Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 25 czerwca 2025 17:38
  • Data zakończenia: 25 czerwca 2025 17:50

Egzamin niezdany

Wynik: 6/40 punktów (15,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jaka maksymalna wartość impedancji pętli zwarcia może występować w trójfazowym obwodzie elektrycznym o napięciu nominalnym 230/400 V, aby ochrona przed porażeniem była skuteczna w przypadku uszkodzenia izolacji, wiedząc, że zasilanie tego obwodu powinien wyłączyć instalacyjny wyłącznik nadprądowy C10?

A. 8,0 Ω
B. 7,7 Ω
C. 4,6 Ω
D. 2,3 Ω
Wartości takie jak 7,7 Ω, 4,6 Ω czy 8,0 Ω są zbyt wysokie, aby zapewnić skuteczną ochronę przed porażeniem prądem w obwodzie z wyłącznikiem nadprądowym C10. Przy zbyt wysokiej impedancji pętli zwarcia czas wyzwolenia wyłącznika może być niewystarczający, co prowadzi do ryzyka poważnego porażenia prądem elektrycznym w przypadku uszkodzenia izolacji. Na przykład, z wartością 4,6 Ω, przy zwarciu, prąd może być na tyle niski, że wyłącznik nie zareaguje w odpowiednim czasie, co jest niezgodne z zasadami ochrony. Należy pamiętać, że aby wyłącznik nadprądowy zadziałał poprawnie, musi zostać dostarczony odpowiedni prąd zwarcia, który zależy od impedancji pętli. W praktyce, przy projektowaniu instalacji elektrycznych, inżynierowie często popełniają błąd, nie uwzględniając wszystkich elementów obwodu, takich jak długość przewodów czy ich przekroje, co wpływa na całkowitą impedancję. Zatem dobór odpowiednich parametrów instalacji elektrycznej jest kluczowy dla zapewnienia bezpieczeństwa oraz zgodności z normami, takimi jak PN-EN 60364, które dokładnie określają wymagania dotyczące ochrony przed skutkami porażenia prądem.

Pytanie 2

Jakie narzędzia są konieczne do wytyczenia trasy instalacji przewodów elektrycznych montowanych na powierzchni?

A. Kątownik, ołówek traserski, sznurek traserski
B. Ołówek traserski, przymiar kreskowy, rysik
C. Ołówek traserski, poziomnica, przymiar taśmowy
D. Kątownik, młotek, punktak
Jakbyś wybrał zestaw narzędzi bez ołówka traserskiego, poziomnicy i przymiaru taśmowego, to mógłbyś mieć sporo kłopotów z trasowaniem drogi przewodów natynkowych. Na przykład, kątownik, młotek i punktak to nie jest najlepszy pomysł, bo młotek i punktak bardziej nadają się do wbijania, a nie do precyzyjnego pomiaru. Kątownik jest ok, gdy potrzebujesz kąty proste, ale niestety nie pomoże ci w trasowaniu. Zestaw z ołówkiem traserskim, przymiaru kreskowego i rysika też nie jest najlepszy, żeby uzyskać precyzyjne wyniki w instalacjach elektrycznych. Przymiar kreskowy bardziej jest do rysowania linii prostej, a nie do pomiaru. Ołówek traserski i rysik są używane w różnych technikach rysunkowych, ale w instalacjach elektrycznych liczy się, żeby mieć narzędzia, które pozwalają na dokładne poziomowanie i pomiar. Bardzo ważne jest, żeby nie mylić funkcji narzędzi, bo to może prowadzić do błędów przy montażu, a w efekcie do różnych problemów technicznych.

Pytanie 3

Po zmianie przyłączenia elektrycznego w budynku zauważono, że trójfazowy silnik napędzający hydrofor kręci się w kierunku przeciwnym niż przed wymianą przyłącza. Co jest przyczyną takiego działania silnika?

A. zamiana miejscami dwóch faz
B. brak podłączenia dwóch faz
C. zamiana jednej fazy z przewodem neutralnym
D. brak podłączenia jednej fazy
Zamiana dwóch faz między sobą jest prawidłową odpowiedzią, ponieważ w trójfazowych systemach zasilania kierunek obrotów silnika elektrycznego zależy od kolejności faz. Silniki asynchroniczne, do jakich należy hydrofor, są zaprojektowane tak, aby ich wirnik obracał się w określonym kierunku. W przypadku zamiany faz, na przykład przy podłączeniu L1 do przewodu L2 i L2 do L1, dochodzi do odwrócenia kierunku pola magnetycznego, co z kolei skutkuje zmianą kierunku obrotów silnika. W praktyce, aby upewnić się, że silnik działa prawidłowo, należy zwrócić uwagę na prawidłowe podłączenie faz zgodnie z dokumentacją techniczną producenta. W przypadku silników wielofazowych, zwłaszcza w aplikacjach przemysłowych, przestrzeganie tych zasad jest kluczowe dla efektywności i bezpieczeństwa pracy. Dlatego w instalacjach elektrycznych należy stosować odpowiednie oznaczenia kolorystyczne oraz zabezpieczenia, aby zminimalizować ryzyko błędów w podłączeniu.

Pytanie 4

Jakie właściwości definiują wyłącznik instalacyjny nadprądowy?

A. Prąd obciążenia, rezystancja zestyku, czas wyłączenia
B. Napięcie znamionowe, prąd znamionowy, rodzaj charakterystyki
C. Prąd zwarciowy, typ zestyku, napięcie podtrzymania
D. Napięcie dopuszczalne, prąd różnicowy, czas zadziałania
Zrozumienie parametrów wyłącznika instalacyjnego nadprądowego wymaga znajomości podstawowych zasad dotyczących jego funkcjonowania. Odpowiedzi sugerujące prąd zwarciowy, rodzaj zestyku i napięcie podtrzymania są mylące. Prąd zwarciowy to wartość prądu, która występuje w przypadku zwarcia, jednak nie jest to parametr, który definiuje działanie wyłącznika w normalnych warunkach pracy. Z kolei rodzaj zestyku dotyczy bardziej mechanicznej konstrukcji wyłącznika, a nie jego podstawowych właściwości elektrycznych, więc nie jest kluczowym parametrem do analizy wyłączników nadprądowych. Napięcie podtrzymania odnosi się do zdolności wyłącznika do pracy w określonym zakresie napięcia, ale nie jest to parametr, który bezpośrednio wiąże się z jego działaniem jako zabezpieczenia nadprądowego. W kolejnej propozycji, prąd obciążenia, rezystancja zestyku i czas wyłączenia, również odbiegają od istoty funkcjonowania wyłącznika nadprądowego. Prąd obciążenia jest bardziej związany z warunkami pracy urządzenia, a rezystancja zestyku nie jest parametrem specyfikującym wyłącznik. Z kolei czas wyłączenia to wynik działania wyłącznika, a nie jego właściwość. Ostatnia opcja, dotycząca napięcia dopuszczalnego i prądu różnicowego, również jest myląca, ponieważ prąd różnicowy dotyczy wyłączników różnicowoprądowych, a nie nadprądowych, co może prowadzić do nieporozumień i błędów w doborze odpowiednich zabezpieczeń. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa i efektywności instalacji elektrycznych, dlatego ważne jest, aby unikać takich nieścisłości w ocenie wyłączników nadprądowych.

Pytanie 5

Która z wymienionych czynności należy do konserwacji elektrycznej w mieszkaniach?

A. Weryfikacja czasu działania zabezpieczenia przeciwzwarciowego
B. Zamiana wszystkich źródeł oświetlenia w oprawach
C. Sprawdzenie stanu izolacji oraz powłok przewodów
D. Zmiana wszystkich końcówek śrubowych w puszkach rozgałęźnych
Sprawdzenie stanu izolacji i powłok przewodów jest kluczowym elementem konserwacji instalacji elektrycznych w mieszkaniach. Izolacja przewodów jest niezbędna do zapewnienia bezpieczeństwa użytkowania, ponieważ uszkodzona lub niewłaściwa izolacja może prowadzić do zwarć, pożarów, a także porażenia prądem. Regularne inspekcje stanu izolacji powinny być przeprowadzane zgodnie z obowiązującymi standardami, takimi jak norma PN-IEC 60364, która określa wymagania dotyczące instalacji elektrycznych w obiektach budowlanych. Przykładowe metody oceny stanu izolacji obejmują pomiar rezystancji przy użyciu megomierza. Zastosowanie odpowiednich technik, takich jak testy izolacji, pozwala na wczesne wykrycie problemów i ich naprawę, co przekłada się na dłuższą żywotność instalacji oraz zwiększa bezpieczeństwo mieszkańców. Dbanie o stan izolacji to nie tylko spełnienie wymogów prawnych, ale także odpowiedzialność za bezpieczeństwo domowników i ich majątek.

