Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 27 września 2025 22:14
  • Data zakończenia: 27 września 2025 22:35

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas pracy szlifierka kątowa nagle przestała działać. Ustalono, że nie jest to spowodowane brakiem zasilania. Aby zlokalizować awarię, należy odłączyć napięcie, a następnie

A. sprawdzić rezystancję przewodu ochronnego
B. ocenić stan szczotek
C. zmierzyć temperaturę uzwojenia stojana
D. zmierzyć rezystancję izolacji kabla zasilającego
Odpowiedź 'sprawdzić stan szczotek' jest prawidłowa, ponieważ szczotki w szlifierkach kątowych odgrywają kluczową rolę w przewodzeniu prądu do wirnika silnika. Ich zużycie lub zablokowanie może prowadzić do przerwy w obwodzie, co objawia się nagłym zatrzymaniem urządzenia. Praktyczne podejście do diagnostyki polega na regularnym monitorowaniu stanu szczotek, co powinno być uwzględnione w harmonogramie konserwacji. W przypadku stwierdzenia ich zużycia zaleca się wymianę, aby uniknąć dalszych uszkodzeń silnika. Standardy branżowe, takie jak IEC 60034, podkreślają znaczenie utrzymania stanu technicznego maszyn elektrycznych, co obejmuje również regularne sprawdzanie i konserwację szczotek. Ponadto, warto zaznaczyć, że używanie oryginalnych części zamiennych zwiększa niezawodność i żywotność urządzeń, co jest zgodne z najlepszymi praktykami w dziedzinie elektryki i mechaniki.

Pytanie 2

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
B. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika
C. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
D. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
Prąd w obwodzie wzbudzenia silnika bocznikowego prądu stałego powinien być mniejszy niż prąd w obwodzie twornika. Jeśli prąd w obwodzie wzbudzenia jest większy, może to świadczyć o nieprawidłowości w pracy silnika, takiej jak uszkodzenie wirnika lub niewłaściwe ustawienie szczotek. W normalnych warunkach, prąd wzbudzenia jest regulowany przez wartość oporu w obwodzie wzbudzenia, co wpływa na siłę wzbudzenia i w konsekwencji na moment obrotowy silnika. Przykładem zastosowania wiedzy na ten temat jest diagnostyka silników elektrycznych w przemyśle, gdzie monitorowanie prądu wzbudzenia pozwala na wczesne wykrywanie problemów, co jest zgodne z dobrymi praktykami w utrzymaniu ruchu. Aby zapewnić płynność pracy i unikać awarii, ważne jest przestrzeganie zasad dotyczących konserwacji i inspekcji elementów silnika, takich jak szczotki i wirnik, w celu zapewnienia ich prawidłowego funkcjonowania oraz optymalizacji efektywności energetycznej układu napędowego.

Pytanie 3

Korzystając z danych zamieszczonych w tabeli wyznacz, wartość rezystancji jednej żyły przewodu YDY 3×2,5 mm2 o długości 100 m.

Dane techniczne przewodu YDY
Ilość i przekrój znamionowy żyłGrubość znamionowa izolacjiMax. rezystancja żyłOrientacyjna masa przewodu o długości 1 km
mm²mmΩ/kmkg/km
2x10,818,181
2x1,50,812,197
2x2,50,87,41125
2x40,94,61176
2x60,93,08228
3x10,918,196
3x1,50,912,1116
3x2,50,97,41153
A. 0,741 Ω
B. 7,410 Ω
C. 74,10 Ω
D. 741,0 Ω
Odpowiedź '0,741 Ω' jest jak najbardziej trafna! Dobrze, że wziąłeś pod uwagę długość przewodu, bo 100 m to tak naprawdę 1/10 km. Obliczenia rezystancji dla przewodów miedzianych można znaleźć w normach, a te mówią, że dla 2,5 mm² rezystancja na kilometr to około 7,41 Ω. Wiadomo, że jeśli mamy 100 m, to musimy to przeliczyć na 0,741 Ω. W inżynierii elektrycznej takie obliczenia są mega ważne, bo pomagają zrozumieć, jak minimalizować straty energii i dobierać odpowiednie zabezpieczenia. Właściwe przeliczenia pomagają w efektywności energetycznej. Formuła R = ρ * (L / A) to standardowy sposób podejścia, który powinien być znany każdemu, kto projektuje instalacje elektryczne. Dzięki temu cały system działa lepiej.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Na wartość impedancji pętli zwarcia w systemie sieciowym TN-C mają wpływ

