Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 6 lipca 2025 22:53
  • Data zakończenia: 6 lipca 2025 23:24

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

W parownicy porcelanowej, w której znajduje się 2,5 g naftalenu, umieść krążek bibuły z niewielkimi otworami oraz odwrócony lejek szklany. Zatyczkę lejka zrób z korka z waty. Parownicę umieść w płaszczu grzejnym. Po delikatnym ogrzaniu parownicy, pary substancji przechodzą przez otwory w bibule i kondensują na wewnętrznych ściankach lejka... Powyższy opis dotyczy metody oczyszczania naftalenu przez

A. resublimację
B. krystalizację
C. ługowanie
D. sublimację
Zrozumienie różnicy pomiędzy procesami sublimacji, krystalizacji, ługowania i resublimacji jest kluczowe dla prawidłowej interpretacji opisanego zadania. Krystalizacja polega na przejściu substancji z roztworu do postaci stałej w wyniku obniżenia temperatury lub odparowania rozpuszczalnika. W przypadku naftalenu, metoda ta nie jest adekwatna, gdyż zachodziłoby to przez zamianę cieczy w kryształy, czego nie obserwujemy w opisanym procesie. Ługowanie natomiast odnosi się do rozpuszczania substancji w roztworze, najczęściej w kontekście usuwania zanieczyszczeń z ciał stałych, co także nie jest przyczyną oczyszczania naftalenu w tej procedurze. Resublimacja, choć może wydawać się związana z tym procesem, oznacza powtórne skraplanie gazu w ciele stałym, co również nie ma miejsca w tym kontekście. Typowym błędem jest mylenie procesów fizycznych, co prowadzi do nieprawidłowych wniosków. Zrozumienie mechanizmu każdego z tych procesów oraz ich zastosowań przyczyni się do efektywniejszego stosowania metod oczyszczania w praktyce laboratoryjnej.

Pytanie 3

Jakim przyrządem nie jest możliwe określenie gęstości cieczy?

A. areometr
B. waga hydrostatyczna
C. manometr
D. piknometr
Manometr jest przyrządem służącym do pomiaru ciśnienia gazów i cieczy. Nie jest on jednak przeznaczony do wyznaczania gęstości cieczy. Gęstość, definiowana jako masa na jednostkę objętości, wymaga zastosowania innych narzędzi pomiarowych. Manometr działa na zasadzie różnicy ciśnień, co sprawia, że jest istotny w wielu zastosowaniach przemysłowych, takich jak monitorowanie ciśnienia w systemach hydraulicznych czy pneumatycznych. W praktyce, aby określić gęstość cieczy, można wykorzystać piknometr, który pozwala na bezpośredni pomiar masy próbki i jej objętości, co umożliwia obliczenie gęstości. Innym przyrządem jest areometr, który działa na zasadzie pływania w cieczy i również dostarcza informacji o gęstości. W przemyśle chemicznym, precyzyjne pomiary gęstości są kluczowe w kontroli jakości, dlatego znajomość właściwych narzędzi pomiarowych jest niezbędna.

Pytanie 4

Najwyżej czyste odczynniki chemiczne to odczynniki

A. spektralnie czyste.
B. chemicznie czyste.
C. czyste.
D. czyste do analizy.
Odpowiedź 'spektralnie czyste' jest jak najbardziej na miejscu. Chodzi tutaj o odczynniki chemiczne, które są na najwyższym poziomie czystości – to naprawdę ważne w analizach spektralnych i spektroskopowych. Gdy mamy do czynienia z takimi odczynnikami, musimy pamiętać, że wszelkie zanieczyszczenia mogą zepsuć nasze wyniki. Na przykład w laboratoriach chemicznych, gdzie badamy różne substancje, jakiekolwiek zanieczyszczenia mogą wprowadzić nas w błąd. Najlepsze praktyki w laboratoriach mówią, że powinniśmy używać odczynników spektralnie czystych, zwłaszcza gdy potrzebujemy dużej precyzji, jak w pomiarach absorbancji w spektroskopii UV-Vis. Dlatego stosowanie odczynników o wysokiej czystości jest kluczowe, bo to zapewnia, że wyniki są wiarygodne i dają się powtórzyć. Podobne normy, jak ISO 17025, pokazują, jak istotne jest używanie odczynników o potwierdzonej czystości.

Pytanie 5

Do filtracji osadów drobnokrystalicznych wykorzystuje się filtry

A. sztywne, o największych porach
B. elastyczne, o największych porach
C. elastyczne, o najmniejszych porach
D. sztywne, o najmniejszych porach
Sączki twarde o najmniejszych porach są optymalnym wyborem do sączenia osadów drobnokrystalicznych, ponieważ ich struktura zapewnia skuteczne oddzielanie cząstek stałych od cieczy. Twardość materiału sączka pozwala na zachowanie stabilności mechanicznej podczas procesu filtracji, co jest kluczowe w wielu zastosowaniach laboratoryjnych i przemysłowych. Przykładowo, w laboratoriach chemicznych, gdzie często stosowane są różne metody analityczne, takie jak chromatografia czy spektroskopia, twarde sączki umożliwiają precyzyjne oczyszczanie próbek, eliminując drobne zanieczyszczenia, co wpływa na dokładność uzyskiwanych wyników. Dodatkowo, stosowanie sączków o najmniejszych porach jest zgodne z normami filtracji, które wymagają wykorzystania materiałów o odpowiednich właściwościach mechanicznych i chemicznych, aby zapewnić wysoką efektywność procesu oczyszczania i minimalizację straty substancji. W praktyce, sączki te są wykorzystywane w różnych branżach, w tym w farmacji, biotechnologii oraz przemysłach spożywczym, gdzie czystość produktu finalnego jest absolutnie kluczowa.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Do szklanych narzędzi laboratoryjnych wielomiarowych używanych w analizach ilościowych należy