Pytanie 6

Jak często należy przeprowadzać okresowe badania eksploatacyjne instalacji elektrycznej w budynku jednorodzinnym?

A. 8 lat
B. 4 lata
C. 6 lat
D. 5 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych powinny być przeprowadzane co 5 lat, co jest zgodne z obowiązującymi normami oraz przepisami prawa energetycznego. Regularne kontrole mają na celu zapewnienie bezpieczeństwa użytkowników oraz niezawodności systemu elektroenergetycznego. W trakcie takich badań ocenia się stan techniczny urządzeń, instalacji oraz ich zgodność z aktualnymi normami. Przykładem może być badanie rezystancji izolacji kabli, które pozwala wykryć potencjalne uszkodzenia mogące prowadzić do zwarć lub pożarów. Dzięki regularnym kontrolom można w porę zidentyfikować i usunąć usterki, co znacząco zwiększa bezpieczeństwo użytkowania instalacji. Dobrą praktyką w branży jest również prowadzenie dokumentacji z przeprowadzonych badań, co pozwala na monitorowanie stanu instalacji w czasie oraz podejmowanie odpowiednich działań prewencyjnych.

Pytanie 7

Zakres działania wyzwalaczy elektromagnetycznych w nadprądowych wyłącznikach instalacyjnych o charakterystyce B mieści się w zakresie

A. 10-20 krotności prądu znamionowego
B. 20-30 krotności prądu znamionowego
C. 3-5 krotności prądu znamionowego
D. 5-10 krotności prądu znamionowego
Wybór niepoprawnej odpowiedzi na temat obszaru zadziałania wyzwalaczy elektromagnetycznych może wynikać z nieporozumień dotyczących sposobu działania wyłączników nadprądowych. Wyłączniki charakterystyki B, które są najczęściej stosowane w instalacjach domowych i biurowych, działają na zasadzie wykrywania prądów zwarciowych w określonym przedziale, który nie obejmuje wartości 5-10 ani 10-20 krotności prądu znamionowego. Takie podejście może prowadzić do mylnego przekonania, że wyłączniki te mają szerszy zakres działania, co nie jest zgodne z ich specyfikacją. Przykładowo, zbyt wysoki zakres zadziałania może sugerować, że wyłącznik będzie skutecznie chronił przed intensywnymi zwarciami, jednak w rzeczywistości jego zainstalowanie w takich zastosowaniach może prowadzić do uszkodzenia instalacji lub urządzeń elektrycznych, które powinny być chronione. Ponadto, wybór wyłącznika o niewłaściwej charakterystyce może prowadzić do pominięcia potrzebnej ochrony przeciwprzeciążeniowej w aplikacjach, w których wymagane są mniejsze wartości zadziałania. Zrozumienie zakresu zadziałania wyzwalaczy jest kluczowe dla prawidłowego doboru urządzeń zabezpieczających zgodnie z wymaganiami norm elektrotechnicznych, takich jak IEC 60898, które definiują zasady stosowania wyłączników nadprądowych w różnych typach instalacji elektrycznych.

Pytanie 8

Elementem końcowym sieci zasilającej, a także punktem początkowym instalacji elektrycznej budynku jest

A. złącze
B. rozdzielnica główna
C. przyłącze
D. wewnętrzna linia zasilająca
Wybór odpowiedzi związanej z wewnętrzną linią zasilającą, złączem lub rozdzielnicą główną wskazuje na pewne nieporozumienia dotyczące struktury sieci elektroenergetycznej. Wewnętrzna linia zasilająca odnosi się do instalacji, która rozprowadza energię wewnątrz budynku, ale nie jest jej początkiem ani końcowym elementem zewnętrznej sieci zasilającej. Jej działanie jest uzależnione od prawidłowego funkcjonowania przyłącza, które dostarcza energię do budynku. Złącze natomiast jest punktem, w którym energia elektryczna z sieci zewnętrznej łączy się z instalacją budynku, ale nie stanowi ono końca sieci zasilającej. Rozdzielnica główna, mimo że kluczowa w zarządzaniu dystrybucją energii wewnątrz budynku, również nie jest początkiem instalacji elektrycznej, lecz raczej punktem rozdzielającym energię na poszczególne obwody. Typowym błędem myślowym jest utożsamianie tych elementów z przyłączem, co może prowadzić do nieporozumień w projektowaniu oraz wykonawstwie instalacji elektrycznych. Aby uniknąć takich błędów, warto zaznajomić się z pełną strukturą instalacji, co przyczynia się do poprawnej analizy i realizacji projektów elektrycznych.

Pytanie 9

Który z pomiarów służy do oceny efektywności zabezpieczenia przed dotykiem bezpośrednim w instalacjach do 1 kV?

A. Rezystancji izolacji
B. Rezystancji uziemienia
C. Impedancji zwarciowej
D. Napięcia dotykowego
Impedancja zwarciowa, napięcie dotykowe, a także rezystancja uziemienia to istotne parametry w kontekście bezpieczeństwa instalacji elektrycznych, lecz nie są one bezpośrednio związane z oceną skuteczności ochrony przed dotykiem bezpośrednim. Impedancja zwarciowa odnosi się do zachowania się instalacji podczas zwarcia, co ma znaczenie dla ochrony przed zwarciami, ale nie mówi nic o izolacyjności systemu. Napięcie dotykowe to wartość napięcia, jaką może otrzymać osoba mająca kontakt z elementami instalacji. Choć jego pomiar jest ważny, nie zastępuje on analizy rezystancji izolacji, która jest kluczowym wskaźnikiem stanu technicznego izolacji. Z kolei rezystancja uziemienia ma za zadanie zminimalizować potencjalne napięcia występujące w przypadku uszkodzenia izolacji, ale również nie pokazuje bezpośrednio skuteczności izolacji samej w sobie. Wiele osób myli te pojęcia, co może prowadzić do niepoprawnych wniosków i braku odpowiednich działań naprawczych. W kontekście norm i dobrych praktyk, np. IEC 60364, kluczowe jest zrozumienie, że prawidłowa izolacja jest fundamentem bezpieczeństwa, a pomiar rezystancji izolacji jest jednym z podstawowych działań w utrzymaniu instalacji elektrycznych.

Pytanie 10

Jakiego pomiaru należy dokonać, aby ocenić efektywność ochrony przed porażeniem w przypadku uszkodzenia odbiornika klasy I w sieci TT?

A. Rezystancji uziomu, do którego dołączona jest obudowa odbiornika
B. Rezystancji izolacji przewodu uziemiającego
C. Ciągłości przewodu neutralnego
D. Ciągłości przewodów fazowych
Pomiar ciągłości przewodu neutralnego oraz przewodów fazowych, chociaż istotny w kontekście sprawdzania integralności obwodów elektrycznych, nie jest wystarczający, aby ocenić skuteczność ochrony przeciwporażeniowej dla odbiorników I klasy ochronności w sieci TT. Ciągłość przewodu neutralnego jest krytyczna dla prawidłowego funkcjonowania układów elektrycznych, ale nie zapewnia informacji o jakości uziemienia. Przewody neutralne i fazowe mogą być sprawne, ale jeśli uziemienie jest niewłaściwe, może to prowadzić do niebezpiecznych sytuacji, w których obudowa urządzenia może stać się naładowana prądem. Z kolei pomiar rezystancji izolacji przewodu uziemiającego również nie dostarcza pełnych informacji o skuteczności ochrony przeciwporażeniowej, ponieważ dotyczy on tylko stanu izolacji, a nie efektywności połączenia z ziemią. Typowym błędem myślowym jest zakładanie, że dobre wyniki tych pomiarów automatycznie zapewniają bezpieczeństwo, podczas gdy kluczowe jest, aby obudowa była podłączona do efektywnego systemu uziemienia. Normy, takie jak PN-IEC 60364, jasno wskazują, że uziemienie jest fundamentalnym elementem systemów ochrony przed porażeniem elektrycznym. Dlatego regularne pomiary rezystancji uziomu są niezbędne do zapewnienia bezpieczeństwa i zgodności z przepisami.

Pytanie 11

Jaka jest znamionowa efektywność silnika trójfazowego, jeśli P = 2,2 kW (mocy mechanicznej), UN = 400 V, IN = 4,6 A oraz cos φ = 0,82?