A. rodzaj zamontowanych ochronników przeciwprzepięciowych
B. pole przekroju poprzecznego żył przewodów
C. wytrzymałość napięciowa izolacji przewodów
D. liczba zamontowanych ochronników przeciwprzepięciowych
Wartość impedancji pętli zwarcia w układzie sieciowym TN-C jest ściśle związana z polem przekroju poprzecznego żył przewodów. Pole to wpływa na opór przewodzenia prądu, co z kolei ma istotne znaczenie dla działania zabezpieczeń w przypadku zwarcia. Przewody o większym przekroju charakteryzują się mniejszym oporem, co pozwala na szybsze zadziałanie zabezpieczeń, takich jak wyłączniki nadprądowe. W praktyce oznacza to, że zwiększenie przekroju przewodów w instalacji elektrycznej może poprawić bezpieczeństwo, zmniejszając ryzyko uszkodzenia urządzeń oraz zapewniając lepszą ochronę osób. W Polskich Normach i europejskich standardach, takich jak PN-HD 60364-5-54, podkreśla się znaczenie odpowiedniego doboru przekrojów przewodów w kontekście ich zastosowania, zwłaszcza w instalacjach narażonych na zwarcia. Dlatego kluczowe jest, aby projektanci instalacji elektrycznych zwracali uwagę na te aspekty, aby zapewnić optymalną funkcjonalność oraz bezpieczeństwo systemów elektrycznych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z poniższych środków ostrożności nie jest wymagany do bezpiecznego przeprowadzenia prac na linii napowietrznej odłączonej od zasilania?

A. Używanie sprzętu izolacyjnego
B. Ogrodzenie obszaru pracy
C. Zarządzanie pracą w grupie
D. Uziemienie odłączonej linii
Prace przy linii napowietrznej wyłączonej spod napięcia wymagają przestrzegania określonych zasad bezpieczeństwa, które zapewniają ochronę pracowników i minimalizują ryzyko wystąpienia niebezpiecznych sytuacji. Wykonywanie pracy zespołowo jest kluczowym elementem, ponieważ zespół wzajemnie się wspiera, co pozwala na szybsze reagowanie w przypadku niespodziewanych okoliczności. Pracownicy powinni być świadomi otoczenia i potencjalnych zagrożeń, co skutkuje zwiększoną ochroną. Uziemienie wyłączonej linii jest kolejnym kluczowym środkiem ostrożności. Uziemienie nie tylko chroni przed przypadkowym porażeniem, ale także zapewnia, że w przypadku jakiejkolwiek nieprzewidzianej sytuacji, nie wystąpi niebezpieczne napięcie. Ogrodzenie miejsca wykonywania pracy również odgrywa ważną rolę; zabezpiecza obszar przed dostępem osób nieuprawnionych, co jest zgodne z zasadami BHP. Błędne jest przekonanie, że te środki są zbędne, ponieważ każdy moment pracy przy instalacjach elektrycznych wiąże się z potencjalnym niebezpieczeństwem, nawet jeśli linia jest wyłączona. Standardy BHP oraz normy krajowe wyraźnie wskazują, że zabezpieczenie miejsca pracy i stosowanie odpowiednich procedur są nie tylko zalecane, ale wręcz wymagane, aby zapewnić maksymalne bezpieczeństwo w miejscu pracy.

Pytanie 13

Aby zapewnić ochronę przed porażeniem elektrycznym przy awarii użytkowników silnika elektrycznego klasy ochronności I, jego obudowa w układzie sieci TT powinna być

