Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 sierpnia 2025 01:16
  • Data zakończenia: 8 sierpnia 2025 01:24

Egzamin zdany!

Wynik: 36/40 punktów (90,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zauważono, że silnik indukcyjny pracuje z nadmiernym hałasem, a źródło dźwięku znajduje się w łożysku tocznym. Jak można rozwiązać ten problem?

A. Smarując łożysko olejem
B. Wymieniając łożysko
C. Zamieniając osłony łożyska
D. Uzupełniając smar w łożysku
Głośna praca silnika indukcyjnego, wynikająca z nieprawidłowości w łożysku tocznym, wskazuje na jego zniszczenie lub zużycie mechaniczne. Wymiana łożyska to jedyne skuteczne rozwiązanie, które zapewni długotrwałe działanie silnika. W przypadku łożysk tocznych, ich efektywność zależy od odpowiedniego smarowania oraz stanu mechanicznego. Regularna konserwacja i wymiana łożysk są zgodne z normami branżowymi, które zalecają okresowe przeglądy urządzeń elektrycznych. Wymiana uszkodzonego łożyska na nowe pozwala na przywrócenie optymalnej pracy silnika oraz minimalizuje ryzyko dodatkowych uszkodzeń. Warto również zwrócić uwagę na dobór właściwego typu łożyska, które powinno odpowiadać specyfikacji producenta silnika. Praktyka pokazuje, że zaniedbanie wymiany łożyska może prowadzić do poważnych awarii mechanicznych, co wiąże się z kosztami napraw oraz przestojami produkcyjnymi. Dlatego kluczowe jest podejście proaktywne w zakresie konserwacji łożysk.

Pytanie 2

Jakie dane powinny być zdefiniowane w programie sterującym jako dane typu BOOL?

A. Heksadecymalne
B. Binarne
C. Dziesiętne
D. Oktadecymalne
Odpowiedź "Binarne" jest poprawna, ponieważ dane typu BOOL są definiowane jako zmienne przyjmujące jedynie dwie wartości: prawda (true) oznaczona jako 1 oraz fałsz (false) oznaczona jako 0. W praktyce, w programowaniu i w systemach automatyki, zmienne typu BOOL są niezwykle użyteczne, gdyż pozwalają na podejmowanie decyzji oraz kontrolowanie przepływu programów. Na przykład, w instrukcjach warunkowych (if, switch) zmienne BOOL są wykorzystywane do decydowania, która część kodu powinna być wykonana. W kontekście automatyki przemysłowej, zmienne te mogą kontrolować stan urządzeń, takich jak czujniki czy siłowniki, co jest zgodne z najlepszymi praktykami projektowania systemów sterujących. Użycie danych typu BOOL w programach sterujących jest standardem, który zapewnia efektywne zarządzanie stanami systemu, co jest kluczowe dla zapewnienia jego niezawodności i bezpieczeństwa.

Pytanie 3

Konserwacja układu stycznikowo-przekaźnikowego nie obejmuje

A. sprawdzania dokręcenia śrub zacisków
B. dokonywania regulacji
C. oceny zużycia styków
D. usuwania kurzu
Regulacje to nie to samo co konserwacja układu stycznikowo-przekaźnikowego. Konserwacja skupia się na tym, żeby sprzęt działał dobrze i był w dobrym stanie. Do tego potrzebne są takie rzeczy jak sprawdzenie dokręcenia śrub czy czyszczenie, co jest super ważne dla stabilnych połączeń elektrycznych. Regularne czyszczenie sprzętu z kurzu jest też kluczowe, bo zapobiega przegrzewaniu się i uszkodzeniom. Musimy też pilnować, co się dzieje ze stykami, bo jak są zużyte, to mogą nas na przykład zaskoczyć jakimś zwarciem, a to już grozi bezpieczeństwu. Dobrze jest też znać normy, na przykład PN-EN 60204-1, które mówią, że trzeba regularnie przeglądać i dbać o nasze urządzenia elektryczne, żeby zapewnić ich niezawodność i bezpieczeństwo w pracy.

Pytanie 4

Tłoczysko siłownika pneumatycznego porusza się poziomo ruchem prostoliniowym, lecz z wolniejszą prędkością niż zazwyczaj. Co może być najprawdopodobniejszą przyczyną opóźnienia ruchu siłownika?

A. Wyboczone lub uszkodzone tłoczysko
B. Zepsute mocowanie siłownika
C. Uszkodzone zewnętrzne amortyzatory siłownika
D. Nieszczelność, zużycie uszczelek lub pierścieni tłoka
Nieszczelność, zużycie uszczelek lub pierścieni tłoka są głównymi przyczynami spowolnienia ruchu siłownika pneumatycznego. W momencie, gdy uszczelki lub pierścienie są uszkodzone, dochodzi do wycieku powietrza, co prowadzi do utraty ciśnienia w układzie. To z kolei powoduje, że siłownik nie może osiągnąć pełnej prędkości, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak automatyzacja procesów lub linie montażowe. W praktyce, regularne kontrole stanu uszczelek i pierścieni są niezmiernie ważne, aby zapewnić optymalną wydajność systemu pneumatycznego. W przypadku wykrycia nieszczelności, należy natychmiast zidentyfikować źródło problemu i wymienić uszkodzone elementy, co minimalizuje ryzyko awarii całego systemu. Dobre praktyki w tej dziedzinie obejmują także stosowanie wysokiej jakości materiałów uszczelniających oraz przestrzeganie instrukcji producenta dotyczących montażu i konserwacji siłowników pneumatycznych.

Pytanie 5

Który z literowych identyfikatorów powinien być wykorzystany w poleceniu odnoszącym się do analogowych wyjść?

A. SM
B. MW
C. AI
D. AQ
Wybór identyfikatora "AQ" jako poprawnej odpowiedzi jest w pełni uzasadniony w kontekście systemów automatyki i sterowania. Skrót ten oznacza "Analog Output", co bezpośrednio odnosi się do wyjść analogowych w urządzeniach automatyki. Wyjścia analogowe są kluczowym elementem w procesach kontrolnych, ponieważ umożliwiają przekazywanie sygnałów w formie ciągłej, co jest istotne w przypadku aplikacji wymagających precyzyjnej regulacji, takich jak sterowanie silnikami czy regulacja temperatury. Zrozumienie roli identyfikatorów literowych, takich jak "AQ", jest fundamentalne dla projektantów systemów automatyki, gdyż pozwala na poprawne rozróżnienie między różnymi typami sygnałów. W praktyce identyfikatory te są niezbędne do programowania i konfigurowania urządzeń, co ma kluczowe znaczenie dla efektywności i niezawodności systemów. Zgodność z normami branżowymi, takimi jak IEC 61131-3, również podkreśla znaczenie stosowania odpowiednich identyfikatorów dla różnych typów I/O, co zapewnia spójność oraz prawidłowe działanie systemów w automatyce przemysłowej.