A. zlewka
B. kolba stożkowa
C. cylinder z podziałką
D. pipeta Mohra
Cylinder z podziałką jest jednym z kluczowych elementów sprzętu laboratoryjnego wykorzystywanego w analizie ilościowej, ze względu na swoją zdolność do precyzyjnego pomiaru objętości cieczy. Oferuje on wyraźne podziały, które pozwalają na dokładne odczytanie objętości, co jest niezbędne w wielu eksperymentach chemicznych i biologicznych. Użycie cylindra z podziałką jest standardem w laboratoriach, gdzie wymagana jest wysoka dokładność i powtarzalność pomiarów. Przykładowo, w analizie stężenia roztworu chemicznego, cylinder umożliwia odmierzenie dokładnej ilości reagentów, co jest kluczowe dla uzyskania wiarygodnych wyników. W praktyce laboratoryjnej, zgodnie z normami ISO, korzystanie z odpowiednich narzędzi pomiarowych, takich jak cylinder z podziałką, jest wymogiem, który zapewnia jakość i rzetelność wyników badań. Ponadto, cylinder z podziałką jest łatwy w użyciu i czyszczeniu, co czyni go praktycznym wyborem w codziennej pracy laboratoryjnej.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W którym z podanych równań reakcji dochodzi do zmiany stopni utlenienia atomów?

A. BaCl2 + H2SO4 → BaSO4 + 2HCl
B. 2KClO3 → 2KCl + 3O2
C. CaCO3 → CaO + CO2
D. NaOH + HCl → NaCl + H2O
Reakcja 2KClO3 → 2KCl + 3O2 pokazuje, jak chloran potasu (KClO3) rozkłada się na chlorek potasu (KCl) i tlen (O2). W tym procesie zmieniają się stopnie utlenienia. Chlor w chloranie potasu ma stopień utlenienia +5, a w chlorku potasu już tylko +1. Tlen w cząsteczkach O2 z kolei ma stopień utlenienia 0. Ta zmiana w stopniach utlenienia to przykład redukcji (dla chloru) i utlenienia (dla tlenu). Z mojego doświadczenia, to zrozumienie zmian jest istotne w kontekście reakcji redoks, które są podstawowe w chemii, szczególnie w syntezach organicznych czy produkcji energii. Wiedza o stopniach utlenienia pomaga przewidywać reakcje chemiczne i ich praktyczne zastosowania, co jest ważne, zwłaszcza w chemii analitycznej i przemysłowej.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

W wyniku rozkładu 100 g węglanu wapnia, otrzymano 25 g tlenku wapnia. Wydajność procentowa reakcji wynosi

MCaCO3 = 100g / molMCaO = 56g / mol
A. 100%
B. 56,0%
C. 44,6%
D. 4,4%
Wydajność procentowa reakcji chemicznych jest kluczowym wskaźnikiem efektywności procesów chemicznych. W omawianym przypadku, mając 100 g węglanu wapnia (CaCO3), teoretyczna masa tlenku wapnia (CaO), który można uzyskać w wyniku rozkładu, wynosi 56 g. Otrzymana masa 25 g tlenku wapnia pozwala na obliczenie wydajności procentowej, stosując wzór: (rzeczywista masa / teoretyczna masa) * 100%. Obliczenia prowadzą do wartości 44,6%, co wskazuje na to, że tylko część teoretycznej ilości produktu została uzyskana w rzeczywistej reakcji. Taka sytuacja może być efektem różnych czynników, w tym niepełnego rozkładu, strat materiałowych podczas procesu, czy też niewłaściwych warunków reakcji. W praktyce, zrozumienie i obliczanie wydajności reakcji chemicznych jest niezbędne w przemyśle chemicznym i farmaceutycznym, gdzie optymalizacja procesów jest kluczowa dla efektywności kosztowej i jakości produktów. Utrzymywanie wysokiej wydajności jest również zgodne z zasadami zrównoważonego rozwoju, co jest istotne w nowoczesnych procesach produkcyjnych.

Pytanie 12

Nie należy używać gorącej wody do mycia

A. szkiełka zegarkowego
B. kolby stożkowej
C. zlewki
D. kolby miarowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 13

Zestaw do filtracji nie zawiera

A. szklanego lejka
B. metalowego statywu
C. kolby miarowej
D. szklanej bagietki
Kolba miarowa nie jest elementem zestawu do sączenia, ponieważ jej główną funkcją jest dokładne pomiarowanie objętości cieczy. W procesach sączenia, szczególnie w laboratoriach chemicznych i biologicznych, kluczowe jest oddzielenie fazy stałej od cieczy, co odbywa się najczęściej z wykorzystaniem lejek szklany, który jest niezbędny do precyzyjnego kierowania cieczy do naczynia zbiorczego. Bagietka szklana służy do przenoszenia lub dozowania niewielkich ilości substancji, a statyw metalowy jest używany do stabilizacji elementów podczas eksperymentów. W kontekście dobrych praktyk laboratoryjnych, ważne jest zrozumienie roli każdego z tych narzędzi, aby efektywnie przeprowadzać procedury analityczne, takie jak filtracja, gdzie kluczowe jest użycie lejka i odpowiednich filtrów, a kolba miarowa nie jest konieczna w tym procesie. Zrozumienie tych różnic pozwala na lepsze planowanie i przeprowadzanie działań laboratoryjnych, co jest niezbędne w pracy każdego chemika.

Pytanie 14

Jaki jest błąd względny pomiaru na wadze o precyzji 0,1 g dla próbki o wadze 1 g?