A. elektrycznie odizolowana od uziomu za pomocą iskiernika
B. połączona z uziomem
C. elektrycznie odizolowana od gruntu oraz przewodzącego podłoża
D. podłączona do przewodu neutralnego
Odpowiedź 'przyłączyć do uziomu' jest prawidłowa, ponieważ w systemie TT, który jest jedną z metod ochrony przeciwporażeniowej, uziemienie urządzenia elektrycznego ma kluczowe znaczenie dla bezpieczeństwa. W przypadku uszkodzenia izolacji silnika elektrycznego I klasy ochronności, potencjalne napięcie na obudowie może wzrosnąć, co stanowi zagrożenie dla użytkowników. Przyłączenie korpusu silnika do uziomu zapewnia, że wszelkie niebezpieczne napięcia zostaną odprowadzone do ziemi, minimalizując ryzyko porażenia. W praktyce, takie rozwiązanie jest zgodne z normami międzynarodowymi, jak np. IEC 60364, które określają zasady instalacji elektrycznych oraz środki ochrony przeciwporażeniowej. Uziemienie także pozwala na szybkie zadziałanie zabezpieczeń, takich jak wyłączniki różnicowoprądowe, co jest istotne w przypadku awarii. Dodatkowo, instalacje z poprawnie wykonanym uziemieniem mogą przyczynić się do zmniejszenia zakłóceń elektromagnetycznych, co jest istotne w kontekście wydajności urządzeń elektrycznych.

Pytanie 14

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Instalowania osłon i barier
B. Umieszczenia elementów z napięciem poza zasięgiem ręki
C. Izolowania części czynnych
D. Samoczynnego szybkiego wyłączenia napięcia
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Jaką charakterystykę powinien mieć wyłącznik instalacyjny nadprądowy, aby zapewnić, że nie wystąpi przypadkowe zadziałanie zabezpieczenia podczas uruchamiania urządzenia o dużym momencie rozruchowym?

A. Charakterystykę D
B. Charakterystykę C
C. Charakterystykę B
D. Charakterystykę Z
Jak wybierzesz złą charakterystykę wyłącznika nadprądowego, to potem może być problem z działaniem instalacji. Charakterystyka B na przykład jest bardziej do obwodów z małym obciążeniem, co sprawia, że jest bardziej wrażliwa na nagłe wzrosty prądu. Czasami ludzie myślą, że charakterystyka B wystarczy do dużych silników, co często kończy się niepotrzebnymi wyłączeniami, kiedy te silniki startują. Choć charakterystyka C jest trochę lepsza, to wciąż może być niewystarczająca przy dużych rozruchach. A co do charakterystyki Z, to rzadko się ją stosuje, bo sprawdza się tylko w wyjątkowych sytuacjach. Takie błędne wybory mogą sprawić, że koszty wzrosną, a sprzęt może się psuć. Dlatego zawsze warto przyjrzeć się wymaganiom technicznym urządzenia i jego charakterystyce pracy, żeby dobrze dobrać wyłącznik nadprądowy, zgodnie z normami, jak IEC 60947-2.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Jakie przyrządy można zastosować do pomiaru mocy czynnej?

A. Amperomierz oraz licznik
B. Waromierz oraz amperomierz
C. Woltomierz i amperomierz
D. Woltomierz oraz omomierz
Woltomierz i amperomierz są kluczowymi przyrządami do pomiaru mocy czynnej w obwodach elektrycznych. Moc czynna, zwana również mocą rzeczywistą, wyrażana jest w watach (W) i można ją obliczyć jako iloczyn napięcia (V) i natężenia prądu (I), pomnożony przez cosinus kąta fazowego między prądem a napięciem (P = V * I * cos(φ)). Woltomierz służy do pomiaru napięcia w obwodzie, podczas gdy amperomierz mierzy natężenie prądu, co pozwala na efektywne obliczenie mocy czynnej. W praktyce, aby uzyskać dokładny pomiar mocy, niezbędne jest także uwzględnienie współczynnika mocy, zwłaszcza w obwodach z obciążeniem indukcyjnym lub pojemnościowym. Ponadto, w przypadku systemów przemysłowych, pomiary mocy czynnej są fundamentalne dla oceny efektywności energetycznej, co jest zgodne z normami ISO 50001, które koncentrują się na zarządzaniu energią. Dobrą praktyką jest regularna kalibracja tych przyrządów, aby zapewnić dokładność pomiarów.

Pytanie 20

Jakie zjawisko można zaobserwować przy cewce indukcyjnej w przypadku zwarcia międzyzwojowego?