Pytanie 6

W planowanym systemie hydraulicznym kontrola energii czynnika roboczego powinna odbywać się na zasadzie objętościowej. Osiąga to

A. pompa hydrauliczna o stałej wydajności
B. pompa hydrauliczna o zmiennej wydajności
C. zawór bezpieczeństwa
D. zawór przelewowy
Pompa hydrauliczna o zmiennej wydajności jest kluczowym elementem w układach hydraulicznych, które wymagają precyzyjnego sterowania objętościowym przepływem czynnika roboczego. Dzięki tej konstrukcji możliwe jest dostosowanie wydajności pompy do aktualnych potrzeb systemu, co zapewnia optymalne wykorzystanie energii oraz efektywność pracy urządzeń hydraulicznych. W praktyce, pompy o zmiennej wydajności znajdują zastosowanie w wielu branżach, takich jak przemysł budowlany, motoryzacyjny czy lotniczy, gdzie wymagane są różne poziomy ciśnienia i przepływu w zależności od specyficznych zadań. Standardy branżowe, takie jak ISO 4413, podkreślają znaczenie precyzyjnego sterowania w układach hydraulicznych, co bezpośrednio wpływa na bezpieczeństwo i niezawodność operacyjną. Dzięki zaawansowanej technologii, pompy te często są wyposażone w systemy monitorowania i automatyzacji, co dodatkowo zwiększa ich wydajność. Warto również pamiętać, że stosowanie pompy o zmiennej wydajności może prowadzić do zmniejszenia zużycia energii oraz obniżenia kosztów eksploatacyjnych, co jest istotnym aspektem zarządzania nowoczesnymi układami hydraulicznymi.

Pytanie 7

Jakie kluczowe warunki powinien spełniać system regulacji automatycznej, aby mógł funkcjonować w pełnym zakresie zmian wartości zadanej?

A. Niewielkie przeregulowanie
B. Stabilność
C. Krótki czas regulacji
D. Brak uchybu w stanie ustalonym
Stabilność jest fundamentalnym warunkiem dla działania układu regulacji automatycznej w pełnym zakresie zmian wartości zadanej. Oznacza to, że po wprowadzeniu jakiejkolwiek zmiany, system jest w stanie wrócić do równowagi bez niekontrolowanych oscylacji. Przykładem stabilnego układu regulacji automatycznej może być termostat, który utrzymuje stałą temperaturę w pomieszczeniu. Jeśli temperatura wzrośnie powyżej ustawionego poziomu, termostat aktywuje klimatyzację, a po osiągnięciu pożądanej temperatury, wyłącza ją, zapobiegając przegrzewaniu. W kontekście norm inżynieryjnych i najlepszych praktyk, stabilność układu odnosi się do spełnienia kryteriów stabilności, takich jak kryterium Nyquista czy kryterium Hurwitza, które pomagają w analizie i projektowaniu systemów regulacji. Utrzymanie stabilności w układach automatycznych jest niezbędne do zapewnienia ich niezawodności oraz efektywności operacyjnej, szczególnie w zastosowaniach przemysłowych, gdzie zmiany wartości zadanej mogą być dynamiczne i złożone.

Pytanie 8

Do precyzyjnego pomiaru natężenia prądu elektrycznego w układach mechatronicznych zaleca się wykorzystanie amperomierza o

A. jak najmniejszej rezystancji wewnętrznej
B. jak największej rezystancji wewnętrznej
C. dowolnej wartości rezystancji wewnętrznej, ponieważ nie wpływa ona na uzyskany wynik
D. rezystancji wewnętrznej równej rezystancji odbiornika
Użycie amperomierza z jak najmniejszą rezystancją wewnętrzną jest kluczowe dla uzyskania dokładnych pomiarów natężenia prądu elektrycznego w układach mechatronicznych. Amperomierz, będąc elementem pomiarowym, powinien mieć minimalny wpływ na obwód, w którym jest włączony. Im mniejsza rezystancja wewnętrzna, tym mniej energii z obwodu odbierze amperomierz, co przekłada się na dokładniejsze odczyty. W praktyce, jeśli użyjemy amperomierza o dużej rezystancji, może to prowadzić do znacznego spadku natężenia prądu w obwodzie, co skutkuje błędnym pomiarem. Przykładem zastosowania wysokiej jakości amperomierzy o niskiej rezystancji wewnętrznej są aplikacje w elektronice, w których precyzyjne pomiary prądu są niezbędne do właściwego funkcjonowania urządzeń. Standardy branżowe, takie jak IEC 61010, podkreślają znaczenie używania urządzeń pomiarowych, które minimalizują wpływ na badany obwód.

Pytanie 9

Który z poniższych elementów jest niezbędny do prawidłowego działania układu pneumatycznego?

A. Rezystor
B. Transformator
C. Sprężarka
D. Akumulator
Sprężarka jest kluczowym elementem w układzie pneumatycznym, ponieważ to ona wytwarza i dostarcza sprężone powietrze, które jest medium roboczym w takich systemach. Bez sprężarki nie byłoby możliwe generowanie ciśnienia potrzebnego do działania siłowników, zaworów czy innych elementów pneumatycznych. W praktyce sprężone powietrze jest używane w wielu gałęziach przemysłu, takich jak motoryzacja, produkcja czy budownictwo. Na przykład, w warsztatach samochodowych sprężone powietrze napędza narzędzia pneumatyczne, które są bardziej wydajne i trwałe niż ich elektryczne odpowiedniki. W przemyśle produkcyjnym sprężarki są używane do zasilania linii produkcyjnych, gdzie szybkość i precyzja działania urządzeń pneumatycznych mają kluczowe znaczenie. Dobrze zaprojektowany układ pneumatyczny, oparty na odpowiednio dobranej sprężarce, jest nie tylko efektywny, ale również energooszczędny, co przekłada się na niższe koszty eksploatacji. Sprężarki są zgodne z różnymi standardami i normami, które zapewniają ich bezpieczne i efektywne działanie, co jest istotne w kontekście ich szerokiego zastosowania w przemyśle.