A. 0,69
B. 0,39
C. 0,84
D. 0,49
Odpowiedzi, które nie zgadzają się z poprawnym wynikiem, zazwyczaj wynikają z błędów w obliczeniach lub złego zrozumienia podstawowych pojęć związanych z mocą silników elektrycznych. Na przykład, wartość 0,69 może sugerować, że obliczenia nie uwzględniają współczynnika mocy lub są oparte na błędnie podanych danych. Często można się spotkać z błędnym założeniem, że moc czynna jest równa mocy mechanicznej, co jest nieprawdziwe, ponieważ moc dostarczona do silnika zawsze jest większa niż moc wyjściowa ze względu na straty energetyczne. Inne odpowiedzi, takie jak 0,49 czy 0,39, mogą wynikać z niepoprawnego przeliczenia wartości mocy czynnej, co w praktyce prowadzi do znacznego niedoszacowania efektywności silnika. Niezrozumienie roli współczynnika mocy w obliczeniach sprawności także często prowadzi do błędnych wyników. Warto zaznaczyć, że efektywność silników ma ogromne znaczenie w kontekście zrównoważonego rozwoju, a wybór silników o wyższej sprawności wpływa na oszczędności energii oraz redukcję emisji CO2. Prawidłowe obliczenia związane z mocą czynnościową oraz jasne zrozumienie relacji między mocą a sprawnością są kluczowe w projektowaniu i eksploatacji systemów napędowych.

Pytanie 12

Który z urządzeń elektrycznych, zainstalowany w obwodzie systemu zasilania elektrycznego kuchenki trójfazowej, jest w stanie zidentyfikować przerwę w ciągłości przewodów jednej z faz?

A. Czujnik zaniku fazy
B. Odgromnik
C. Przekaźnik priorytetowy
D. Stycznik elektromagnetyczny
Odgromnik nie jest urządzeniem przeznaczonym do wykrywania przerw w zasilaniu, lecz służy do ochrony przed wyładowaniami atmosferycznymi. Jego zadaniem jest odprowadzanie nadmiaru ładunków elektrycznych do ziemi, co chroni instalacje elektryczne przed uszkodzeniem. Dlatego stosowanie odgromnika w kontekście wykrywania zaniku fazy jest błędnym podejściem, ponieważ jego funkcjonalność nie obejmuje monitorowania ciągłości przewodów. Z kolei przekaźnik priorytetowy odpowiada za zarządzanie kolejnością zasilania obwodów, ale nie wykrywa bezpośrednio awarii w poszczególnych fazach. Może on jedynie reagować na sygnały z innych urządzeń, co czyni go nieefektywnym w sytuacjach, gdzie wymagana jest natychmiastowa interwencja w przypadku zniknięcia zasilania w jednej z faz. Stycznik elektromagnetyczny z kolei służy do załączania i wyłączania obwodów elektrycznych, jednak również nie jest zaprojektowany do monitorowania stanu faz. W praktyce, nieprawidłowe przyjęcie tych opcji jako rozwiązań związanych z detekcją zaniku fazy może prowadzić do poważnych konsekwencji, takich jak uszkodzenie urządzeń lub zagrożenie dla bezpieczeństwa użytkowników.

Pytanie 13

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Zwarcie w obwodzie lampy
B. Zbyt niska moc żarówki
C. Przerwa w obwodzie lampy
D. Luźny przewód w przełączniku
Zbyt mała moc żarówki w żaden sposób nie wpływa na nagrzewanie się łącznika puszkowego, ponieważ moc żarówki jest dostosowana do standardowych parametrów instalacji. W przypadku zbyt słabej żarówki, nie osiągnie ona odpowiedniego poziomu jasności, ale nie spowoduje to wzrostu temperatury w łączniku. Zwarcie w obwodzie oświetleniowym żarówki może prowadzić do poważnych problemów, takich jak przepalenie bezpieczników, ale nie jest bezpośrednio związane z nagrzewaniem się łącznika puszkowego. Zwarcie generuje ogromne natężenie prądu, co prowadzi do uszkodzeń elementów obwodu, ale w tym przypadku nagrzewanie łącznika miałoby inne przyczyny, często związane z uszkodzeniem izolacji. Przerwa w obwodzie oświetleniowym żarówki skutkuje brakiem przepływu prądu, co również nie może być przyczyną nagrzewania. Naturalnie, błąd logiczny polega na myleniu przyczyn z objawami oraz niedostatecznym zrozumieniu działania i specyfiki instalacji elektrycznych. W praktyce, kluczowe jest zrozumienie, że nagrzewanie łącznika nie jest efektem biernym, a wynika z aktywnego przepływu prądu przez elementy obwodu, co w żadnym z wymienionych przypadków nie ma miejsca.

Pytanie 14

Jakiego urządzenia dotyczy przedstawiony opis przeglądu?
Podczas rutynowej inspekcji stanu technicznego systemu elektrycznego przeprowadzono przegląd z uwzględnieniem:
1. oceny stanu ochrony przed porażeniem prądem,
2. kontrolnego sprawdzenia funkcjonowania wyłącznika za pomocą przycisku testowego,
3. pomiaru rzeczywistej wartości prądu różnicowego, który wyzwala,
4. pomiaru czasu wyłączenia,
5. weryfikacji napięcia dotykowego dla wartości prądu wyzwalającego.

A. Elektronicznego przekaźnika czasowego
B. Wyłącznika nadprądowego
C. Ochronnika przepięć
D. Wyłącznika różnicowoprądowego
Wybór innego urządzenia, takiego jak wyłącznik nadprądowy, elektroniczny przekaźnik czasowy lub ochronnik przepięć, pokazuje nieporozumienie w zakresie funkcji i zastosowania tych urządzeń. Wyłącznik nadprądowy, choć również istotny w instalacjach elektrycznych, ma na celu ochronę przed przeciążeniem i zwarciem, a nie przed porażeniem prądem. Nie prowadzi się pomiarów prądu zadziałania w kontekście wyłączników nadprądowych, co czyni tę odpowiedź niepoprawną. Elektroniczny przekaźnik czasowy, który jest używany do kontrolowania czasów działania obwodów elektrycznych, nie ma zastosowania w kontekście ochrony przeciwporażeniowej. Z kolei ochronniki przepięć zabezpieczają urządzenia przed nagłymi wzrostami napięcia, ale również nie są odpowiednie w kontekście ochrony ludzi przed porażeniem prądem. Właściwe zrozumienie funkcji poszczególnych elementów instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa. Typowe błędy myślowe, takie jak mylenie funkcji ochronnych różnych urządzeń, mogą prowadzić do nieprawidłowej oceny ryzyka oraz niewłaściwych decyzji w zakresie zabezpieczeń elektrycznych. W praktyce, wiedza na temat odpowiednich zastosowań wyłączników różnicowoprądowych oraz ich regularne testowanie są niezbędne dla ochrony użytkowników instalacji elektrycznych.

Pytanie 15

Który z wymienionych zestawów narzędzi jest konieczny do realizacji połączeń przewodów typu DY w instalacji elektrycznej, w puszkach rozgałęźnych, przy użyciu złączek śrubowych?

A. Zestaw wkrętaków, szczypce czołowe, prasa ręczna
B. Nóż monterski, szczypce boczne, zestaw wkrętaków
C. Szczypce długie, nóż monterski, szczypce czołowe
D. Nóż monterski, szczypce boczne, szczypce monterskie
Wybór innych zestawów narzędzi może prowadzić do trudności w prawidłowym wykonaniu instalacji elektrycznych. Na przykład, zestaw zawierający kleszcze długie, nóż monterski i kleszcze czołowe nie zapewnia wystarczającej funkcjonalności. Kleszcze długie są przydatne do chwytania i wyginania przewodów, ale nie są optymalne do precyzyjnego cięcia lub usuwania izolacji. Dodatkowo, kleszcze czołowe są bardziej przeznaczone do chwytania i manipulacji w trudnodostępnych miejscach, co nie jest kluczowe przy wykonywaniu połączeń w puszkach rozgałęźnych. Zestaw z kompletem wkrętaków, kleszczami czołowymi i prasą ręczną również nie odpowiada wymaganiom, ponieważ prasa ręczna jest narzędziem do zaciskania złączek, które nie są typowe dla połączeń typu DY w instalacjach elektrycznych. W przypadku zestawu z nożem monterskim, szczypcami bocznymi i kleszczami monterskimi, chociaż niektóre narzędzia są przydatne, to jednak brak wkrętaków sprawia, że nie można prawidłowo wykonać połączenia przy użyciu złączek śrubowych, co jest kluczowe dla bezpieczeństwa. Prawidłowe połączenia elektryczne wymagają nie tylko odpowiednich narzędzi, ale także stosowania standardów i procedur, które zapewniają bezpieczeństwo oraz trwałość instalacji. Dlatego każda decyzja dotycząca doboru narzędzi musi być dokładnie przemyślana, aby uniknąć niebezpiecznych sytuacji w przyszłości.

Pytanie 16

Jakiego przyrządu należy użyć, aby zmierzyć moc bierną w obwodzie?