A. spadku indukcyjności cewki
B. zmniejszenia natężenia prądu płynącego przez cewkę
C. wzrostu reaktancji cewki
D. wzrostu rezystancji cewki
Zwarcie międzyzwojowe w cewce indukcyjnej objawia się przede wszystkim zmniejszeniem jej indukcyjności. Indukcyjność cewki jest miarą zdolności do magazynowania energii w polu magnetycznym i jest ściśle związana z liczbą zwojów, ich rozmieszczeniem oraz właściwościami materiałów rdzenia. Kiedy zachodzi zwarcie, część zwojów staje się praktycznie połączona ze sobą, co prowadzi do redukcji efektywnej liczby zwojów, a w konsekwencji do obniżenia indukcyjności. W praktyce, zmniejszona indukcyjność może prowadzić do nieprawidłowego działania obwodów, na przykład w aplikacjach takich jak zasilacze impulsowe czy filtry LC, gdzie wymagane są określone parametry indukcyjności. Przykładem może być zasilacz, w którym spadek indukcyjności cewki może prowadzić do wzrostu prądu, co z kolei może skutkować przegrzewaniem się komponentów lub ich uszkodzeniem. W branży elektroenergetycznej i automatyce, regularne testowanie indukcyjności cewki jest kluczowe w utrzymaniu wydajności urządzeń i zapobieganiu awariom.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Osoby wykonujące wymianę instalacji elektrycznej o napięciu 230/400 V w obiekcie przemysłowym powinny mieć kwalifikacje potwierdzone świadectwem, które jest co najmniej typu

A. D do 1 kV
B. E do 30 kV
C. E do 1 kV
D. D do 15 kV
Wybór odpowiedzi D do 1 kV jest niepoprawny, ponieważ uprawnienia te dotyczą innych zakresów napięcia, a nie są wystarczające dla instalacji o napięciu 230/400 V, które są klasyfikowane jako instalacje niskonapięciowe. Osoby posiadające uprawnienia D do 1 kV mogą zajmować się pracami w obszarze instalacji do 1 kV, jednak nie dotyczy to bezpośrednio wymiany instalacji w obiektach przemysłowych, gdzie często wymagane są umiejętności z zakresu instalacji niskonapięciowych, co potwierdza konieczność posiadania świadectwa E. Z kolei odpowiedzi takie jak D do 15 kV oraz E do 30 kV są również nieodpowiednie, ponieważ dotyczą instalacji średnio- i wysokiego napięcia, co nie ma zastosowania w przypadku standardowej wymiany instalacji w obiektach przemysłowych, gdzie napięcie wynosi 230/400 V. Typowym błędem myślowym jest założenie, że uprawnienia do wyższego napięcia obejmują również prace w zakresie niskiego napięcia. Istotne jest, aby osoby pracujące z instalacjami elektrycznymi były odpowiednio przeszkolone oraz posiadały konkretną wiedzę o procedurach bezpieczeństwa, a także normach dotyczących pracy z urządzeniami elektrycznymi. Właściwe zrozumienie wymagań dotyczących kwalifikacji oraz rodzaju wykonywanych prac jest kluczowe dla zapewnienia bezpieczeństwa zarówno pracowników, jak i użytkowników instalacji.

Pytanie 26

Zatrzymanie pracy grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to sugeruje?

A. zwarcie przewodu ochronnego z obudową
B. uszkodzenie w grzałce
C. uszkodzenie w przewodzie fazowym
D. zwarcie przewodu fazowego oraz neutralnego
W przypadku innych odpowiedzi, które mogłyby być uznane za poprawne, jak przerwa w przewodzie fazowym, zwarcie przewodu ochronnego do obudowy czy zwarcie przewodu fazowego i neutralnego, warto wskazać na ich merytoryczne błędy. Przerwa w przewodzie fazowym nie mogłaby skutkować natychmiastowym działaniem zabezpieczenia nadprądowego, ponieważ w takim przypadku prąd nie popłynąłby w ogóle, co nie aktywuje zabezpieczeń. Zwarcie przewodu ochronnego do obudowy z kolei powinno wywołać reakcję wyłącznika różnicowoprądowego, a nie nadprądowego, jako że jest to zupełnie inny mechanizm zabezpieczający, który odpowiada za ochronę przed porażeniem prądem. Natomiast zwarcie przewodu fazowego i neutralnego zazwyczaj prowadzi do sytuacji nadmiernego przepływu prądu, co również spowodowałoby zadziałanie zabezpieczenia nadprądowego, ale w inny sposób i z innymi konsekwencjami. Niekiedy błędne wnioski płyną z niepełnego zrozumienia zasad działania zabezpieczeń oraz ich różnic, co prowadzi do pomyłek. Wiedza na temat tego, jak i dlaczego zabezpieczenia działają w dany sposób, jest kluczowa dla bezpieczeństwa instalacji elektrycznych i ich użytkowników. Dlatego zawsze należy dokładnie analizować przyczyny działania zabezpieczeń w kontekście konkretnego problemu.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Jaką wartość powinno mieć napięcie testowe podczas pomiaru rezystancji izolacyjnej uzwojenia wtórnego transformatora ochronnego?