Pytanie 10

Zakres działań eksploatacyjnych dla urządzenia mechatronicznego powinien być określony na podstawie

A. protokółu przekazania urządzenia do eksploatacji
B. dowodu zakupu urządzenia
C. dokumentacji techniczno-ruchowej urządzenia
D. karty gwarancyjnej
Dokumentacja techniczno-ruchowa urządzenia mechatronicznego jest kluczowym źródłem informacji dotyczących jego eksploatacji, konserwacji oraz napraw. Zawiera szczegółowe specyfikacje techniczne, instrukcje obsługi oraz harmonogramy przeglądów, co pozwala użytkownikom na odpowiednie przygotowanie się do pracy z urządzeniem. Przykładowo, regularne przeglądy oraz konserwacja zgodnie z wytycznymi zawartymi w dokumentacji są niezbędne dla zapewnienia długotrwałej i bezawaryjnej pracy urządzenia. Dobre praktyki branżowe wskazują, że niewłaściwa eksploatacja sprzętu, wynikająca z braku znajomości zasad zawartych w dokumentacji, może prowadzić do poważnych usterek oraz zwiększonych kosztów napraw. Ponadto, dokumentacja techniczno-ruchowa zapewnia również aktualizacje dotyczące zmian w procedurach eksploatacyjnych, co jest istotne w kontekście dostosowania się do nowych standardów i norm bezpieczeństwa. Rzetelne przestrzeganie zawartych tam wytycznych jest zatem fundamentem dla efektywnej i bezpiecznej eksploatacji urządzeń mechatronicznych.

Pytanie 11

Jakie parametry są najczęściej regulowane w systemach mechatronicznych z wykorzystaniem regulacji PID?

A. Prędkość, temperatura, ciśnienie
B. Kolor, natężenie światła, zapach
C. Dźwięk, drgania, przyspieszenie
D. Wilgotność, napięcie, waga
Regulacja PID, czyli proporcjonalno-całkująco-różniczkująca, jest jednym z najczęściej stosowanych algorytmów sterowania w mechatronice i automatyce. Jest używana do precyzyjnego utrzymania zadanych wartości parametrów procesowych, takich jak prędkość, temperatura czy ciśnienie. Przykładowo, w przemyśle produkcyjnym PID może kontrolować temperaturę pieca poprzez regulację dopływu paliwa lub prędkość taśmociągu poprzez kontrolę silnika napędowego. PID działa na zasadzie minimalizacji różnicy (błędu) pomiędzy wartością zadaną a rzeczywistą, wykorzystując trzy składowe: proporcjonalną, całkującą i różniczkującą, co pozwala na szybkie i stabilne osiągnięcie wartości zadanej. Algorytmy PID są powszechnie stosowane ze względu na swoją prostotę, efektywność i zdolność do adaptacji w różnych warunkach, a także na bazie ich solidnego wsparcia teoretycznego i łatwości implementacji w systemach cyfrowych.

Pytanie 12

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Filtruje zanieczyszczenia z oleju.
B. Zrzuca olej z siłownika do zbiornika.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Umożliwia regulację wartości siły wytwarzanej przez prasę.
Istnieje wiele błędnych przekonań dotyczących funkcji zaworu przelewowego w prasie hydraulicznej, które mogą prowadzić do mylnych wniosków. Nieprawdziwe jest stwierdzenie, że zawór ten odprowadza olej z siłownika do zbiornika, ponieważ jego podstawowym zadaniem nie jest transport oleju, lecz regulacja ciśnienia w systemie. W praktyce, odprowadzanie oleju z siłownika realizowane jest przez inne elementy układu hydraulicznego, np. przez zawory sterujące. Również stwierdzenie, że zawór przelewowy zapobiega cofaniu oleju z rozdzielacza do pompy, jest mylne. Choć zawory mogą pełnić funkcję zabezpieczającą, to ich główną rolą nie jest zapobieganie cofaniu, ale raczej utrzymanie optymalnego ciśnienia. Kolejna niepoprawna koncepcja sugeruje, że zawór przelewowy odfiltrowuje zanieczyszczenia z oleju. W rzeczywistości filtracja oleju to zadanie innych elementów, takich jak filtry hydrauliczne, które są projektowane specjalnie do usuwania zanieczyszczeń. Zrozumienie rzeczywistej roli zaworu przelewowego jest kluczowe dla prawidłowego funkcjonowania układów hydraulicznych oraz zapewnienia ich efektywności i bezpieczeństwa. Wiedza na temat rzeczywistych funkcji poszczególnych komponentów systemu hydraulicznego jest niezbędna do dokonywania świadomych wyborów projektowych oraz eksploatacyjnych.

Pytanie 13

Czujnik rozpoznaje elementy z tworzywa sztucznego

A. piezoelektryczny
B. indukcyjny
C. pojemnościowy
D. magnetyczny
Czujnik pojemnościowy jest idealnym narzędziem do wykrywania elementów wykonanych z tworzyw sztucznych ze względu na sposób, w jaki działa. Zasada działania czujnika pojemnościowego opiera się na pomiarze zmian pojemności kondensatora, który składa się z dwóch elektrod oddzielonych dielektrykiem. Kiedy tworzywo sztuczne znajduje się między elektrodami, jego obecność wpływa na wartość pojemności, co jest wykrywane przez czujnik. Przykładem zastosowania czujników pojemnościowych są systemy automatyzacji przemysłowej, gdzie monitorują one obecność i poziom różnych materiałów w procesach produkcyjnych. W praktyce, czujniki te są wykorzystywane na przykład w liniach produkcyjnych do detekcji plastikowych pojemników lub elementów, co pozwala na automatyczne sortowanie i kontrolę jakości. Standardy takie jak IEC 60947-5-2 definiują wymagania dotyczące czujników wykrywających różne materiały, co potwierdza ich znaczenie w branży. Warto również zauważyć, że czujniki pojemnościowe są bardziej uniwersalne w porównaniu do innych typów czujników, co czyni je niezastąpionym narzędziem w nowoczesnej automatyce.

Pytanie 14

Urządzenia mechatroniczne, które jako napędy wykorzystują silniki komutatorowe, nie powinny być stosowane w

A. pomieszczeniach z klimatyzacją
B. pomieszczeniach narażonych na wybuch
C. zadaszonej hali produkcyjnej
D. pomieszczeniach o niskich temperaturach
Silniki komutatorowe są powszechnie stosowane w aplikacjach mechatronicznych, jednak ich użycie w pomieszczeniach zagrożonych wybuchem jest niebezpieczne. Generowane przez nie iskry mogą stanowić bezpośrednie źródło zapłonu w obecności łatwopalnych gazów i pyłów, co jest zgodne z normami bezpieczeństwa, takimi jak ATEX (Dyrektywa Unii Europejskiej dotycząca sprzętu przeznaczonego do pracy w atmosferze wybuchowej). W praktyce, w takich środowiskach wybiera się silniki bezkomutatorowe lub inne konstrukcje zabezpieczone przed wybuchem, co minimalizuje ryzyko zapłonu. Warto zwrócić uwagę, że w przemyśle chemicznym, naftowym czy gazowym, użycie odpowiednich silników zgodnych z normami IECEx jest kluczowe dla zapewnienia bezpieczeństwa operacji. Prawidłowy dobór urządzeń napędowych w tych warunkach nie tylko spełnia wymogi prawne, ale także zabezpiecza ludzi i mienie przed poważnymi zagrożeniami.

