczeństwa operacji CNC. Działanie M05 jest zgodne z najlepszymi praktykami w zakresie programowania CNC, co pozwala na uzyskanie wysokiej jakości obróbki oraz minimalizację ryzyka uszkodzenia narzędzi oraz materiałów.