A. 10%
B. 0,1%
C. 100%
D. 1%
Błąd względny ważenia określa stosunek błędu pomiaru do wartości mierzonej, wyrażony w procentach. W przypadku wagi o dokładności 0,1 g, oznacza to, że maksymalny błąd pomiaru przy ważeniu próbki o masie 1 g wynosi 0,1 g. Aby obliczyć błąd względny, stosujemy wzór: (błąd pomiaru / wartość mierzona) * 100%. Wstawiając dane: (0,1 g / 1 g) * 100% = 10%. Taki błąd względny jest szczególnie istotny w laboratoriach, gdzie precyzyjność pomiarów jest kluczowa, na przykład w analizach chemicznych, gdzie nawet niewielkie odchylenia mogą prowadzić do błędnych wyników. W praktyce, znajomość błędu względnego pozwala ocenić jakość pomiaru oraz dostosować metodykę ważenia do wymogów analizy. Przy wyborze wagi, warto zwrócić uwagę na jej dokładność oraz na to, w jaki sposób błąd względny wpływa na wyniki końcowe, co jest kluczowe w kontekście standardów jakości, takich jak ISO 17025.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Fragment procedury analitycznej
(...) Przenieś badany roztwór całkowicie do rozdzielacza gruszkowego o pojemności od 50 do 100 cm3, dodaj 5 cm3 roztworu tiocyjanianu potasu oraz 10 cm3 alkoholu izopentylowego, a następnie wstrząsaj zawartością przez 30 sekund.
Po rozdzieleniu faz przenieś roztwór wodny do drugiego rozdzielacza, natomiast fazę organiczną do suchej kolbki miarowej o pojemności 50 cm3(...) Który rodzaj ekstrakcji jest opisany w powyższym fragmencie?

A. Okresowej ciało stałe – ciecz
B. Okresowej ciecz – ciecz
C. Ciągłej ciecz – ciecz
D. Ciągłej ciało stałe – ciecz
Zrozumienie różnicy między ekstrakcją okresową a ciągłą jest kluczowe dla prawidłowego wykonania procedur analitycznych. Ekstrakcja ciągła ciecz – ciecz polega na nieprzerwanym przepływie fazy organicznej, co umożliwia bardziej efektywne wyodrębnienie substancji z roztworu. W przedstawionym fragmencie natomiast opisana została procedura, która polega na jednorazowym przeniesieniu fazy, co sugeruje charakter działania okresowego. Dla typowych błędów myślowych można wskazać dezinformację dotyczącą przepływu faz, gdzie użytkownicy mogą mylnie utożsamiać prostą interakcję substancji z roztworem z procesem ciągłym. Również mylenie ciał stałych z cieczami w kontekście ekstrakcji może prowadzić do nieprawidłowych wniosków, gdyż podstawowym założeniem ekstrakcji ciecz – ciecz jest to, że obie fazy muszą być ciekłe. Niepoprawne odpowiedzi często wynikały z niewłaściwego zrozumienia zasad ekstrakcji oraz ich zastosowania w praktyce laboratoryjnej. Uczenie się tych różnic jest kluczowe dla efektywnego projektowania procesów analitycznych oraz optymalizacji wydobycia substancji chemicznych.

Pytanie 17

Po połączeniu 50 cm3 wody z 50 cm3 alkoholu etylowego, objętość otrzymanej mieszanki jest poniżej 100 cm3. Zjawisko to jest spowodowane

A. desorpcją
B. kontrakcją
C. adsorpcją
D. ekstrakcją
Odpowiedzi takie jak adsorpcja, ekstrakcja i desorpcja odnoszą się do różnych procesów chemicznych, które nie mają bezpośredniego związku z zjawiskiem zmniejszenia objętości mieszaniny wody i alkoholu etylowego. Adsorpcja to proces, w którym cząsteczki substancji przyczepiają się do powierzchni innej substancji, co nie jest przypadkiem w mieszaniu obu cieczy, gdyż mówimy tutaj o interakcji molekularnej, a nie o przyczepności na powierzchni. Ekstrakcja natomiast to technika wydobywania substancji z mieszaniny, co również nie odnosi się do opisanego przypadku. Desorpcja jest procesem odwrotnym do adsorpcji, polegającym na uwalnianiu cząsteczek ze powierzchni, co również nie ma zastosowania w kontekście zmiany objętości po zmieszaniu cieczy. Typowym błędem myślowym jest mylenie tych terminów z procesami zachodzącymi podczas mieszania substancji. Aby poprawnie zrozumieć, dlaczego objętość zmieszanej mieszaniny wody i alkoholu etylowego jest mniejsza niż suma ich objętości, należy skupić się na fundamentalnych zasadach fizyko-chemicznych, które rządzą interakcjami między cząsteczkami, a nie na procesach adsorpcji czy ekstrakcji.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Naczynia z roztworem kwasu siarkowego(VI) o dużym stężeniu nie powinny być pozostawiane otwarte nie tylko za względów bezpieczeństwa, ale także dlatego, że kwas

A. zwiększy swoje stężenie, ponieważ wyparuje woda
B. zwiększy swoją masę, ponieważ jest higroskopijny
C. zmniejszy swoją masę, ponieważ jest lotny
D. zmniejszy swoją masę, ponieważ jest higroskopijny
Niepoprawne odpowiedzi opierają się na niezrozumieniu właściwości kwasu siarkowego(VI) oraz jego interakcji z otoczeniem. Stwierdzenie, że kwas zmniejszy swoją masę, ponieważ jest higroskopijny, jest błędne, ponieważ higroskopijność oznacza zdolność substancji do absorbowania wilgoci, a nie jej utraty. Kwas siarkowy nie jest substancją lotną w standardowych warunkach, co wyklucza możliwość jego utraty masy w wyniku parowania. Warto również zwrócić uwagę, że kwas siarkowy nie jest substancją, która wyparowuje woda w sposób, który prowadziłby do zmniejszenia masy roztworu. Zamiast tego, proces parowania wody prowadzi do koncentracji roztworu oraz potencjalnych niebezpieczeństw związanych z jego przechowywaniem. Odpowiedzi sugerujące, że kwas zmniejszy swoją masę, ilustrują typowy błąd myślowy, polegający na myleniu właściwości fizycznych substancji z ich chemicznymi. Bezpieczne i efektywne zarządzanie substancjami chemicznymi wymaga zrozumienia ich właściwości fizykochemicznych oraz przestrzegania standardów bezpieczeństwa, aby uniknąć niepożądanych reakcji chemicznych.