Pytanie 15

Zgodnie z zasadami opracowywania programu w języku SFC

A. dwa kroki powinny być bezpośrednio ze sobą powiązane, nie mogą być oddzielone tranzycją
B. dwa kroki nie mogą być bezpośrednio ze sobą powiązane, muszą być oddzielone tranzycją
C. dwie tranzycje mogą być bezpośrednio ze sobą powiązane, nie muszą być oddzielone krokiem
D. dwie tranzycje muszą być bezpośrednio ze sobą powiązane, nie mogą być oddzielone krokiem
Odpowiedź, że dwa kroki nie mogą być bezpośrednio ze sobą połączone, jest prawidłowa, ponieważ zasady definiujące programowanie w języku SFC (Sequential Function Charts) wymagają, aby każdy krok był zakończony przed przejściem do następnego. Przykładem może być system automatyzacji produkcji, gdzie każdy krok odpowiada za konkretną operację, taką jak załadunek surowców, przetwarzanie i pakowanie. Gdyby dwa kroki były połączone bez tranzycji, mogłoby to prowadzić do sytuacji, w której proces nie mógłby być w pełni wykonany, co zwiększyłoby ryzyko błędów i zagrożeń dla bezpieczeństwa. Tranzycje w SFC są kluczowe, ponieważ definiują warunki, które muszą być spełnione, aby przejść do kolejnego kroku, co zapewnia poprawność i integralność całego procesu. Ponadto, zgodnie z normami IEC 61131-3, odpowiednie zarządzanie krokami i tranzycjami jest niezbędne do stworzenia czytelnych i efektywnych programów sterujących, co jest podstawą profesjonalnego podejścia w automatyce przemysłowej.

Pytanie 16

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zmniejszyć zakres histerezy
B. zmniejszyć wartość sygnału zadawania
C. zwiększyć wartość sygnału regulacyjnego
D. zwiększyć zakres histerezy
Wydaje mi się, że wybór niepoprawnej odpowiedzi może wynikać z pewnego nieporozumienia na temat tego, jak działa histereza w regulatorach dwustanowych. Zmniejszenie szerokości histerezy sprawia, że system staje się bardziej czuły na małe zmiany, co prowadzi do częstszych zmian stanu wyjścia. Można powiedzieć, że to trochę jakby zamiast pomagać, jeszcze bardziej komplikuje sytuację, bo prowadzi do nadmiernej reakcji na małe fluktuacje. To z kolei zwiększa oscylacje zamiast je redukować. Poza tym, zmniejszenie histerezy jest po prostu sprzeczne z podstawowymi zasadami regulacji. Stabilność systemu osiągamy też przez odpowiednie dostrojenie parametrów regulatora. Większa amplituda sygnału regulującego też nie rozwiąże problemu, bo jedynie zwiększy zakres zmian, co może powodować jeszcze większy chaos. Zmniejszenie wartości sygnału zadającego może wydawać się rozsądne, ale też nie pomoże w pozbyciu się oscylacji, tylko wpłynie na to, jak wysoko czy nisko działa regulator. W praktyce inżynieryjnej ważne jest, żeby unikać sytuacji, które mogą sprawić, że system będzie bardziej wrażliwy na zakłócenia, bo to prowadzi do niechcianych oscylacji.

Pytanie 17

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Transformator
B. Przetwornik A/C
C. Zawór proporcjonalny
D. Silnik elektryczny
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 18

W jakich częściach sieci SFC wykorzystuje się oznaczenia literowe N, S, D?

A. W oznaczeniach tranzycji.
B. W opisach zmiennych.
C. W symbolach kroków.
D. W kwalifikatorach działania.
Kwalifikatory działania w sieci SFC (Sequential Function Chart) pełnią kluczową rolę w definiowaniu warunków, które muszą być spełnione, aby dany krok mógł zostać aktywowany. Symbole literowe N, S i D oznaczają kolejno: N - normalny, S - startowy, D - definitywny. W praktyce, te symbole są wykorzystywane do oznaczania różnych stanów i przejść w procesie automatyzacji, co jest zgodne z normą IEC 61131-3, definiującą języki programowania dla urządzeń automatyki. Przykładem zastosowania może być system sterowania w zakładzie produkcyjnym, gdzie kwalifikatory te pomagają określić, czy urządzenie powinno być uruchomione w konkretnych warunkach, co zwiększa bezpieczeństwo operacji i efektywność działania. Zrozumienie tych symboli jest istotne dla każdego inżyniera automatyki, aby odpowiednio implementować logikę sterowania i dostosowywać ją do wymagań procesów przemysłowych.

Pytanie 19

Jakie minimalne parametry bitowe powinien mieć przetwornik A/C, aby w zakresie pomiarowym
0 mA ÷ 20 mA osiągnąć rozdzielczość w zaokrągleniu równą 0,01 mA?

A. 16 bitowy
B. 12 bitowy
C. 10 bitowy
D. 11 bitowy
Aby zapewnić rozdzielczość równą 0,01 mA w zakresie pomiarowym od 0 mA do 20 mA, niezbędne jest zastosowanie przetwornika A/C, który potrafi obsłużyć co najmniej 2000 poziomów kwantyzacji. Przetwornik 11-bitowy, oferujący 2048 poziomów kwantyzacji, spełnia to wymaganie, ponieważ umożliwia osiągnięcie pożądanej dokładności. W praktyce oznacza to, że dla każdego odczytu prądu możemy precyzyjnie określić wartości w odstępach 0,01 mA, co jest kluczowe w wielu zastosowaniach, np. w automatyce przemysłowej, gdzie precyzyjne pomiary są niezbędne do zapewnienia wydajności i bezpieczeństwa systemów. Warto pamiętać, że stosowanie przetworników o wyższej rozdzielczości przyczynia się do lepszego monitorowania procesów oraz minimalizowania ryzyka wystąpienia błędów pomiarowych. W branży zaleca się wybór urządzeń z nadmiarem rozdzielczości, co pozwala na większą elastyczność w przyszłych aplikacjach oraz lepsze dopasowanie do zmieniających się wymagań.