A. 250 V
B. 1 000 V
C. 500 V
D. 2 000 V
Wartość napięcia probierczego przy pomiarach rezystancji izolacji uzwojenia wtórnego transformatora bezpieczeństwa powinna wynosić 250 V. Zgodnie z normami IEC 61557 oraz PN-EN 61557-1, pomiary rezystancji izolacji są przeprowadzane w celu oceny stanu izolacji oraz jej zdolności do zapewnienia bezpieczeństwa użytkowników. Napięcie 250 V jest uznawane za odpowiednie dla systemów niskonapięciowych, w tym transformatorów bezpieczeństwa, aby nie uszkodzić wrażliwych komponentów. Dodatkowo, stosowanie niższego napięcia probierczego, jak 250 V, jest zalecane w kontekście minimalizacji ryzyka uszkodzenia izolacji oraz potencjalnych zagrożeń elektrycznych. Przykładem zastosowania jest regularne testowanie instalacji elektrycznej w budynkach użyteczności publicznej, gdzie zgodnie z przepisami bezpieczeństwa elektrycznego, przeprowadzane są pomiary rezystancji izolacji dla oceny jej stanu. Ekspert zaleca takie pomiary co najmniej raz na pięć lat, aby zapewnić wysoką jakość oraz bezpieczeństwo instalacji.

Pytanie 29

Jakie urządzenia są najmniej podatne na obecność wyższych harmonicznych w napięciu oraz prądzie zasilającym?

A. Lampy wyładowcze
B. Transformatory
C. Silniki indukcyjne
D. Piece grzewcze
Lampy wyładowcze, transformatory i silniki indukcyjne to urządzenia, które mogą mieć spore kłopoty z wyższymi harmonicznymi w sieci zasilającej. Na przykład lampy wyładowcze, takie jak świetlówki, są mocno uzależnione od stabilności napięcia. Jak są zniekształcone fale, to mogą migotać albo zachowywać się dziwnie. To wszystko sprawia, że światło, które emitują, robi się gorszej jakości, a to wpływa na komfort ich użytkowania oraz na efektywność energetyczną. Transformatory, które działają na zasadzie indukcji elektromagnetycznej, też mogą mieć obniżoną wydajność przez zniekształcenia harmoniczne, co prowadzi do strat energii w postaci ciepła. W praktyce, może to powodować, że się przegrzewają i ich żywotność się skraca. Silniki indukcyjne, które są popularne w różnych aplikacjach przemysłowych, również są na to wrażliwe. Wysokie harmoniczne mogą wpływać na ich moment obrotowy, co zwiększa zużycie energii i generuje wibracje. W ekstremalnych przypadkach mogą nawet prowadzić do uszkodzeń mechanicznych. Dlatego warto zrozumieć, jak wyższe harmoniczne wpływają na różne urządzenia, żeby utrzymać je w dobrej formie i wydajności.

Pytanie 30

Przed dokonaniem pomiarów rezystancji izolacji w elektrycznej instalacji oświetleniowej należy odciąć zasilanie, zdemontować ochronniki przeciwprzepięciowe oraz