Pytanie 20

Po rozpuszczeniu substancji w kolbie miarowej, należy odczekać przed dopełnieniem jej wodą "do kreski" miarowej. Taki sposób postępowania jest uzasadniony

A. opóźnieniem w ustaleniu się kontrakcji objętości
B. opóźnieniem w osiągnięciu równowagi dysocjacji
C. koniecznością dokładnego wymieszania roztworu
D. potrzebą wyrównania temperatury roztworu z otoczeniem
Podczas analizy niepoprawnych odpowiedzi warto zauważyć, że zwłoka w ustaleniu się równowagi dysocjacji, choć istotna w kontekście niektórych roztworów, nie jest głównym powodem oczekiwania przed dopełnieniem roztworu. Dysocjacja substancji chemicznych, takie jak kwasów czy zasad, rzeczywiście może wymagać czasu, ale w kontekście dopełniania do kreski w kolbie miarowej, kluczowe jest wyrównanie temperatury. Ponadto, wskazanie na konieczność dobrego wymieszania roztworu nie jest wystarczające, gdyż samo wymieszanie nie uwzględnia wpływu temperatury na objętość cieczy. Koncentracje i właściwości roztworów są ściśle związane z temperaturą, co oznacza, że dopełnienie w momencie, gdy roztwór ma różne temperatury od otoczenia, może prowadzić do błędów w pomiarach. Wspomniana zwłoka w ustaleniu się kontrakcji objętości dotyczy bardziej specyficznych sytuacji, które nie są powszechnie rozpatrywane w kontekście standardowych praktyk przygotowywania roztworów. Typowe błędy myślowe w tym przypadku mogą obejmować brak zrozumienia, jak temperatura wpływa na objętość cieczy oraz jakie są konsekwencje niedopasowania temperatury dla właściwości roztworu. Kluczowe jest zrozumienie, że każde przygotowywanie roztworu wymaga staranności i uwagi na detale, aby zapewnić dokładność i niezawodność wyników analitycznych.

Pytanie 21

Aby sporządzić 20 cm3 roztworu HCl (1+1), należy w pierwszej kolejności wlać do zlewki

A. 10 cm3 wody destylowanej, a następnie 10 cm3 rozcieńczonego kwasu solnego
B. 10 cm3 rozcieńczonego kwasu solnego, a potem 10 cm3 wody destylowanej
C. 10 cm3 stężonego kwasu solnego, a potem 10 cm3 wody destylowanej
D. 10 cm3 wody destylowanej, a potem 10 cm3 stężonego kwasu solnego
Odpowiedź, w której na początku dodajemy 10 cm3 wody destylowanej, a następnie 10 cm3 stężonego kwasu solnego, jest prawidłowa z kilku powodów. Po pierwsze, rozcieńczanie kwasu solnego powinno zawsze rozpocząć się od dodania wody do kwasu, a nie odwrotnie. Dodanie stężonego kwasu do wody zmniejsza ryzyko reakcji egzotermicznej, która może prowadzić do niebezpiecznego rozprysku kwasu. W praktyce, woda powinna być dodawana do kwasu w kontrolowany sposób, aby uniknąć gwałtownego wrzenia. Te zasady są zgodne z najlepszymi praktykami w laboratoriach chemicznych, które podkreślają znaczenie bezpieczeństwa podczas pracy z substancjami żrącymi. Dodatkowo, stężony kwas solny ma gęstość większą niż woda, co oznacza, że jego dodanie do wody powoduje szybkie i silne mieszanie, co ułatwia osiągnięcie pożądanej koncentracji roztworu. W kontekście praktycznym, taka procedura jest niezbędna w laboratoriach analitycznych czy edukacyjnych, gdzie przygotowywanie roztworów o określonych stężeniach jest codziennością.

Pytanie 22

Mianowanie roztworu o stężeniu przybliżonym można wykonać poprzez

A. miareczkowanie innym roztworem, który nie jest mianowany.
B. miareczkowanie tym samym roztworem mianowanym o ściśle określonym stężeniu.
C. zmierzenie gęstości tego roztworu.
D. miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu.
Mianowanie roztworu o stężeniu przybliżonym można skutecznie przeprowadzić poprzez miareczkowanie innym roztworem mianowanym o ściśle określonym stężeniu, ponieważ pozwala to na precyzyjne określenie ilości molesów substancji czynnej w analizowanym roztworze. W praktyce, podczas miareczkowania wykorzystuje się znany roztwór o dokładnie zmierzonym stężeniu, co pozwala na dokładne obliczenia i analizę wyników. Na przykład, w laboratoriach chemicznych często wykorzystuje się miareczkowanie kwasu solnego roztworem wodorotlenku sodu o znanym stężeniu, co umożliwia precyzyjne określenie stężenia kwasu. Zgodnie z normami branżowymi, takimi jak ISO 8655, precyzyjne miareczkowanie jest kluczowe dla uzyskania wiarygodnych wyników analitycznych. Dodatkowo, stosowanie roztworów mianowanych eliminuje wiele zmiennych, które mogłyby wpłynąć na wynik, takich jak niejednorodność roztworów niemianowanych, co czyni je bardziej niezawodnymi w kontekście stosowania w analizach laboratoryjnych.