Pytanie 20

W przypadku, gdy w obwodzie wymagany jest kondensator o pojemności rzędu kilku tysięcy µF, należy wybrać kondensator

A. ceramiczny
B. powietrzny
C. foliowy
D. elektrolityczny
Kondensator elektrolityczny to komponent, który wyróżnia się wysoką pojemnością, co czyni go idealnym rozwiązaniem w układach wymagających wartości rzędu kilku tysięcy µF. W odróżnieniu od innych typów kondensatorów, takich jak kondensatory ceramiczne czy foliowe, kondensatory elektrolityczne są zdolne do przechowywania dużych ładunków elektrycznych w stosunkowo niewielkiej objętości. Dzięki temu są szeroko stosowane w zasilaczach impulsowych, filtrach dławikowych oraz w aplikacjach związanych z stabilizacją napięcia. Warto również zwrócić uwagę na ich niską wartość oporu szeregowego, co sprawia, że minimalizują straty energii w układzie, co jest kluczowe przy dużych prądach. Zgodność z normami, takimi jak IEC 60384, gwarantuje, że kondensatory elektrolityczne spełniają odpowiednie wymagania jakościowe i bezpieczeństwa w zastosowaniach przemysłowych.

Pytanie 21

Jakiego rodzaju oprogramowanie należy zastosować do przedstawienia procesu produkcji?

A. SCADA
B. CAM
C. CAE
D. CAD
SCADA, czyli System Kontroli i Zbierania Danych, to oprogramowanie kluczowe w wizualizacji i zarządzaniu procesami produkcyjnymi. Jego głównym celem jest monitorowanie systemów w czasie rzeczywistym, co pozwala na szybkie reagowanie na wszelkie nieprawidłowości. SCADA umożliwia zbieranie danych z różnych czujników i urządzeń, a następnie ich przetwarzanie i wizualizację w formie intuicyjnych interfejsów graficznych. Dzięki temu operatorzy mogą pełniej zrozumieć stan systemu produkcyjnego, co jest istotne w kontekście optymalizacji procesów oraz minimalizacji przestojów. W praktyce SCADA często współpracuje z innymi systemami, takimi jak ERP (Enterprise Resource Planning) czy MES (Manufacturing Execution Systems), co jeszcze bardziej zwiększa jej użyteczność. Standardy takie jak ISA-95 definiują interakcje pomiędzy systemami produkcyjnymi a zarządczymi, co sprawia, że SCADA jest integralnym elementem nowoczesnych zakładów przemysłowych. Właściwe wykorzystanie SCADA przynosi korzyści w postaci zwiększonej efektywności operacyjnej oraz lepszego wykorzystania zasobów.

Pytanie 22

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. ADD
B. MOVE
C. DIV
D. SUB
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 23

Sterownik PLC powinien zarządzać systemem nagrzewnicy, który składa się z wentylatora oraz zestawu grzałek. Jaką czynność należy podjąć, aby uniknąć przegrzania obudowy nagrzewnicy po jej dezaktywowaniu?

A. Opóźnić dezaktywację grzałek
B. Zwiększyć moc grzałek
C. Zmniejszyć prędkość obrotową silnika wentylatora
D. Opóźnić dezaktywację wentylatora
Opóźnienie wyłączenia wentylatora jest kluczowym działaniem mającym na celu ochronę obudowy nagrzewnicy przed przegrzewaniem się. Kiedy grzałki są wyłączone, obudowa nagrzewnicy wciąż emituje ciepło, a wentylator odgrywa istotną rolę w odprowadzaniu tego ciepła do otoczenia. Działający wentylator pomoże w utrzymaniu właściwej temperatury obudowy, zapobiegając jej uszkodzeniu oraz wydłużając żywotność urządzenia. W praktyce, opóźnienie wyłączenia wentylatora można zrealizować poprzez zaprogramowanie odpowiedniego czasu w sterowniku PLC, po którym wentylator będzie kontynuował pracę. Tego typu rozwiązania są zgodne z zasadami inżynierii automatyki, gdzie bezpieczeństwo i niezawodność systemu są priorytetem. Właściwe zarządzanie temperaturą nie tylko chroni urządzenie, ale również wpływa na efektywność energetyczną całego systemu grzewczego.

Pytanie 24

Schemat połączeń układu hydraulicznego powinien być tworzony zgodnie z kierunkiem przepływu sygnału, czyli od dołu do góry. Z perspektywy elementów zasilających, wskaż właściwą sekwencję poszczególnych części układu hydraulicznego.

A. Zawory sterujące, zawory reagujące na sygnały obiektowe, zawory robocze, elementy wykonawcze
B. Zawory reagujące na sygnały obiektowe, zawory sterujące, elementy wykonawcze, zawory robocze
C. Zawory reagujące na sygnały obiektowe, zawory robocze, zawory sterujące, elementy wykonawcze
D. Zawory reagujące na sygnały obiektowe, zawory sterujące, zawory robocze, elementy wykonawcze
Poprawna odpowiedź wskazuje na prawidłowy układ elementów w hydraulice, gdzie najpierw umieszczamy zawory reagujące na sygnały obiektowe, a następnie zawory sterujące, robocze i na końcu elementy wykonawcze. Taki układ jest zgodny z zasadami projektowania systemów hydraulicznych, które zalecają, aby sygnały były przekazywane w kierunku od źródła zasilania do elementów wykonawczych. Przykładem praktycznym może być układ hydrauliczny w maszynach budowlanych, gdzie precyzyjne sterowanie ruchem siłowników jest kluczowe dla efektywności pracy. Dobrze zaprojektowany układ hydrauliczny nie tylko zwiększa wydajność, ale także poprawia bezpieczeństwo operacji, ponieważ odpowiednie sterowanie pozwala na szybsze i bardziej precyzyjne reakcje na zmiany w otoczeniu. W branży hydraulicznej, zgodność z normami ISO oraz PN EN jest istotna, ponieważ przyczynia się do zwiększenia niezawodności i trwałości systemów. Zastosowanie takiej kolejności elementów pozwala również na łatwiejsze diagnozowanie usterek oraz optymalizację procesu serwisowego.

Pytanie 25

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. LD FUN_1
B. CAL FUN_1
C. RET FUN_1
D. JMP FUN_1
Operator CAL jest kluczowym elementem w języku IL (Instruction List) służącym do wywoływania bloków funkcyjnych w programach sterowników PLC. Użycie operatora CAL dla bloku funkcyjnego FUN_1 oznacza, że program sterujący aktywuje kod zapisany w tym bloku, co jest niezbędne do realizacji określonych zadań w systemie automatyki. W praktyce operator CAL umożliwia modularne podejście do programowania, co jest zgodne z najlepszymi praktykami w inżynierii oprogramowania. Dzięki takiej modularności, programy stają się bardziej czytelne i łatwiejsze do utrzymania. Warto zauważyć, że odpowiednie użycie bloków funkcyjnych i ich wywoływanie za pomocą operatorów jest zgodne z normami IEC 61131-3, które regulują programowanie sterowników PLC. Stosując operator CAL, inżynierowie mogą efektywnie dzielić swoje programy na mniejsze, łatwiejsze do zarządzania komponenty, co z kolei sprzyja lepszej organizacji i wydajności systemu.