A. Woltomierza
B. Reflektometru
C. Watomierza
D. Waromierza
Pomiar mocy w układach elektrycznych można przeprowadzać za pomocą różnych mierników, jednak nie wszystkie z nich są odpowiednie do pomiaru mocy biernej. Reflektometr jest urządzeniem, które służy do analizy odbicia sygnału w liniach transmisyjnych, a jego zastosowanie ogranicza się do problematyki związanej z impedancją i stratami sygnału, co nie ma związku z pomiarem mocy biernej. Watomierz, z drugiej strony, mierzy moc czynną, a jego działanie opiera się na pomiarze napięcia i prądu, a następnie obliczaniu mocy czynnej, co oznacza, że nie jest w stanie dostarczyć informacji na temat mocy biernej, która jest miarą energii niezużywanej. Woltomierz jest urządzeniem do pomiaru napięcia, a jedynie mierząc napięcie nie można określić mocy biernej, gdyż nie uwzględnia on parametrów prądu oraz fazy między nimi. Typowym błędem myślowym jest zatem utożsamianie różnych rodzajów mocy i mylenie ich pomiaru, co prowadzi do nieprawidłowych wniosków i decyzji w zakresie projektowania oraz eksploatacji systemów elektrycznych. Zrozumienie różnic pomiędzy mocą czynną, bierną i pozorną oraz umiejętność zastosowania odpowiednich narzędzi pomiarowych jest kluczowe dla efektywności energetycznej.

Pytanie 17

Jakie narzędzia trzeba przygotować do wyznaczenia miejsca na zainstalowanie rozdzielnicy podtynkowej w ścianie murowanej?

A. Sznurek traserski, młotek, punktak
B. Przymiar kreskowy, ołówek traserski, rysik
C. Rysik, kątownik, punktak, młotek
D. Przymiar taśmowy, poziomnica, ołówek traserski
Wybór narzędzi do trasowania miejsca zamontowania rozdzielnicy podtynkowej powinien być dokładnie przemyślany, aby uniknąć błędów, które mogą wpłynąć na jakość i bezpieczeństwo instalacji. Użycie rysika, kątownika, punktaka i młotka, mimo że może wydawać się logiczne, nie jest idealnym podejściem w kontekście precyzyjnego trasowania. Rysik służy do pozostawiania śladów na twardych powierzchniach, ale nie zapewnia dokładności wymaganej do precyzyjnego wyznaczenia lokalizacji rozdzielnicy. Kątownik, choć przydatny do tworzenia kątów prostych, nie jest narzędziem do miar; jego właściwe zastosowanie wymaga współpracy z narzędziami pomiarowymi. Punktak oraz młotek mogą być użyte do oznaczania punktów, jednak ich zastosowanie jest mniej precyzyjne w kontekście trasowania. Z kolei sznurek traserki, mimo że pomocny w dachu do wyznaczania prostych linii, nie zastąpi precyzji przymiaru taśmowego i poziomnicy, które są dedykowane do dokładnych pomiarów. Typowym błędem myślowym jest założenie, że jakiekolwiek narzędzie do oznaczania wystarczy do wyznaczenia miejsca montażu. W rzeczywistości, aby prace były zgodne z normami oraz zapewniały bezpieczeństwo, konieczne jest użycie narzędzi pomiarowych, które gwarantują wysoką dokładność oraz powtarzalność pomiarów. Dobre praktyki w branży budowlanej i elektrycznej zalecają stosowanie narzędzi, które są przystosowane do specyficznych zadań, a zastosowanie przymiaru taśmowego, poziomnicy i ołówka traserskiego jest standardem w tego typu pracach.

Pytanie 18

Który element przedstawiono na ilustracji?

Ilustracja do pytania
A. Izolator przepustowy wysokiego napięcia.
B. Izolator wsporczy.
C. Bezpiecznik aparatowy.
D. Wkładkę topikową bezpiecznika mocy.
Wybór innych odpowiedzi może wynikać z nieporozumień dotyczących funkcji i budowy różnych elementów zabezpieczeń elektrycznych. Izolator przepustowy wysokiego napięcia to komponent stosowany do przeprowadzania przewodów przez przegrody, takie jak ściany czy dachy, i nie ma żadnego zastosowania w kontekście zabezpieczeń przed przeciążeniami. Jego konstrukcja różni się znacznie od wkładki topikowej, która jest przeznaczona do ochrony obwodów. Bezpiecznik aparatowy, chociaż również ma na celu ochronę obwodów, jest innego typu urządzeniem – ma zazwyczaj bardziej złożoną budowę i może obejmować mechanizmy ręcznego resetowania, co czyni go odmiennego od prostoty budowy wkładki topikowej. Izolator wsporczy, będący elementem wspierającym przewody w stacjach elektroenergetycznych, również nie ma żadnego związku z funkcją zabezpieczającą obwody przed przeciążeniem. Te różnice w przeznaczeniu i konstrukcji mogą prowadzić do błędnych wniosków i wyboru niewłaściwych odpowiedzi, co podkreśla znaczenie znajomości właściwości oraz zastosowań poszczególnych komponentów w systemach elektrycznych. Warto zauważyć, że gruntowna wiedza na temat elementów zabezpieczających jest kluczowa dla zapewnienia bezpieczeństwa i efektywności w pracy z instalacjami elektrycznymi.

Pytanie 19

Który z poniższych sposobów ochrony przed porażeniem elektrycznym jest weryfikowany przez pomiar rezystancji pętli zwarcia w instalacji elektrycznej?

A. Uziemienie ochronne
B. Umieszczenie części dostępnych poza zasięgiem ręki
C. Separacja elektryczna
D. Samoczynne wyłączanie zasilania
Uziemienie ochronne jest istotnym elementem systemów ochrony przed porażeniem, jednak polega na stworzeniu niskooporowego połączenia z ziemią, a nie na pomiarze rezystancji pętli zwarcia. Jego głównym celem jest zapewnienie, że w przypadku awarii prądu, nadmiar energii zostanie bezpiecznie odprowadzony do ziemi. Choć ważne, nie jest to metoda, która sama w sobie gwarantuje szybkie odłączenie zasilania. Separacja elektryczna to inny środek, który ma na celu unikanie niebezpiecznych kontaktów między różnymi obwodami, ale również nie jest bezpośrednio związana z pomiarem rezystancji pętli zwarcia. Działa na zasadzie fizycznego oddzielenia części instalacji, co minimalizuje ryzyko porażenia, ale nie zmienia parametrów elektrycznych samej instalacji. Umieszczenie części dostępnych poza zasięgiem ręki, mimo że może zmniejszyć ryzyko kontaktu z niebezpiecznymi elementami, nie jest odpowiednim rozwiązaniem, gdyż nie eliminuje ryzyka porażenia w sytuacjach awaryjnych. W każdej z tych koncepcji brakuje kluczowego odniesienia do mechanizmu działania samoczynnego wyłączania zasilania, który jest bezpośrednio związany z pomiarem rezystancji pętli zwarcia. To pomiar ten dostarcza informacji, które są kluczowe dla oceny, czy instalacja elektryczna jest w stanie bezpiecznie odciąć zasilanie w sytuacji awaryjnej, co czyni go fundamentalnym dla zapewnienia bezpieczeństwa elektrycznego.

Pytanie 20

Na podstawie danych z tabliczki znamionowej wyłącznika różnicowoprądowego zebrano informacje: IN25 A; IΔN0,030 A; 230 V~; Im 1000 A. Jakie obciążenie prądowe może wytrzymać ten wyłącznik w trybie ciągłym?

A. 230 A
B. 0,03 A
C. 25 A
D. 1000 A
Przy analizie innych odpowiedzi zauważamy, że wybór wartości 230 A jest błędny ze względu na to, że odpowiadałby on hipotetycznie maksymalnemu prądowi obciążenia, a nie rzeczywistemu prądowi znamionowemu wyłącznika. Przykrością jest, że w praktyce, jeśli obciążenie przekracza znamionowy prąd wyłącznika, może on nie działać prawidłowo, co stwarza potencjalne zagrożenie dla bezpieczeństwa instalacji. Z kolei wartość 0,03 A wskazuje na czułość wyłącznika różnicowoprądowego, co jest istotne dla ochrony przed porażeniem prądem, ale nie ma nic wspólnego z maksymalnym prądem obciążenia, co prowadzi do mylnego rozumienia roli tego parametru. Zastosowanie wyłącznika z czułością 30 mA ma na celu ochronę ludzi, a nie urządzeń. Odpowiedź 1000 A również jest niewłaściwa, ponieważ dotyczy prądu zwarciowego, który wyłącznik może wytrzymać, ale nie jest to wartość, którą można przyjąć jako ciągłe obciążenie. Pojmowanie tych parametrów jest kluczowe, aby uniknąć błędów w doborze urządzeń elektrycznych, co powinno być zgodne z normami i dobrymi praktykami branżowymi.

Pytanie 21

Który z poniższych elementów chroni nakrętkę przed odkręceniem?