A. otworzyć łączniki instalacyjne i wkręcić źródła światła
B. zamknąć łączniki instalacyjne i wkręcić źródła światła
C. otworzyć łączniki instalacyjne i wykręcić źródła światła
D. zamknąć łączniki instalacyjne i wykręcić źródła światła
Podczas pomiarów rezystancji izolacji w instalacjach elektrycznych niezwykle istotne jest, aby zrozumieć, dlaczego błędne podejścia mogą prowadzić do niebezpieczeństw i nieprawidłowych wyników. W przypadku otwierania łączników instalacyjnych oraz wkręcania źródeł światła, istnieje ryzyko wprowadzenia niepożądanych elementów do obwodu, co może spowodować zwarcie. Otwarte łączniki to otwarte ścieżki, które mogą prowadzić do nieprzewidzianych zachowań w instalacji, szczególnie jeśli zasilanie jest włączone, co zagraża zarówno osobie wykonującej pomiary, jak i urządzeniom pomiarowym. Z kolei wkręcenie źródeł światła do otwartych łączników stwarza dodatkowe ryzyko, ponieważ w przypadku awarii obwodu, prąd może popłynąć przez te elementy, co może prowadzić do ich uszkodzenia, a także stanowić zagrożenie dla bezpieczeństwa użytkowników. Rekomendowane standardy, takie jak PN-EN 61557 dotyczące pomiarów w instalacjach elektrycznych, podkreślają znaczenie zachowania odpowiednich procedur w celu zapewnienia dokładnych wyników pomiarów. Właściwe przygotowanie instalacji poprzez zamknięcie łączników i wykręcenie źródeł światła jest kluczowe w zapobieganiu sytuacjom, które mogą prowadzić do błędnych pomiarów oraz potencjalnych wypadków.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

W tabeli przedstawiono parametry znamionowe silnika. Do jakiego rodzaju pracy jest on przeznaczony?

Typ silnikaSEh 80-4CF
Moc1,1 kW
Prędkość obrotowa1400 obr/min
ObudowaAluminium
Napięcie zasilania230 V, 50 Hz
Stopień ochronyIP 54
Rodzaj pracyS2
Sprawność74%
Pojemność kondensatora pracy30 μF
Pojemność kondensatora rozruchowego75 μF
A. Dorywczej.
B. Przerywanej z rozruchem.
C. Ciągłej.
D. Przerywanej z hamowaniem elektrycznym.
Wybór odpowiedzi wskazującej na inne klasy pracy, takie jak praca przerywana z hamowaniem elektrycznym, ciągła czy przerywana z rozruchem, wprowadza w błąd co do funkcji i zastosowania silnika. Praca przerywana z hamowaniem elektrycznym polega na okresowym zatrzymywaniu silnika, co nie jest zgodne z charakterystyką dorywczej pracy, gdzie silnik działa przez ustalony czas, a następnie wymaga okresu odpoczynku. Z kolei praca ciągła oznacza, że silnik jest przystosowany do ciągłej eksploatacji, co w przypadku silników oznaczonych jako S2 jest niewłaściwe, gdyż te silniki nie mogą pracować bez przerwy bez ryzyka przegrzania. Wprowadzenie w błąd może również wynikać z mylnego rozumienia cykli pracy maszyn i ich odpowiedniego dostosowania do obciążenia. W praktyce, niewłaściwy dobór silnika do aplikacji może prowadzić do uszkodzeń, zwiększenia kosztów serwisowania oraz obniżenia efektywności energetycznej. Kluczowe jest zrozumienie, że różne klasy pracy silników mają swoje specyficzne zastosowania, a ich oznaczenie powinno być podstawą do podejmowania decyzji w inżynierii mechanicznej i elektrycznej.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

Jak często należy przeprowadzać oględziny domowej instalacji elektrycznej?

A. 60 miesięcy
B. 24 miesiące
C. 12 miesięcy
D. 35 miesięcy
Wydaje mi się, że niektórzy myślą, że przeglądy instalacji elektrycznej powinno robić się częściej niż co 60 miesięcy. Odpowiedzi takie jak 24, 35 czy 12 miesięcy mogą wynikać z niepoprawnego rozumienia norm bezpieczeństwa. Ludzie mogą mieć poczucie, że im częściej, tym lepiej, ale to nie zawsze ma sens. Częstsze przeglądy to dodatkowe koszty, które mogą zniechęcić do regularnych kontroli. A warto pamiętać, że normy jak PN-IEC 60364 zapewniają nie tylko oszczędności, ale też bezpieczeństwo. Robienie przeglądów co 60 miesięcy wyszuka jakieś problemy, jak zużyte przewody czy źle działające zabezpieczenia, zanim będzie za późno. Fajnie jest myśleć, że intensywne korzystanie z urządzeń elektrycznych wymaga częstszych przeglądów, ale to nie zawsze prawda. Ważniejsza jest jakość samej instalacji, która przy dobrym nadzorze może działać bez zarzutu przez długi czas.