Pytanie 26

Jakiego komponentu należy użyć w opracowywanym systemie hydraulicznym, aby zapewnić niezmienną prędkość wysuwu tłoczyska siłownika w przypadku zmiennego obciążenia?

A. Zawór dławiąco-zwrotny
B. Zawór redukcyjny
C. Zawór zwrotny sterowany
D. Regulator natężenia przepływu
Wybór zaworu redukcyjnego, dławiąco-zwrotnego czy zwrotnego sterowanego w celu uzyskania stałej prędkości wysuwu tłoczyska siłownika w układzie hydraulicznym jest niewłaściwy, ponieważ te elementy nie są zaprojektowane do regulacji przepływu w kontekście zmieniającego się obciążenia. Zawór redukcyjny ma na celu utrzymanie stałego ciśnienia w określonym obszarze układu, co może być przydatne w niektórych zastosowaniach, jednak nie zapewnia on kontrolowanej prędkości ruchu tłoczyska w zmiennych warunkach. Zawór dławiąco-zwrotny, z kolei, ogranicza przepływ, ale nie reguluje go w sposób automatyczny, co oznacza, że w przypadku wzrostu oporu, prędkość tłoczyska zmniejszy się, co nie jest pożądane w wielu zastosowaniach. Zawór zwrotny sterowany zatrzymuje przepływ w jednym kierunku, co również nie adresuje potrzeby utrzymania stałej prędkości w obliczu zmiennych obciążeń. Te błędne podejścia mogą wynikać z niepełnego zrozumienia, jak różne elementy hydrauliczne wpływają na parametry pracy siłowników. Kluczowe jest zrozumienie, że dobrą praktyką w hydraulice jest stosowanie komponentów, które są odpowiednio zaprojektowane do regulacji przepływu, co zapewnia zarówno efektywność, jak i bezpieczeństwo operacyjne.

Pytanie 27

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Asemblerem
B. Debuggerem
C. Kompilatorem
D. Deasemblerem
Debugger to naprawdę przydatne narzędzie dla programistów, bo pozwala im dokładnie śledzić, co się dzieje w kodzie. Jego główną funkcją jest to, że można zobaczyć, jak program działa krok po kroku, co bardzo pomaga w zrozumieniu zmian w zmiennych i logice aplikacji. Na przykład, gdy coś nie działa jak powinno albo występuje błąd, można wstrzymać program w danym momencie, żeby sprawdzić, co poszło nie tak. Programista ma wtedy możliwość zbadać wartości zmiennych, zobaczyć, które instrukcje już się wykonały i gdzie leży problem. To bardzo cenne w pracy, bo pozwala na szybsze znalezienie błędów i ich naprawę, co jest zgodne z tym, co mówią najlepsi w branży – testowanie i debugowanie kodu to klucz do sukcesu. Używając debuggera, można również ustawić punkty przerwania, które zatrzymują działanie programu w określonym miejscu. Dzięki temu łatwiej jest znaleźć problemy, szczególnie w bardziej skomplikowanych aplikacjach.

Pytanie 28

Który z literowych symboli zastosowanych w programie do sterowania, według normy IEC 61131, reprezentuje fizyczne wyjście kontrolera PLC?

A. I
B. Q
C. R
D. S
Odpowiedź "Q" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol ten oznacza fizyczne wyjścia programowalnych sterowników logicznych (PLC). W praktyce, wyjścia PLC są komponentami, które sterują innymi elementami systemu automatyki, takimi jak przekaźniki, zawory czy silniki. Każde fizyczne wyjście jest zazwyczaj powiązane z określonym portem wyjściowym na sterowniku, co pozwala na precyzyjne kontrolowanie różnorodnych urządzeń. Na przykład, w systemach automatyki przemysłowej, wykorzystanie wyjść "Q" umożliwia załączenie lub wyłączenie urządzeń w odpowiedzi na zdefiniowane warunki. Kluczowe jest zrozumienie, że stosowanie odpowiednich symboli zgodnie z normą IEC 61131 nie tylko ułatwia programowanie, ale również zapewnia zgodność z międzynarodowymi standardami, co jest istotne dla jakości i bezpieczeństwa systemów automatyki. Zdefiniowane symbole, takie jak "I" dla wejść cyfrowych czy "R" dla funkcji rejestracyjnych, pomagają w integralności kodu i jego późniejszym utrzymaniu.

Pytanie 29

Którą funkcję logiczną realizuje program napisany w języku listy instrukcji?

LD%I0.1
AND%I0.2
STN%Q0.1
A. NOR
B. XOR
C. OR
D. NAND
Program napisany w języku listy instrukcji realizuje funkcję NAND, co oznacza, że najpierw łączy dwa sygnały wejściowe za pomocą bramki AND, a następnie neguje wynik tej operacji. Funkcja NAND jest jedną z podstawowych funkcji logicznych, która jest niezwykle użyteczna w projektowaniu systemów cyfrowych. Przykładem zastosowania funkcji NAND jest implementacja układów pamięci oraz różnych rodzajów flip-flopów, które są kluczowe w architekturze komputerów. W praktyce, zarówno w projektowaniu sprzętu, jak i w programowaniu, znajomość funkcji logicznych, w tym NAND, jest niezbędna do efektywnego tworzenia algorytmów i struktur danych. Użycie NAND umożliwia implementację wszystkich innych funkcji logicznych, co czyni ją uniwersalnym narzędziem w inżynierii cyfrowej. Warto również zauważyć, że w kontekście standardów branżowych, takich jak IEEE, projektanci układów cyfrowych często korzystają z funkcji NAND, aby uprościć skomplikowane logiki, co jest zgodne z najlepszymi praktykami w tej dziedzinie.

Pytanie 30

Jaka jest podstawowa funkcja przekaźnika w układach elektrycznych?

A. Stabilizacja prądu
B. Zwiększanie napięcia w układzie
C. Ochrona przed przepięciami
D. Przełączanie obwodów elektrycznych
Przekaźnik w układach elektrycznych pełni fundamentalną rolę jako element przełączający obwody. Jego podstawowym zadaniem jest umożliwienie sterowania obwodami wysokiego napięcia lub prądu za pomocą sygnałów o dużo niższej energii. Działa jak zdalnie sterowany wyłącznik, który można kontrolować za pomocą małego sygnału elektrycznego. W praktyce oznacza to, że możemy włączać lub wyłączać potężne urządzenia elektryczne bez konieczności bezpośredniego ich dotykania, co jest nie tylko wygodne, ale i bezpieczne. Przekaźniki są szeroko stosowane w automatyce przemysłowej, systemach alarmowych, a także w układach samochodowych. Dzięki nim można zrealizować złożone sekwencje operacji przy minimalnym użyciu mocy sterującej. Ich działanie opiera się na elektromagnesie, który przyciąga lub odpycha styk, otwierając lub zamykając obwód. Użycie przekaźników jest zgodne z dobrymi praktykami w projektowaniu układów mechatronicznych, gdzie konieczne jest zminimalizowanie ryzyka dla operatorów i zapewnienie niezawodności działania systemu.