A. Tuleja redukcyjna
B. Tuleja kołnierzowa
C. Podkładka dystansowa
D. Podkładka sprężysta
Podkładka sprężysta jest elementem zabezpieczającym, który zapobiega luzowaniu się nakrętek w połączeniach śrubowych. Działa na zasadzie sprężystości, co oznacza, że po zastosowaniu podkładki siła nacisku utrzymuje się, zapobiegając odkręcaniu się nakrętki w wyniku drgań lub obciążeń dynamicznych. W praktyce, podkładki sprężyste są często stosowane w różnych zastosowaniach inżynieryjnych, takich jak w przemyśle motoryzacyjnym, budowlanym czy maszynowym. Na przykład, w samochodach podkładki te mogą być używane w miejscach narażonych na wibracje, takich jak układ zawieszenia, aby zapewnić długoterminową stabilność połączeń. Zgodnie z normami ISO i ANSI, stosowanie podkładek sprężystych jest zalecane do poprawy bezpieczeństwa i niezawodności połączeń, co czyni je standardowym rozwiązaniem w wielu projektach inżynieryjnych. Warto również zaznaczyć, że dostępne są różne typy podkładek sprężystych, takie jak podkładki zewnętrzne i wewnętrzne, które należy dobierać w zależności od specyfiki zastosowania oraz rodzaju obciążeń, jakie będą występować w danym połączeniu.

Pytanie 22

Który z wymienionych zestawów materiałów i narzędzi, oprócz wiertarki i poziomnicy, umożliwia ułożenie podtynkowej instalacji elektrycznej prowadzonej w rurkach stalowych?

Bruzdownica
Gips
Młotek
Otwornica koronkowa
Punktak
Bruzdownica
Drut wiązałkowy
Młotek
Otwornica koronkowa
Stalowe gwoździe
Drut wiązałkowy
Młotek
Otwornica koronkowa
Przecinak
Punktak
Bruzdownica
Drut wiązałkowy
Pistolet do kleju
Stalowe gwoździe
Zestaw wierteł
A.B.C.D.
A. A.
B. D.
C. C.
D. B.
Wybór innej odpowiedzi sugeruje pewne nieporozumienia odnośnie do wymagań dotyczących instalacji elektrycznych, szczególnie w kontekście podtynkowego ułożenia w rurkach stalowych. Wiele osób może myśleć, że do wykonania takiej instalacji wystarczy jedynie wiertarka i poziomica, co jest dużym uproszczeniem. Chociaż te narzędzia są cenne, kluczowe są również inne elementy, takie jak bruzdownica, która pozwala na precyzyjne wykonanie bruzd w ścianie. Bez tego narzędzia, ułożenie rurek stalowych staje się wysoce problematyczne, ponieważ brak odpowiednich bruzd może prowadzić do nieestetycznego wykończenia oraz nieprawidłowego mocowania rurek. Ponadto, wybór niewłaściwych materiałów do mocowania rurek, jak np. brak drutu wiązałkowego lub gwoździ, może skutkować nieodpowiednią stabilnością instalacji, co z kolei zagraża bezpieczeństwu użytkowników. Błędem jest również pomijanie znaczenia otwornicy koronowej, która jest niezbędna do wykonania otworów pod puszki instalacyjne, co jest kluczowe dla prawidłowego umiejscowienia elementów instalacji. Zrozumienie tych aspektów jest niezbędne, aby uniknąć typowych błędów myślowych i zapewnić, że instalacja elektryczna będzie nie tylko funkcjonalna, ale także zgodna z obowiązującymi normami bezpieczeństwa.

Pytanie 23

Kontrolę przeciwpożarową wyłącznika prądu powinno się przeprowadzać w terminach określonych przez producenta, jednak nie rzadziej niż raz na

A. dwa lata
B. trzy lata
C. pięć lat
D. rok
Wybór odpowiedzi, która sugeruje dłuższy okres między przeglądami, jest błędny i może prowadzić do poważnych konsekwencji. W kontekście przeglądów przeciwpożarowych wyłączników prądu, istotne jest, aby każde urządzenie było regularnie monitorowane pod kątem sprawności. Wiele osób mylnie uważa, że rzadkie przeglądy, takie jak co dwa lub trzy lata, są wystarczające, co w rzeczywistości może prowadzić do niedopuszczalnego ryzyka. Wyłączniki prądu są kluczowymi elementami systemów zabezpieczeń elektrycznych, a ich awaria w momencie, gdy są najbardziej potrzebne, może prowadzić do katastrofalnych skutków. Użytkownicy często zapominają, że komponenty elektryczne mogą ulegać zużyciu oraz że czynniki zewnętrzne, takie jak wilgoć czy zanieczyszczenia, mogą wpływać na ich działanie. Dlatego przegląd roczny jest nie tylko zalecany, ale wręcz obligatoryjny, aby zapewnić ich prawidłowe funkcjonowanie. Ponadto, regulacje prawne w wielu krajach określają, że organizacje powinny mieć opracowane procedury konserwacji urządzeń elektrycznych, w tym wyłączników, co dodatkowo podkreśla znaczenie regularnych przeglądów. Ignorowanie tego aspektu jest niezgodne z dobrą praktyką inżynierską oraz wymogami normatywnymi, co może prowadzić do konieczności ponoszenia kosztów naprawy uszkodzeń lub nawet strat materialnych i osobowych w wyniku awarii.

Pytanie 24

Jakiego zestawu narzędzi potrzebujesz do złożenia aparatury oraz wykonania połączeń elektrycznych w rozdzielnicy w mieszkaniu?

A. Szczypce do zaciskania końcówek, przyrząd do ściągania powłoki, nóż monterski, zestaw wkrętaków
B. Szczypce monterskie uniwersalne, młotek, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji
C. Szczypce do cięcia przewodów, przyrząd do ściągania powłoki, przyrząd do ściągania izolacji, zestaw wkrętaków
D. Szczypce monterskie uniwersalne, nóż monterski, przymiar taśmowy, przyrząd do ściągania izolacji, wkrętarka
Wybór narzędzi do montażu nie jest taki prosty, jakby się mogło wydawać. Odpowiedzi, które nie zawierają kluczowych narzędzi, takich jak szczypce do cięcia, czy przyrząd do ściągania powłoki, to poważny błąd. Szczypce uniwersalne mogą być fajne, ale nie do obcinania przewodów, bo można je łatwo uszkodzić. A młotek, serio? To narzędzie budowlane, nie elektryczne – może nie być idealne w tej sytuacji. Jak nie masz odpowiednich narzędzi do ściągania izolacji, to ograniczasz swoje możliwości przy robieniu porządnych połączeń, a to już prosta droga do problemów. Twój zestaw narzędzi powinien być na pewno skompletowany w sposób przemyślany, bo inaczej możesz mieć kłopoty z bezpieczeństwem. Rozumienie, jak różne narzędzia ze sobą współpracują, jest kluczowe w tej branży.

Pytanie 25

Przed przystąpieniem do wymiany uszkodzonej oprawy oświetleniowej w biurze nie jest konieczne

A. wyłączenie zasilania z instalacji
B. oznaczenie i zabezpieczenie obszaru roboczego
C. pisemne polecenie do wykonania prac
D. zabezpieczenie przed przypadkowym włączeniem zasilania przez osoby nieuprawnione
Bezpieczeństwo podczas prac elektroinstalacyjnych wymaga szczególnej uwagi i przestrzegania określonych procedur. Zabezpieczenie przed włączeniem zasilania przez osoby nieuprawnione oraz wyłączenie instalacji spod napięcia to fundamentalne kroki, które nie tylko ograniczają ryzyko wypadków, ale także są zgodne z najlepszymi praktykami branżowymi. Właściwe wyłączenie zasilania przed rozpoczęciem jakiejkolwiek pracy w obrębie instalacji elektrycznej jest kluczowe, aby zapobiec porażeniu prądem. Istotne jest również oznakowanie i zabezpieczenie miejsca pracy. Te czynności są nie tylko wymagane przez przepisy bezpieczeństwa, ale także zalecane w standardach takich jak PN-EN 50110-1, które precyzują zasady eksploatacji urządzeń elektrycznych. Ignorowanie tych kroków może prowadzić do niebezpiecznych sytuacji, w których osoby nieuprawnione mogłyby przypadkowo włączyć zasilanie, co stanowiłoby poważne zagrożenie. Nie należy również lekceważyć znaczenia oznakowania miejsca pracy; odpowiednie oznakowanie obszaru roboczego informuje osoby postronne o prowadzonych pracach i potencjalnym ryzyku. Zatem, kluczowe jest, aby każdy, kto przystępuje do wymiany oprawy oświetleniowej, przestrzegał powyższych zasad, aby zapewnić sobie i innym maksymalne bezpieczeństwo.