Pytanie 23

Próbka pobrana z próbki ogólnej, która odzwierciedla cechy partii produktu, określa się jako próbka

A. jednostkowa
B. wtórna
C. pierwotna laboratoryjna
D. średnia laboratoryjna
Odpowiedzi, które wskazują wtórną, jednostkową lub pierwotną laboratoryjną próbkę, opierają się na nieprecyzyjnych definicjach i nie są odpowiednie w kontekście analizy reprezentatywności prób. Wtórna próbka odnosi się często do próbki pobranej z próbki, co nie odzwierciedla pojęcia reprezentatywności całej partii produktu. Ponadto, jednostkowa próbka odnosi się do pojedynczego elementu i nie może dostarczyć informacji na temat całej grupy, co czyni ją niewłaściwą w kontekście analizy statystycznej. Z kolei pierwotna laboratoryjna próbka wskazuje na próbkę pobraną bezpośrednio z miejsca produkcji, ale również nie oddaje koncepcji reprezentatywności. W praktyce, stosowanie tych pojęć może prowadzić do błędnych wniosków dotyczących jakości produktów, co jest niezgodne z najlepszymi praktykami w zakresie kontroli jakości i analizy laboratoryjnej. Używanie niewłaściwych terminów może skutkować poważnymi konsekwencjami, w tym błędami w ocenie ryzyka, co jest kluczowe w wielu branżach, zwłaszcza w farmaceutycznej czy spożywczej. Zrozumienie różnic pomiędzy tymi pojęciami jest istotne dla zapewnienia skutecznych i wiarygodnych analiz oraz zgodności z międzynarodowymi standardami.

Pytanie 24

W tabeli zamieszczono temperatury wrzenia niektórych składników powietrza. Na podstawie tych danych podaj, który ze składników oddestyluje jako ostatni.

Temperatura wrzenia °CSkładniki
-245,9Neon
-182,96Tlen
-195,8Azot
-185,7Argon
A. Tlen.
B. Argon.
C. Azot.
D. Neon.
Wybór azotu, neonu czy argonu jako ostatniego gazu, który oddestyluje, to błąd wynikający z nieprawidłowego rozumienia zasad fizyki gazów i temperatur wrzenia. Azot wrze w -195,79°C, więc jest jednym z tych gazów, które oddzielają się znacznie wcześniej niż tlen. Neon z temperaturą wrzenia -246,08°C też ma znacznie niższą wartość niż tlen, dlatego również wydostaje się przed nim. Argon, z temperaturą -185,85°C, znajduje się gdzieś pomiędzy nimi, także oddestylowuje przed tlenem. To nieprawidłowe podejście wynika z braku zrozumienia, jak działa temperatura wrzenia i jak wpływa na separację gazów. A w praktyce, różnice te są kluczowe w przemyśle. Błędne wnioski mogą prowadzić do problemów w produkcji, dlatego warto znać właściwości fizyczne gazów oraz ich znaczenie w technologii, bo to naprawdę podstawowe aspekty w inżynierii chemicznej.

Pytanie 25

Naczynia miarowe o kształcie rurek poszerzonych w środku, z wąskim i wydłużonym dolnym końcem, przeznaczone do pobierania i transportowania cieczy o ściśle określonej objętości, to

A. wkraplacze
B. cylindry
C. pipety
D. biurety
Pipety to takie fajne naczynka, które trzymamy w laboratoriach, żeby dokładnie mierzyć i przenosić różne płyny. Mają specjalną budowę - szerszą część w środku i wąski koniec, co ułatwia nam nalewanie cieczy w ściśle określonych ilościach. Korzysta się z nich w wielu dziedzinach, jak chemia czy biologia, a nawet w medycynie i farmacji. Na przykład, w biologii molekularnej pipety są super do przenoszenia małych ilości chemikaliów, które potem wykorzystujemy w reakcjach PCR. W labach często używamy pipet automatycznych, bo to pozwala na jeszcze dokładniejsze pomiary i szybszą pracę. A pojemności pipet są różne, więc możemy dobrać odpowiednią do naszych potrzeb. Ważne, żeby dobrze korzystać z tych narzędzi, czyli pamiętać o kalibracji i stosować się do wskazówek producenta - to naprawdę robi różnicę.

Pytanie 26

Na podstawie informacji zawartych w tabeli określ, który parametr spośród podanych należy oznaczyć w pierwszej kolejności.

Tabela. Sposoby utrwalania próbek wody i ścieków, miejsce analizy, dopuszczalny czas przechowywania próbek
Oznaczany parametrRodzaj naczynia do przechowywania próbkiSposób utrwalania próbkiMiejsce wykonania analizyDopuszczalny czas przechowywania próbki
Chlorkiszklane
lub polietylenowe
-laboratorium96 godzin
Chlor pozostałyszklane-w miejscu
pobrania próbki
-
ChZTszklanezakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium24 godziny
Kwasowośćszklane
lub polietylenowe
schłodzenie
do temperatury 2-5°C
laboratorium4 godziny
Manganszklane
lub polietylenowe
zakwaszenie do pH<2,
schłodzenie
do temperatury 2-5°C
laboratorium48 godziny
A. Chlor pozostały.
B. Mangan.
C. Chemiczne zapotrzebowanie na tlen (ChZT).
D. Kwasowość.
Odpowiedzi takie jak 'Chemiczne zapotrzebowanie na tlen (ChZT)', 'Kwasowość' czy 'Mangan' są nieprawidłowe w kontekście priorytetów w oznaczaniu parametrów jakości wody. Chemiczne zapotrzebowanie na tlen, choć istotne, jest wskaźnikiem obciążenia organicznego, który niekoniecznie odzwierciedla bieżący stan dezynfekcji wody. Oznaczanie ChZT powinno następować po ocenie wskaźników dezynfekcji, ponieważ jego analiza wymaga więcej czasu i jest mniej pilna w kontekście bezpieczeństwa zdrowotnego. Kwasowość z kolei jest parametrem, który może mieć wpływ na stabilność wody, jednak nie jest bezpośrednio związana z ryzykiem biologicznym, co sprawia, że nie powinna być pierwszym priorytetem w procedurach monitorowania. Mangan jest związkem, który wpływa na barwę i smak wody, ale jego obecność nie wskazuje na skuteczność dezynfekcji. Pomijając oznaczanie chloru pozostałego, można przeoczyć kluczowy element gwarantujący bezpieczeństwo, co jest sprzeczne z dobrymi praktykami zarządzania jakością wody, które kładą nacisk na bieżące monitorowanie i reagowanie na zagrożenia.