Pytanie 31

Podczas inspekcji zauważono zbyt głośną pracę silnika indukcyjnego pierścieniowego. Aby zredukować hałas, konieczna jest wymiana

A. uszczelek pierścieniowych
B. sprężyn dociskających
C. pierścieni ślizgowych
D. łożysk tocznych
Wybór łożysk tocznych jako elementu do wymiany w silniku indukcyjnym pierścieniowym jest kluczowy dla obniżenia hałasu i poprawy wydajności urządzenia. Łożyska toczne, odpowiedzialne za podtrzymywanie wirnika, zapewniają minimalny opór ruchu, co przekłada się na płynność pracy silnika. W przypadku uszkodzenia lub zużycia łożysk, tarcie wzrasta, co generuje dodatkowe hałasy i może prowadzić do poważnych uszkodzeń. Dlatego zaleca się regularne przeglądy stanu łożysk, a ich wymiana zgodnie z zaleceniami producentów może znacząco wydłużyć żywotność silnika. Warto również pamiętać o zastosowaniu odpowiednich smarów, które redukują tarcie i hałas. Dobrą praktyką jest również stosowanie łożysk odpowiadających normom DIN lub ISO, co zapewnia ich wysoką jakość i niezawodność. Właściwe dobieranie i konserwacja łożysk tocznych jest zatem kluczowe nie tylko dla redukcji hałasu, ale także dla efektywności energetycznej silnika.

Pytanie 32

Aby dokładnie ustalić kątową pozycję, przemieszczenie oraz zliczyć obroty silnika w systemie mechatronicznym, używa się

A. licznik
B. enkoder
C. czujnik ultradźwiękowy
D. akcelerometr
Enkoder jest urządzeniem, które odgrywa kluczową rolę w pomiarze pozycji kątowej oraz zliczaniu obrotów silników w systemach mechatronicznych. Działa na zasadzie konwersji ruchu mechanicznego na sygnał elektryczny, który może być interpretowany przez systemy sterujące. Przykładem zastosowania enkoderów jest w automatyce przemysłowej, gdzie precyzyjne pozycjonowanie elementów roboczych jest niezbędne, na przykład w robotach przemysłowych czy maszynach CNC. Enkodery można podzielić na inkrementalne i absolutne, z których każdy typ ma swoje unikalne zastosowania. Standardy takie jak IEC 61131-2 definiują wymagania dla urządzeń pomiarowych, w tym enkoderów, co zapewnia ich interoperacyjność i niezawodność w systemach automatyki. Dobrą praktyką jest regularne kalibrowanie enkoderów, aby zapewnić ich dokładność i stabilność działania w długoterminowych zastosowaniach. Warto również zwrócić uwagę na dobór odpowiednich enkoderów w zależności od wymagań aplikacji, co może znacząco wpłynąć na wydajność całego układu.

Pytanie 33

Projektowana maszyna manipulacyjna posiada kinematykę typu PPP (TTT). Każdy z jej członów ma zakres ruchu wynoszący 1 m. Oznacza to, że efektor manipulacyjny będzie zdolny do realizacji operacji technologicznych w przestrzeni o wymiarach

A. 1 m × 2 m × 1 m
B. 1 m × 1 m × 1 m
C. 2 m × 1 m × 1 m
D. 1 m × 1 m × 2 m
Odpowiedź 2 jest prawidłowa, ponieważ każdy z trzech członów maszyny manipulacyjnej typu PPP (TTT) umożliwia ruch w jednym wymiarze przestrzeni. Zasięg każdego członu wynosi 1 m, co oznacza, że efektor końcowy ma możliwość poruszania się w przestrzeni o wymiarach 1 m w każdym z kierunków. Wynikowy zasięg manipulacyjny to sześcian o boku 1 m, co idealnie odpowiada podanym wymiarom 1 m × 1 m × 1 m. W praktyce, maszyny tego rodzaju są szeroko stosowane w automatyzacji procesów produkcyjnych i montażowych, gdzie precyzyjne manipulowanie obiektami w ograniczonej przestrzeni jest kluczowe. Tego rodzaju manipulatory znajdują zastosowanie w robotyce przemysłowej, np. przy montażu delikatnych komponentów elektronicznych. Istotne jest, aby inżynierowie projektujący takie maszyny brali pod uwagę zasięg ruchu przy planowaniu operacji, co pozwala na efektywniejsze i bardziej precyzyjne działania w zakładach produkcyjnych.

Pytanie 34

W systemie mechatronicznym planowane jest użycie sieci polowej AS-i w wersji 2.0. Jaką maksymalną ilość urządzeń podrzędnych jedno urządzenie główne (master) może obsługiwać?

A. 64 urządzenia
B. 32 urządzenia
C. 31 urządzeń
D. 24 urządzenia
Odpowiedź 31 urządzeń jest prawidłowa, ponieważ standard AS-i w wersji 2.0 rzeczywiście pozwala na podłączenie maksymalnie 31 urządzeń podporządkowanych do jednego urządzenia nadrzędnego (master). Taki system jest powszechnie stosowany w automatyce przemysłowej, gdzie istnieje potrzeba efektywnego zarządzania dużą liczbą elementów wykonawczych i czujników. W praktyce, to oznacza, że jedno urządzenie master może obsługiwać różnorodne aplikacje, takie jak kontrola oświetlenia, monitorowanie procesów czy zarządzanie napędami. Ponadto, standard AS-i zapewnia łatwość konfiguracji i integracji z innymi systemami automatyki, co czyni go popularnym wyborem w złożonych instalacjach. Zrozumienie możliwości sieci AS-i oraz jej ograniczeń jest kluczowe dla inżynierów, projektantów systemów i techników zajmujących się automatyzacją, aby móc skutecznie projektować i wdrażać rozwiązania w różnych warunkach przemysłowych.

Pytanie 35

Jakie urządzenie napędowe ma następujące parametry: średnica tłoka – 42 mm, średnica tłoczyska – 32 mm, skok tłoka – 150 mm, ciśnienie nominalne – 24 MPa, maksymalna prędkość tłoka – 10 m/s, częstotliwość pracy – 10 Hz?