Pytanie 26

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Wiertarkę, punktak, zestaw wkrętaków
B. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
C. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
D. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
Wybór punktaka, młotka, wiertarki udarowej, wiertła widiowego dopasowanego do rozmiarów kołka rozporowego, piły do metalu oraz kompletu wkrętaków jest odpowiedni do montażu rurek PVC na ścianie działowej z cegły pełnej. Punktak i młotek są niezbędne do precyzyjnego wyznaczania miejsc, w których będą wiercone otwory, co pozwala na uniknięcie uszkodzeń materiału oraz zachowanie dokładności w montażu. Wiertarka udarowa, w połączeniu z wiertłem widiowym, zapewnia skuteczne wiercenie w twardym materiale, jakim jest cegła pełna, a odpowiednie dopasowanie wiertła do rozmiaru kołka gwarantuje stabilne mocowanie rurek. Piła do metalu umożliwia precyzyjne przycinanie elementów instalacji, a komplet wkrętaków jest niezbędny do montażu uchwytów mocujących. Taki zestaw narzędzi wpisuje się w dobre praktyki branżowe, gdzie kluczową rolę odgrywa precyzja i odpowiednie przygotowanie do wykonania zadania, co przekłada się na trwałość i bezpieczeństwo instalacji. Przykładem może być sytuacja, w której nieodpowiednie narzędzia mogą prowadzić do uszkodzenia materiałów lub nietrwałego montażu, co w efekcie wiąże się z dodatkowymi kosztami i czasem potrzebnym na poprawki.

Pytanie 27

Który z poniższych przewodów jest przeznaczony do stosowania na zewnątrz budynków?

A. LNY
B. YKY
C. NYM
D. YDY
Wybór przewodów do zastosowań zewnętrznych wymaga zrozumienia, jakie właściwości powinny one posiadać. Przewód YDY, pomimo że jest powszechnie stosowany w instalacjach elektrycznych, nie jest przeznaczony do użytku na zewnątrz budynków ze względu na brak odpowiedniej ochrony przed czynnikami atmosferycznymi. Przewody tego typu są głównie stosowane wewnątrz budynków, gdzie nie są narażone na deszcz, słońce czy zmiany temperatur. Podobna sytuacja dotyczy przewodu LNY, który również nie posiada powłoki ochronnej przystosowanej do użytku zewnętrznego. Natomiast przewód NYM, choć bardziej odporny niż YDY, nadal nie spełnia wszystkich wymagań, które stawia się przewodom przeznaczonym do pracy na zewnątrz. NYM jest często stosowany w pomieszczeniach zamkniętych lub suchych, a jego użycie na zewnątrz wymaga dodatkowej ochrony. Typowym błędem jest zakładanie, że wszystkie przewody polwinitowe mają podobną odporność na warunki atmosferyczne, co nie jest prawdą. Wybierając przewody do użytku zewnętrznego, należy zwrócić uwagę na ich specyfikacje techniczne oraz zgodność z normami, które precyzują ich odporność na czynniki zewnętrzne. Dlatego tak ważne jest, aby dokładnie analizować właściwości przewodów przed ich zastosowaniem w instalacjach zewnętrznych.

Pytanie 28

Jakie są przyczyny automatycznego wyłączenia wyłącznika instalacyjnego po mniej więcej 10 minutach od włączenia obwodu odbiorczego w instalacji elektrycznej?

A. Zwarcie bezimpedancyjne
B. Przepięcie
C. Prąd błądzący
D. Przeciążenie
Wybór odpowiedzi dotyczącej zwarcia bezimpedancyjnego sugeruje błędne zrozumienie mechanizmu działania wyłączników instalacyjnych. Zwarcie bezimpedancyjne, charakteryzujące się bardzo małą opornością, prowadzi do natychmiastowego wzrostu prądu, co skutkuje natychmiastowym zadziałaniem zabezpieczeń. Zazwyczaj przy zwarciu wyłącznik zadziała praktycznie od razu, a nie po 10 minutach. Z kolei przepięcia, które mogą być wynikiem działania pioruna bądź włączenia dużych urządzeń elektrycznych, również prowadzą do wyzwolenia zabezpieczeń, ale zazwyczaj w znacznie krótszym czasie. Prąd błądzący, który może występować w instalacji z uszkodzoną izolacją, także nie jest przyczyną samoczynnego zadziałania wyłącznika po tak długim czasie. Zwykle wykrycie prądu błądzącego skutkuje natychmiastową reakcją urządzeń zabezpieczających, takich jak wyłączniki różnicowoprądowe. Błędy w diagnozowaniu problemów mogą prowadzić do niepotrzebnych napraw czy kosztów, dlatego ważne jest, aby zrozumieć, że wyłączniki instalacyjne działają na podstawie określonych norm i nie reagują na przeciążenia w sposób, w jaki reagowałyby na zwarcia czy przepięcia. Kluczowe jest także stosowanie się do zasad doboru urządzeń zabezpieczających w instalacjach elektrycznych, aby zminimalizować ryzyko wystąpienia problemów związanych z przeciążeniem.

Pytanie 29

Co symbolizuje kod literowo-cyfrowy C10, umieszczony na wyłączniku nadmiarowo-prądowym?

A. Maksymalny prąd zwarciowy
B. Rodzaj charakterystyki czasowo-prądowej oraz prąd znamionowy
C. Rodzaj charakterystyki czasowo-prądowej oraz prąd wyłączeniowy
D. Najwyższy czas zadziałania
Wybór odpowiedzi dotyczącej dopuszczalnego prądu zwarciowego nie jest właściwy, ponieważ kod C10 nie odnosi się do tego parametru. Dopuszczalny prąd zwarciowy to maksymalny prąd, który wyłącznik może znieść w przypadku zwarcia, natomiast kod C10 dotyczy charakterystyki czasowo-prądowej i prądu znamionowego, co jest fundamentalnie innym zagadnieniem. Z kolei maksymalny czas zadziałania to parametr, który określa, jak szybko wyłącznik zareaguje na nadmierny prąd; jest to również różne od informacji, które niesie kod C10. Typowa pomyłka polega na myleniu tych dwóch różnych aspektów: charakterystyki czasowo-prądowej, która dotyczy sposobu działania wyłącznika w odpowiedzi na zmiany prądu, z parametrami związanymi z jego wytrzymałością na zwarcia. Ostatecznie, każda z opcji, które podałeś, odnosi się do różnych aspektów funkcjonowania wyłączników, co może prowadzić do nieporozumień, jeśli nie zrozumie się podstawowych różnic między nimi. Właściwe zrozumienie tych parametrów jest kluczowe dla zapewnienia bezpieczeństwa elektrycznego oraz efektywności instalacji, a błąd w ich interpretacji może prowadzić do niewłaściwego doboru wyłączników, co zagraża zarówno sprzętowi, jak i użytkownikom.

Pytanie 30

Przed dokonaniem pomiarów rezystancji izolacyjnej obwodu oświetleniowego, oprócz odłączenia zasilania, co jeszcze należy zrobić?

A. zamontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
B. zamontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
C. wymontować źródła światła i otworzyć łączniki instalacyjne tego obwodu
D. wymontować źródła światła i zamknąć łączniki instalacyjne tego obwodu
Zamontowanie źródeł światła oraz otwieranie łączników instalacyjnych przed pomiarem rezystancji izolacji obwodu oświetleniowego jest nieodpowiednim działaniem, które może prowadzić do wielu problemów technicznych. Po pierwsze, pozostawienie źródeł światła w obwodzie może skutkować ich uszkodzeniem, gdyż wiele z nich nie jest przystosowanych do wytrzymywania napięcia testowego, które może być znacznie wyższe niż nominalne wartości robocze. Przykładowo, podczas testu rezystancji izolacji przy użyciu napięcia 500V, nieodpowiednio zabezpieczone źródła światła mogą ulec uszkodzeniu, co wiąże się z dodatkowymi kosztami naprawy lub wymiany. Podobnie, otwarcie łączników instalacyjnych może prowadzić do nieprzewidywalnych sytuacji, w których obwód może nie być całkowicie odłączony, co może spowodować powstanie niebezpiecznych warunków pracy. Zgodnie z zasadami BHP oraz wytycznymi dotyczącymi pomiarów elektrycznych, istotne jest, aby zawsze upewnić się, że obwód jest w pełni odłączony przed przystąpieniem do jakichkolwiek testów. Nieprzestrzeganie tych zasad może prowadzić do poważnych zagrożeń dla personelu oraz uszkodzeń sprzętu, co jest nieakceptowalne w profesjonalnych instalacjach elektrycznych.