Pytanie 27

Skuteczny środek do osuszania

A. powinien działać wolno.
B. powinien być rozpuszczalny w cieczy, która jest suszona.
C. nie powinien przyspieszać rozkładu suszonej substancji.
D. powinien wchodzić w reakcję z substancją suszoną i nie prowadzić do jej utlenienia.
Dobry środek suszący nie powinien katalizować rozkładu substancji suszonej, ponieważ jego główną funkcją jest usunięcie wody bez wpływania negatywnego na właściwości chemiczne suszonego materiału. Katalizatory mogą przyspieszać reakcje chemiczne, co w przypadku substancji wrażliwych na utlenienie czy degradację prowadziłoby do obniżenia ich jakości oraz zmiany ich właściwości. Na przykład, w przemyśle farmaceutycznym, gdzie utrzymanie stabilności substancji czynnych jest kluczowe, stosowanie środków, które nie katalizują rozkładów jest absolutnie niezbędne. Dobre praktyki sugerują, aby wybierać środki suszące zgodne z wymaganiami danej substancji, unikając jednocześnie substancji, które mogłyby przyczynić się do degradacji. Dlatego kluczowe jest dobieranie odpowiednich metod suszenia, takich jak suszenie w próżni czy użycie substancji adsorpcyjnych, które nie mają wpływu na chemiczne właściwości suszonego materiału, co jest zgodne z normami jakościowymi takimi jak ISO 9001.

Pytanie 28

Przy przygotowywaniu 100 cm3 roztworu o określonym stężeniu procentowym (m/V) konieczne jest odważenie wyliczonej ilości substancji, a następnie przeniesienie jej do

A. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, przenieść do kolby miarowej, opisać
B. zlewki, rozpuścić w 100 cm3 rozpuszczalnika, opisać, wymieszać bagietką
C. kolby miarowej, dodać 100 cm3 rozpuszczalnika, wymieszać, opisać
D. kolby miarowej, rozpuścić, uzupełnić kolbę rozpuszczalnikiem do kreski, wymieszać, opisać
W procesie przygotowywania roztworów o określonym stężeniu procentowym (m/V) kluczowe jest zastosowanie kolby miarowej. Korzystanie z kolby miarowej pozwala na precyzyjne odmierzenie objętości roztworu. Po odważeniu odpowiedniej ilości substancji, przenosimy ją do kolby miarowej, a następnie dodajemy rozpuszczalnik do kreski. To zapewnia, że całkowita objętość roztworu będzie dokładnie wynosić 100 cm³, co jest niezbędne do osiągnięcia żądanej koncentracji. Po dopełnieniu kolby rozpuszczalnikiem, ważne jest, aby dokładnie wymieszać roztwór, aby zapewnić jednorodność. Opisanie roztworu, tj. podanie jego stężenia, daty oraz innych istotnych informacji, jest częścią dobrej praktyki laboratoryjnej, co ułatwia późniejsze identyfikowanie roztworu oraz zapewnia bezpieczeństwo pracy. Tego typu procedury są zgodne z wytycznymi dotyczącymi bezpieczeństwa chemicznego oraz standardami jakości w laboratoriach badawczych i przemysłowych.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Proces chemiczny, który polega na przejściu substancji w stanie stałym do roztworu, związany z reakcją tej substancji z rozpuszczalnikiem, to

A. krystalizacja
B. ekstrakcja
C. rozpuszczanie
D. roztwarzanie
Roztwarzanie jest zjawiskiem chemicznym, które polega na rozpuszczaniu substancji stałej w rozpuszczalniku, co prowadzi do utworzenia roztworu. Proces ten jest istotny w wielu dziedzinach, w tym w chemii analitycznej, farmakologii czy technologii żywności. Przykładem może być rozpuszczanie soli w wodzie, które ilustruje, jak jony sodu i chlorkowe oddzielają się i przemieszczają w rozpuszczalniku. Roztwarzanie jest kluczowe w produkcji leków, gdzie substancje czynne muszą być odpowiednio rozpuszczone, aby mogły być wchłaniane przez organizm. Przykładowo, w farmacjach stosuje się różne metody roztwarzania, aby zapewnić właściwe stężenie substancji aktywnej. Zgodnie z dobrymi praktykami w laboratoriach, kontrola warunków takich jak temperatura oraz pH jest niezbędna, aby osiągnąć optymalne rezultaty. Warto również zaznaczyć, że roztwarzanie może być przyspieszane poprzez mieszanie, co zwiększa kontakt pomiędzy rozpuszczalnikiem a substancją stałą, co z kolei pozwala na efektywniejszy proces rozpuszczania.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Sód powinien być przechowywany