Pytanie 38

Kto jest zobowiązany do utrzymania odpowiedniego stanu technicznego układów pomiarowych i rozliczeniowych energii elektrycznej w biurowcu?

A. Zarządca obiektu
B. Producent energii elektrycznej
C. Właściciel obiektu
D. Dostawca energii elektrycznej
Właściciel budynku, jako podmiot odpowiedzialny za jego zarządzanie, może być mylnie postrzegany jako ten, kto odpowiada za stan techniczny układów pomiarowo-rozliczeniowych. Jednakże, w kontekście przepisów prawa i praktyk branżowych, jego rola ogranicza się głównie do zapewnienia odpowiednich warunków do instalacji i użytkowania tych urządzeń. Właściciel budynku nie ma kompetencji ani zasobów technicznych, aby samodzielnie sprawować nadzór nad układami pomiarowymi, co może prowadzić do nieporozumień co do odpowiedzialności. Z kolei wytwórca energii elektrycznej odpowiada za produkcję energii, ale nie zajmuje się bezpośrednio pomiarami i rozliczeniami dla odbiorców. Tylko dostawca energii, który finalnie sprzedaje energię, ma obowiązek monitorować stan techniczny urządzeń pomiarowych, aby zapewnić ich prawidłowe działanie. Zarządca budynku, mimo że może mieć pewne obowiązki w zakresie zarządzania infrastrukturą, nie jest w stanie zapewnić technicznej niezawodności układów pomiarowych bez ścisłej współpracy z dostawcą energii. Dobre praktyki branżowe oraz regulacje prawne jasno określają, że to dostawca energii jest odpowiedzialny za prawidłowe funkcjonowanie systemów pomiarowych, co jest kluczowe dla dokładnych rozliczeń i zapobiegania sporom między klientami a dostawcami.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Gdy prace pomiarowe i kontrolne w instalacjach elektrycznych są wymagane do wykonania przez dwie osoby, to osoba przeprowadzająca pomiary powinna mieć odpowiednie kwalifikacje, a druga osoba wspierająca

A. powinna posiadać świadectwo kwalifikacyjne na stanowisku eksploatacji w zakresie pomiarów
B. musi dysponować świadectwem kwalifikacyjnym na stanowisku dozoru, lecz bez zakresu pomiarów
C. nie musi mieć świadectwa kwalifikacji, jeśli przeszła odpowiednie szkolenie
D. nie jest zobowiązana do posiadania świadectwa kwalifikacji, jeśli ukończyła szkołę zawodową
Zrozumienie wymagań dotyczących kwalifikacji osób wykonujących prace pomiarowo-kontrolne instalacji elektrycznych jest kluczowe dla zapewnienia bezpieczeństwa i jakości wykonywanych zadań. Odpowiedzi sugerujące, że osoba wspomagająca musi posiadać świadectwo kwalifikacji, ignorują fakt, że nie każde stanowisko wymaga formalnych certyfikatów, zwłaszcza jeśli mowa o pracach, które można przeprowadzać w oparciu o odpowiednie przygotowanie i szkolenie. Posiadanie wykształcenia zawodowego nie jest równoznaczne ze zdolnością do przeprowadzania skomplikowanych pomiarów elektrycznych, gdzie kluczowe są umiejętności praktyczne i znajomość procedur bezpieczeństwa. W praktyce, wiele osób podejmujących się wsparcia podczas pomiarów, posiada doświadczenie nabyte w trakcie praktyk czy kursów, które nie zawsze kończą się formalnym świadectwem, ale są wystarczające do bezpiecznego i efektywnego działania. Zatem, stawianie wymogu posiadania świadectwa kwalifikacyjnego na stanowisku dozoru, jeśli osoba nie wykonuje czynności wymagających takiej kwalifikacji, wprowadza zbędne ograniczenia i może prowadzić do niepoprawnych wniosków o kompetencjach pracowników. Warto podkreślić, że na rynku pracy, elastyczność w podejściu do kwalifikacji i umiejętności pracowników w kontekście ich faktycznych obowiązków jest nie tylko korzystna, ale także zgodna z nowoczesnymi trendami w zarządzaniu zasobami ludzkimi.