Pytanie 31

W celu naprawy kabla przyłączeniowego, który został uszkodzony podczas prac ziemnych i został ułożony bez zapasu, potrzebne są

A. odcinek kabla oraz zgrzewarka
B. mufa rozgałęźna oraz odcinek kabla
C. odcinek kabla zakończony głowicami
D. dwie mufy kablowe i odcinek kabla
Wybór mufy rozgałęźnej i odcinka kabla nie jest adekwatny, ponieważ mufy rozgałęźne służą do rozdzielania sygnałów i energii elektrycznej na różne obwody, a nie do naprawy uszkodzonego kabla. Użycie mufy rozgałęźnej w kontekście naprawy kabla, który nie ma zapasu, prowadzi do ryzyka niewłaściwych połączeń, co może skutkować awarią całego systemu. Ponadto, sugerowanie użycia odcinka kabla i zgrzewarki jest również błędne, ponieważ zgrzewanie nie jest standardową metodą naprawy kabli przyłączeniowych, a realizacja takich operacji wiąże się z dodatkowymi ryzykami, jak na przykład niewłaściwe połączenia, które mogą prowadzić do wzrostu oporu lub przegrzewania się złącza. Ostatnia propozycja polegająca na użyciu odcinka kabla zakończonego głowicami jest niewłaściwa, gdyż głowice kablowe stosowane są głównie w kontekście kończenia kabli do urządzeń elektrycznych, a nie w sytuacji, gdy konieczne jest połączenie uszkodzonego kabla z nowym odcinkiem. Typowe błędy myślowe prowadzące do takich nieprawidłowych decyzji obejmują nieznajomość zasadności użycia konkretnych typów muf oraz ich zastosowania w kontekście naprawy kabli, co może prowadzić do zagrożeń dla bezpieczeństwa i niezawodności całej instalacji elektrycznej.

Pytanie 32

Kontrolując warunek automatycznego wyłączenia zasilania jako element ochrony przed porażeniem w systemach TN-S, realizowanego przez nadprądowy wyłącznik instalacyjny, oprócz pomiaru impedancji pętli zwarcia konieczne jest określenie dla zastosowanego wyłącznika

A. wartości prądu wyłączającego
B. progu zadziałania wyzwalacza przeciążeniowego
C. czasu działania wyzwalacza zwarciowego
D. maksymalnej wielkości prądu zwarciowego
Analizując inne dostępne odpowiedzi, dostrzegamy pewne nieprawidłowości w podejściu do tematu sprawdzania warunków samoczynnego wyłączenia zasilania. Maksymalna wartość prądu zwarciowego jest istotnym parametrem, lecz nie jest bezpośrednio związana z prawidłowym funkcjonowaniem wyłącznika w kontekście ochrony przeciwporażeniowej. O ile znajomość wartości zwarciowych jest przydatna w doborze wyłącznika, sama maksymalna wartość nie określa, czy dany wyłącznik zadziała w odpowiednim czasie. Próg zadziałania wyzwalacza przeciążeniowego również nie ma zastosowania w przypadku wyłącznika, którego główną funkcją jest ochrona przed zwarciem, a nie przeciążeniem. W kontekście warunków samoczynnego wyłączenia zasilania kluczowym parametrem pozostaje wartość prądu wyłączającego, który musi być niższy niż wartość prądu zwarciowego, aby zrealizować efektywne odcięcie zasilania. Ostatnia z propozycji, dotycząca czasu zadziałania wyzwalacza zwarciowego, również nie odnosi się bezpośrednio do wymaganego pomiaru. Choć czas reakcji wyzwalacza jest istotny dla bezpieczeństwa, to jednak w kontekście samoczynnego wyłączenia zasilania bardziej kluczowe jest przynajmniej zrozumienie i pomiar wartości prądu wyłączającego, aby zapewnić odpowiednią reakcję w przypadku awarii. Ignorowanie tych zasad i niezrozumienie funkcji poszczególnych parametrów może prowadzić do błędów w doborze urządzenia ochronnego oraz, co gorsza, do sytuacji narażających użytkowników na ryzyko porażenia elektrycznego.

Pytanie 33

Który z podanych silników elektrycznych ma najbardziej sztywną charakterystykę mechaniczną n = f(M) w trybie pracy stabilnej?

A. Szeregowy prądu stałego
B. Synchroniczny
C. Asynchroniczny klatkowy
D. Obcowzbudny prądu stałego
Silnik szeregowy prądu stałego, silnik asynchroniczny klatkowy oraz silnik obcowzbudny prądu stałego mają charakterystyki mechaniczne, które są mniej sztywne w porównaniu do silnika synchronicznego. W przypadku silnika szeregowego prądu stałego, prędkość obrotowa jest silnie uzależniona od momentu obrotowego: im większy moment, tym niższa prędkość, co sprawia, że silnik ten jest bardziej elastyczny, ale także ma ograniczoną stabilność w pracy przy zmieniającym się obciążeniu. Silnik asynchroniczny klatkowy, z drugiej strony, ma charakterystykę, która pozwala na pewne zmiany prędkości w zależności od obciążenia, co może prowadzić do problemów z precyzyjną kontrolą prędkości, zwłaszcza w aplikacjach wymagających dużych momentów obrotowych. Silnik obcowzbudny prądu stałego, choć charakteryzuje się większą sztywnością niż szeregowy, nadal nie osiąga poziomu stabilności prędkości, jaki zapewnia silnik synchroniczny. Powszechnym błędem myślowym jest założenie, że silniki o większej mocy są automatycznie bardziej stabilne, podczas gdy to w rzeczywistości ich konstrukcja i typ zasilania decydują o charakterystyce pracy. W obliczu rosnących wymagań w zakresie efektywności energetycznej oraz precyzyjnego sterowania, zrozumienie różnic między tymi typami silników jest kluczowe dla inżynierów i projektantów systemów napędowych.

Pytanie 34

Jakie urządzenie powinno zastąpić bezpieczniki topikowe 25 A, które chronią obwody silnika trójfazowego?

A. S193B25
B. S191C25
C. S193C25
D. S191B25
Wybór wyłączników S193B25, S191C25 oraz S191B25 do zastąpienia bezpieczników topikowych 25 A w obwodach silnika trójfazowego jest niewłaściwy z kilku powodów. Wyłącznik S193B25, mimo że posiada odpowiedni prąd nominalny, charakteryzuje się inną charakterystyką, co może prowadzić do niewłaściwej reakcji na przeciążenia i zwarcia, nie zapewniając odpowiedniej ochrony dla silnika. Z kolei S191C25 i S191B25 to wyłączniki o charakterystyce B, co oznacza, że ich reakcja na przeciążenia jest zbyt wolna w porównaniu do wymagań dla silników trójfazowych. Silniki te mogą w momencie rozruchu pobierać znacznie wyższy prąd, co powoduje, że wyłączniki o charakterystyce B mogą nie zadziałać w odpowiednim czasie, co prowadzi do ich uszkodzenia. Ponadto, zastosowanie wyłączników o niewłaściwych charakterystykach może skutkować niebezpiecznymi sytuacjami, w tym pożarami lub uszkodzeniem instalacji elektrycznej. Istotnym aspektem jest również fakt, że niektóre z tych wyłączników mogą nie spełniać norm IEC dotyczących ochrony obwodów silnikowych, co zwiększa ryzyko eksploatacyjne. Ważne jest, aby przy wyborze wyłączników kierować się nie tylko prądem nominalnym, ale także ich charakterystyką oraz przeznaczeniem do konkretnego zastosowania, co jest kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznych.

Pytanie 35

Do jakiej kategorii zaliczają się kable współosiowe?

A. Telekomunikacyjnych
B. Oponowych
C. Kabelkowych
D. Grzewczych
Wybór niewłaściwych grup przewodów elektrycznych, takich jak grzewcze, kabelkowe czy oponowe, wskazuje na nieporozumienie dotyczące funkcji i zastosowania tych technologii. Przewody grzewcze są projektowane do zastosowań związanych z ogrzewaniem, gdzie ich główną rolą jest generowanie ciepła, na przykład w systemach ogrzewania podłogowego lub w instalacjach do rozmrażania. Przewody kabelkowe, z kolei, są używane w różnych zastosowaniach, ale nie w kontekście przesyłania sygnałów telekomunikacyjnych. Przewody oponowe, które są stosowane głównie w komunikacji i transporcie, również nie mają zastosowania w telekomunikacji. W kontekście przewodów współosiowych, ich charakterystyka elektromagnetyczna oraz struktura sprawiają, że są one odpowiednie do przesyłania sygnałów w systemach telekomunikacyjnych. Przykładowo, ich użycie w sieciach szerokopasmowych umożliwia efektywną transmisję danych z dużą prędkością, co jest kluczowe w dzisiejszym świecie cyfrowym. Ignorowanie tych specyfikacji prowadzi do błędnych wniosków na temat możliwości zastosowania różnych typów przewodów w telekomunikacji, co może skutkować nieefektywnymi instalacjami oraz problemami z jakością sygnału.

Pytanie 36

Na podstawie danych katalogowych przedstawionych w tabeli określ, którym wyłącznikiem należy zastąpić uszkodzony wyłącznik różnicowoprądowy P304 25/0,03 A w instalacji mieszkaniowej trójfazowej o napięciu znamionowym 230/400 V.