A. w pojemniku z dowolnym zamknięciem pod warstwą chloroformu
B. w szczelnie zamkniętym pojemniku pod warstwą nafty
C. w pojemniku z dowolnym zamknięciem pod warstwą nafty
D. w szczelnie zamkniętym pojemniku pod warstwą chloroformu
Przechowywanie sodu pod warstwą chloroformu czy nafty w pojemnikach o dowolnym zamknięciu jest niewłaściwe i może prowadzić do niebezpiecznych sytuacji. Chloroform, jako rozpuszczalnik organiczny, ma zdolność do interakcji z metalami alkalicznymi, co może wywołać niepożądane reakcje chemiczne. W przypadku sodu, kontakt z chloroformem może prowadzić do powstawania niebezpiecznych produktów, co stwarza ryzyko eksplozji lub pożaru. Ponadto, przechowywanie w pojemniku o dowolnym zamknięciu nie zapewnia odpowiedniego zabezpieczenia przed wilgocią czy powietrzem, co jest kluczowe dla reaktywnych metali. Zastosowanie niewłaściwego pojemnika może doprowadzić do uwolnienia substancji niebezpiecznych do otoczenia, co narusza standardy BHP i regulacje dotyczące składowania substancji chemicznych. Warto zauważyć, że dla metali alkalicznych, takich jak sód, stosowanie odpowiednich pojemników w połączeniu z substancjami ochronnymi jest nie tylko wymaganiem prawnym, ale także kluczowym elementem zapewniającym bezpieczeństwo w laboratoriach i przemyśle. Niezrozumienie tych zasad może prowadzić do poważnych konsekwencji zdrowotnych i środowiskowych.

Pytanie 34

Jakie substancje są potrzebne do uzyskania nierozpuszczalnego wodorotlenku cynku?

A. tlenek cynku i wodorotlenek sodu
B. chlorek cynku i wodorotlenek sodu
C. cynk i wodę
D. chlorek cynku i wodę
Chociaż chlorek cynku i woda mogą wydawać się logicznym połączeniem, reakcja ta nie prowadzi do wytworzenia nierozpuszczalnego wodorotlenku cynku. Chlorek cynku jest dobrze rozpuszczalny w wodzie, co oznacza, że nie dojdzie do wytrącenia Zn(OH)2, ponieważ wymagany jest dodatkowy reagent, który dostarczy jony hydroksylowe. Podobnie, reakcja samego cynku z wodą nie prowadzi do powstania wodorotlenku cynku. Cynk w reakcji z wodą tworzy cynkowy wodorotlenek dopiero w obecności wysokich temperatur lub w odpowiednich warunkach, co czyni ten proces niepraktycznym w standardowych warunkach laboratoryjnych. Z kolei tlenek cynku, będący azotkiem, z wodorotlenkiem sodu nie wyprodukuje wodorotlenku cynku, gdyż tlenek cynku nie wykazuje odpowiednich właściwości do tego typu reakcji. Pojawiają się tutaj typowe błędy myślowe związane z niepełnym zrozumieniem reakcji chemicznych oraz ich warunków, a także z myleniem etapów reakcji i produktów. Kluczowe jest zrozumienie, że do uzyskania nierozpuszczalnego osadu wymagane są odpowiednie reagenty oraz warunki reakcji, co podkreśla znaczenie wiedzy teoretycznej w praktycznych zastosowaniach chemicznych.

Pytanie 35

Do rozpuszczania próbek wykorzystuje się wodę królewską, która stanowi mieszaninę stężonych kwasów

A. HNO3 i HCl w proporcji objętościowej 3:1
B. H2SO4 i HCl w proporcji objętościowej 3:1
C. H2SO4 i HCl w proporcji objętościowej 1:3
D. HCl i HNO3 w proporcji objętościowej 3:1
Odpowiedź, że woda królewska jest mieszaniną HCl i HNO3 w stosunku objętościowym 3:1, jest poprawna. Woda królewska to silnie żrąca substancja, zdolna do rozpuszczania metali szlachetnych, takich jak złoto i platyna. Składa się głównie z kwasu solnego (HCl) i kwasu azotowego (HNO3), co czyni ją nieocenionym narzędziem w laboratoriach chemicznych oraz w przemyśle metalurgicznym. Stosunek 3:1 jest kluczowy, ponieważ zapewnia odpowiednie proporcje kwasów, które umożliwiają ich synergiczne działanie, gdzie HCl dostarcza jony chlorowe, a HNO3 przyczynia się do utleniania metali. W praktyce, woda królewska jest często wykorzystywana do analizy chemicznej i przygotowywania próbek do dalszych badań, a także w procesach oczyszczania metali. W branży laboratoryjnej przestrzeganie standardów bezpieczeństwa jest niezbędne, ponieważ zarówno HCl, jak i HNO3 są substancjami niebezpiecznymi, a ich mieszanie wymaga ostrożności oraz stosowania odpowiednich środków ochrony osobistej, takich jak rękawice i okulary ochronne.

Pytanie 36

Instrukcja dotycząca przygotowania wzorcowego roztworu NaCl
0,8242 g NaCl, które wcześniej wysuszono w temperaturze 140 °C do stałej masy, należy rozpuścić w kolbie miarowej o pojemności 1 dm3 w wodzie podwójnie destylowanej, a następnie uzupełnić do kreski tym samym rodzajem wody.
Z treści instrukcji wynika, że odpowiednio skompletowany sprzęt wymagany do sporządzenia wzorcowego roztworu NaCl, oprócz naczynia wagowego, powinien zawierać

A. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 100 cm3
B. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 1000 cm3
C. wagę laboratoryjną o precyzji ważenia 0,001 g oraz kolbę miarową o pojemności 100 cm3
D. wagę analityczną o precyzji ważenia 0,0001 g oraz kolbę miarową o pojemności 1000 cm3
Wybrana odpowiedź jest prawidłowa, ponieważ do przygotowania wzorcowego roztworu NaCl w kolbie miarowej o pojemności 1 dm³ konieczne jest użycie wagi analitycznej o dokładności 0,0001 g oraz kolby miarowej o pojemności 1000 cm³. Waga analityczna umożliwia precyzyjne ważenie masy NaCl, co jest kluczowe w analizach chemicznych, aby uzyskać roztwór o dokładnej koncentracji. NaCl musi być dokładnie odważony, aby zapewnić, że przygotowany roztwór będzie zgodny z wymaganiami jakościowymi, ponieważ nawet niewielkie odchylenia od właściwej masy mogą prowadzić do błędów w dalszych analizach, takich jak miareczkowanie. Kolba miarowa o pojemności 1000 cm³ jest odpowiednia, ponieważ pozwala na rozpuszczenie całej masy NaCl w określonej objętości wody, co umożliwia uzyskanie jednorodnego roztworu. Tego typu procedury są standardem w laboratoriach chemicznych, co podkreśla znaczenie zachowania dokładności oraz precyzji w analizach chemicznych i bioanalitycznych, a także w pracach badawczych.

Pytanie 37

Deminimalizowaną wodę można uzyskać przez

A. destylację próżniową
B. destylację prostą
C. wymianę jonową
D. filtrację
Woda demineralizowana to woda, z której usunięto wszystkie lub prawie wszystkie rozpuszczone sole mineralne. Jednym z najskuteczniejszych sposobów jej pozyskania jest wymiana jonowa. Proces ten polega na użyciu żywic jonowymiennych, które są zdolne do wymiany jonów w roztworze. Kiedy woda przepływa przez kolumnę wypełnioną żywicą, jony niepożądane (takie jak Ca²⁺, Mg²⁺ czy Na⁺) są zastępowane przez jony H⁺ lub OH⁻, co prowadzi do powstania czystej wody. Wymiana jonowa jest szczególnie istotna w przemyśle farmaceutycznym, gdzie woda demineralizowana jest używana jako rozpuszczalnik w procesach produkcyjnych oraz w laboratoriach analitycznych, gdzie czystość wody jest kluczowa dla dokładności wyników. Warto zauważyć, że ta metoda jest często preferowana w porównaniu do innych technik, ponieważ skutecznie eliminuje zarówno aniony, jak i kationy. Dążenie do uzyskania wody o wysokiej czystości chemicznej jest zgodne z normami ISO 3696, które definiują wymagania dla wody do zastosowań laboratoryjnych.

Pytanie 38

Na etykiecie odważki analitycznej znajduje się napis: Z odważki tej można przygotować

Odważka analityczna

azotan(V) srebra(I)

AgNO3

0,1 mol/dm3

A. cztery kolby miarowe o pojemności 250 cm3 mianowanego roztworu AgNO3 o stężeniu 0,025 mol/dm3.
B. dwie kolby miarowe o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
C. jedną kolbę miarową o pojemności 500 cm3 mianowanego roztworu AgNO3 o stężeniu 0,05 mol/dm3.
D. jedną kolbę miarową o pojemności 1000 cm3 mianowanego roztworu AgNO3 o stężeniu 0,1 mol/dm3.
Odpowiedź jest poprawna, ponieważ na etykiecie odważki analitycznej znajduje się informacja o stężeniu 0,1 mol/dm³. Aby przygotować 1000 cm³ (1 dm³) roztworu AgNO₃ o takim stężeniu, potrzebujemy 0,1 mola tego związku. Mnożąc liczbę moli przez masę molową AgNO₃ (169,87 g/mol), otrzymujemy masę potrzebną do przygotowania roztworu, która wynosi 16,987 g. W praktyce, przygotowując roztwór o konkretnym stężeniu, kluczowe jest precyzyjne odmierzenie masy substancji oraz odpowiednie rozcieńczenie. Taka umiejętność jest niezbędna w laboratoriach chemicznych, gdzie dokładność odgrywa podstawową rolę w eksperymentach i analizach. Przygotowanie roztworu o właściwym stężeniu jest zgodne z zasadami dobrej praktyki laboratoryjnej (GLP), które zapewniają wiarygodność wyników badań. Dodatkowo, umiejętność przygotowywania roztworów o określonych stężeniach jest fundamentalna w chemii analitycznej, chemii organicznej oraz wielu zastosowaniach przemysłowych, w tym w farmaceutyce.

Pytanie 39

Które z wymienionych reakcji chemicznych stanowi reakcję redoks?

A. 2 NaOH + CuSO4 → Cu(OH)2 + Na2SO4
B. 2 KMnO4 → K2MnO4 + MnO2 + O2
C. 3 Ca(OH)2 + 2 H3PO4 → Ca3(PO4)2 + 6 H2O
D. CaCO3 → CaO + CO2
Reakcja 2 KMnO4 → K2MnO4 + MnO2 + O2 jest reakcją redox, ponieważ zachodzi w niej zarówno utlenianie, jak i redukcja. W tej reakcji mangan w najniższym stopniu utlenienia (+7) w KMnO4 ulega redukcji do MnO2, gdzie jego stopień utlenienia wynosi +4. Jednocześnie tlen w cząsteczce KMnO4 jest utleniany do O2, co świadczy o zachodzącym procesie utlenienia. Reakcje redox są kluczowe w chemii, ponieważ dotyczą transferu elektronów między reagentami, co jest fundamentalne dla wielu procesów, takich jak spalanie, korozja, czy nawet procesy biologiczne, jak oddychanie komórkowe. Dobrą praktyką w laboratoriach chemicznych jest korzystanie z reakcji redox w syntezach chemicznych, oczyszczaniu substancji oraz w analizie chemicznej, co podkreśla ich znaczenie w przemyśle chemicznym oraz w nauce.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.