Prąd znamionowy25 A25 A25 A25 A
Liczba biegunów2P4P4P2P
Znamionowy prąd różnicowy30 mA30 mA300 mA300 mA
Typ wyłączaniaACACACAC
Znamionowe napięcie izolacji500 V500 V500 V500 V
Częstotliwość znamionowa50 Hz50 Hz50 Hz50 Hz
Wytrzymałość elektryczna (liczba cykli)2 0002 0002 0002 000
Temperatura pracy-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C-25°C ÷ 40°C
Znamionowa zwarciowa zdolność łączeniowa15 kA15 kA15 kA15 kA
A.B.C.D.
A. A.
B. B.
C. C.
D. D.
Wybór odpowiedzi, która nie uwzględnia parametrów prądu znamionowego i prądu różnicowego, prowadzi do niewłaściwych wniosków dotyczących wymiany wyłącznika różnicowoprądowego. Wyłączniki różnicowoprądowe są projektowane w sposób, który musi zapewniać bezpieczeństwo instalacji elektrycznej, co oznacza, że nie można stosować urządzeń o nieodpowiednich parametrach. Na przykład, jeśli wybierzemy wyłącznik o prądzie różnicowym 300 mA, zignorujemy ryzyko porażenia prądem, ponieważ standardowe parametry dla instalacji domowych wymagają prądu różnicowego 30 mA, aby skutecznie zareagować na niewielkie upływy prądu. Wybór wyłącznika z inną liczbą biegunów, jak na przykład 4P, również nie jest odpowiedni dla trójfazowej instalacji z jednym przewodem neutralnym, co może skutkować złą funkcjonalnością i potencjalnym zagrożeniem. Wiele osób popełnia błąd, zakładając, że każda zamiana wyłącznika na inny model, bez uwzględnienia szczegółowych parametrów technicznych, jest wystarczająca. Kluczowe jest, aby przy takich decyzjach kierować się nie tylko dostępnością danego wyłącznika, ale przede wszystkim jego parametrami, które powinny być zgodne z wymaganiami instalacji oraz aktualnymi normami, jak PN-EN 61008-1. Właściwy dobór wyłączników jest nie tylko kwestią zgodności z normami, ale przede wszystkim zapewnienia bezpieczeństwa użytkowników oraz ochrony instalacji elektrycznej.

Pytanie 37

Który z łączników elektrycznych stosowanych do zarządzania oświetleniem w instalacjach budowlanych dysponuje czterema oddzielnymi zaciskami przyłączeniowymi oraz jednym klawiszem do sterowania?

A. Schodowy
B. Jednobiegunowy
C. Krzyżowy
D. Świecznikowy
Odpowiedzi schodowy, jednobiegunowy i świecznikowy to różne rodzaje łączników, a każdy z nich ma swoje konkretne zastosowanie. Łącznik schodowy, który często widzimy przy schodach, działa tylko z dwóch punktów i ma tylko dwa zaciski. To oznacza, że nie nadaje się do bardziej rozbudowanych układów, gdzie musimy sterować światłem z kilku miejsc. Z kolei jednobiegunowy łącznik jest jeszcze bardziej ograniczony, bo działa tylko w jednym miejscu. A łącznik świecznikowy, jak sama nazwa wskazuje, jest do obsługi jednego obwodu, więc też nie spełnia wymagań do sterowania z wielu lokalizacji. Takie myślenie, że każdy łącznik sprawdzi się wszędzie, to błąd, bo wymogi instalacyjne bywają różne. Dlatego warto wybierać łączniki zgodnie z ich przeznaczeniem oraz zasadami budowlanymi, żeby wszystko działało sprawnie i bezpiecznie, co jest ważne dla komfortu użytkowania.

Pytanie 38

Która z poniższych czynności jest częścią oględzin przy konserwacji wirnika silnika komutatorowego?

A. Sprawdzenie kondycji wycinków komutatora
B. Wyważanie
C. Weryfikacja braku zwarć międzyzwojowych
D. Pomiar rezystancji izolacji
Odpowiedzi, które nie dotyczą sprawdzenia stanu wycinków komutatora, choć mogą wydawać się związane z konserwacją silników komutatorowych, nie odpowiadają na kluczową kwestię oględzin wirnika. Wyważenie wirnika jest istotne dla eliminacji drgań, które mogą prowadzić do uszkodzeń łożysk i innych komponentów, jednak nie jest to bezpośrednia czynność związana z ocena stanu komutatora. Pomiar rezystancji izolacji to ważny krok w ocenie stanu izolacji uzwojeń silnika, ale również nie dotyczy bezpośrednio stanu wycinków komutatora. Z kolei sprawdzenie braku zwarć międzyzwojowych jest kluczowe dla bezpieczeństwa i niezawodności silnika, jednak nie dotyczy to bezpośrednio stanu komutatora, który jest kluczowym elementem zapewniającym poprawną pracę silnika. Zrozumienie, że każda z tych czynności odgrywa swoją rolę w konserwacji silnika, jest ważne, ale nie wszystkie są równorzędne w kontekście oględzin wirnika. Często można spotkać się z mylnym przekonaniem, że te wszystkie czynności służą temu samemu celowi, podczas gdy każda z nich ma swoją specyfikę oraz odmienny wpływ na działanie silnika. Dlatego kluczowe jest skupienie się na właściwych czynnościach konserwacyjnych, które odpowiadają na konkretne potrzeby diagnostyczne silnika, a nie tylko na ogólnych działaniach związanych z jego konserwacją.

Pytanie 39

Korzystając z podanego wzoru i tabeli wyznacz wartość rezystancji izolacji kabla w temperaturze 20 oC, jeżeli rezystancja izolacji tego kabla zmierzona w temperaturze 10 oC wyniosła 8,1 MΩ.

Współczynniki przeliczeniowe K20 dla rezystancji izolacji kabli z izolacją połwinnitową
R20 = K20·Rt
Temperatura w °C4810121620242628
Współczynnik przeliczeniowy K200,110,190,250,330,631,001,852,383,13
A. 4,1 MΩ
B. 2,0 MΩ
C. 16,2 MΩ
D. 32,4 MΩ
Wartość rezystancji izolacji kabla w temperaturze 20°C to 2,0 MΩ. Żeby to obliczyć, trzeba pamiętać, że rezystancja zmienia się z temperaturą. Na przykład, jeśli przy 10°C zmierzyłeś 8,1 MΩ, to musisz uwzględnić, że jak temperatura rośnie, to rezystancja maleje. W praktyce, według norm IEC, rezystancja izolacji nie powinna spadać poniżej 1 MΩ na każde 1000 V napięcia roboczego. Wiedza o tym, jak obliczyć rezystancję w wyższej temperaturze, jest ważna, żeby ocenić, w jakim stanie jest kabel i zapobiec awariom. Dobrze jest regularnie kontrolować rezystancję izolacji, bo to daje nam szansę na zauważenie problemów, zanim dojdzie do awarii, co ma ogromne znaczenie dla bezpieczeństwa ludzi.

Pytanie 40

Jakim symbolem oznacza się przewód jednożyłowy z żyłą wykonaną z drutu aluminiowego, w izolacji PCV, o przekroju żyły 2,5 mm2?

A. ADY 2,5 mm2
B. YDY 2,5 mm2
C. ALY 2,5 mm2
D. YLY 2,5 mm2
Odpowiedzi ALY, YLY oraz YDY są nieprawidłowe z kilku kluczowych względów. Przewody oznaczone jako ALY sugerują, że są to przewody aluminiowe, ale brak w nich precyzji dotyczącej materiału izolacyjnego, co może prowadzić do nieodpowiedniego zastosowania w środowiskach, gdzie wymagane są określone parametry izolacji. YLY to oznaczenie dla przewodów miedzianych, co jest niezgodne z podaną specyfikacją materiału żyły w pytaniu. Z kolei YDY odnosi się do przewodów jednożyłowych miedzianych, które również nie pasują do opisanego przypadku. Wybór odpowiedniego przewodu jest kluczowy dla bezpieczeństwa i wydajności instalacji elektrycznej. W praktyce, pomylenie materiału przewodu może prowadzić do poważnych konsekwencji, takich jak przegrzewanie czy uszkodzenia, a w skrajnych przypadkach nawet do pożaru. W branży elektrycznej, zgodność z normami oraz znajomość specyfikacji produktów jest niezbędna, aby zapewnić bezpieczeństwo oraz zgodność z przepisami. Błędy w oznaczeniach mogą wynikać z nieznajomości standardów lub braku uwagi przy wyborze materiałów. Dlatego ważne jest, aby zawsze upewnić się, że wybieramy przewody, które odpowiadają wymaganiom technicznym oraz środowiskowym, w których będą stosowane.