A. Siłownik pneumatyczny
B. Silnik hydrauliczny
C. Siłownik hydrauliczny
D. Silnik pneumatyczny
Wybór silnika pneumatycznego lub siłownika pneumatycznego byłby niewłaściwy z kilku kluczowych względów. Po pierwsze, pneumatyka opiera się na sprężonym powietrzu jako medium roboczym, co ogranicza siłę generowaną przez urządzenie w porównaniu do hydrauliki, gdzie wykorzystuje się ciecz pod dużym ciśnieniem. W przykładzie podano ciśnienie nominalne 24 MPa, co jest typowe dla systemów hydraulicznych, a nie pneumatycznych, gdzie maksymalne ciśnienia są zazwyczaj znacznie niższe, wynoszące kilka barów. Dodatkowo, siłowniki pneumatyczne mają inną charakterystykę działania, w której skok i prędkość tłoka mogą być znacznie ograniczone z uwagi na naturalne właściwości sprężonego powietrza - jego kompresyjność i podatność na zmiany objętości. Z kolei silnik hydrauliczny, mimo że również korzysta z ciśnienia hydraulicznego, ma na celu przekształcenie energii hydraulicznej na ruch obrotowy, co nie odpowiada właściwościom opisanym w pytaniu, gdyż dotyczy ono ruchu linearnego. Dlatego powszechnym błędem jest mylenie zastosowań i charakterystyk tych urządzeń, co może prowadzić do niewłaściwego doboru sprzętu w praktyce przemysłowej, a tym samym do obniżenia wydajności oraz zwiększenia kosztów eksploatacji.

Pytanie 36

Jaką czynność powinno się wykonać jako pierwszą, gdy automatycznie sterowana brama przesuwna nie zatrzymuje się w pozycji otwartej?

A. Skontrolować stan czujnika krańcowego
B. Zweryfikować zasilanie silnika
C. Sprawdzić poziom naładowania baterii w pilocie zdalnego sterowania
D. Przekazać sterownik do serwisu
Sprawdzanie stanu czujnika krańcowego jako pierwsza czynność w diagnozowaniu problemów z automatycznymi bramami przesuwnymi jest niezwykle istotne. Czujnik krańcowy pełni kluczową rolę w systemie, informując sterownik o tym, że brama osiągnęła maksymalną pozycję otwartą lub zamkniętą. Jeśli czujnik nie działa prawidłowo, brama nie otrzyma sygnału do zatrzymania, co może prowadzić do niebezpiecznych sytuacji. Dobrą praktyką jest regularne serwisowanie systemu, w tym sprawdzanie funkcjonowania czujników, co może zapobiec poważnym usterkom. W przypadku stwierdzenia uszkodzenia czujnika, jego wymiana jest zalecana, aby zapewnić pełną funkcjonalność bramy. Co więcej, w standardach bezpieczeństwa dla automatycznych bram, takich jak normy EN 13241-1, podkreśla się znaczenie sprawności czujników, co ma kluczowe znaczenie dla ochrony osób i mienia w pobliżu bramy.

Pytanie 37

Jakie oprogramowanie komputerowe, które między innymi zajmuje się zbieraniem, wizualizacją, archiwizowaniem danych oraz alarmowaniem i kontrolą procesów, monitoruje przebieg procesów w systemach?

A. CNC
B. CAM
C. CAD
D. SCADA
SCADA, czyli Supervisory Control and Data Acquisition, to naprawdę fajne oprogramowanie, które ma kluczowe znaczenie w automatyzacji różnych procesów w przemyśle. Głównie zajmuje się zbieraniem danych z różnych czujników i urządzeń, a potem pokazuje je w zrozumiały sposób na ładnych interfejsach graficznych. W dodatku, SCADA archiwizuje te informacje, żeby można było je później analizować. Co ciekawe, jeżeli coś idzie nie tak, to potrafi alarmować operatorów, a także kontrolować urządzenia na bieżąco. Jest to mega ważne dla zachowania ciągłości i bezpieczeństwa. Na przykład, w energetyce SCADA monitoruje różne parametry, jak ciśnienie czy temperatura, co jest kluczowe dla prawidłowego działania. Jeśli chodzi o standardy, to ISA-95 mówi o tym, jak skutecznie integrować SCADA z innymi systemami, co naprawdę może poprawić efektywność i zminimalizować błędy.

Pytanie 38

Konwersja programu napisanego w języku LD na kod maszynowy, który jest zrozumiały dla jednostki centralnej PLC, odbywa się w środowisku narzędziowym PLC przy użyciu polecenia

A. save as
B. upload
C. download
D. compile
Odpowiedź 'compile' jest trafna, bo kompilacja to istotny proces, który zamienia kod źródłowy w języku LD (Ladder Diagram) na kod maszynowy. Tylko maszyna rozumie ten kod, więc jest to kluczowe, żeby program mógł działać. W praktyce, gdy korzystamy z narzędzi PLC, komenda 'compile' uruchamia kompilator, który sprawdza, czy składnia i logika programu są właściwe, a potem generuje ten niezbędny kod maszynowy. Zrozumienie tego wszystkiego jest mega ważne dla inżynierów automatyki, bo pozwala im optymalizować programy i znajdywać błędy zanim jeszcze wrzucą kod do PLC. W branży automatyki mamy też standardy jak IEC 61131-3, które mówią o językach programowania PLC, a kompilacja to kluczowy element, żeby wdrożenia były jakościowo na dobrym poziomie. Przykładowo, przed uruchomieniem programu, inżynierowie często sprawdzają wyniki kompilacji, by przekonać się, że wszystko działa jak trzeba i nie ma błędów, co mogłoby wpłynąć na bezpieczeństwo lub działanie systemu.

Pytanie 39

Jakie rodzaje środków ochrony osobistej powinny być używane podczas pracy z tokarką CNC?

A. Rękawice elektroizolacyjne
B. Ubranie robocze przylegające do ciała
C. Kamizelka odblaskowa
D. Kask ochronny
Przylegające do ciała ubranie robocze to kluczowy element ochrony osobistej podczas obsługi tokarki CNC. Tego rodzaju odzież minimalizuje ryzyko wciągnięcia luźnych materiałów w ruchome elementy maszyny, co może prowadzić do poważnych obrażeń. W branży obróbczej, zgodnie z normami BHP, zaleca się stosowanie odzieży roboczej o właściwych właściwościach, która nie tylko zapewnia bezpieczeństwo, ale również komfort. Przykładowo, specjalistyczne ubrania wykonane z materiałów odpornych na działanie olejów i smarów, a także z odpowiednich tkanin, mogą zwiększyć ochronę. Dodatkowo, zastosowanie takiej odzieży wspiera zachowanie ergonomii pracy, co ma kluczowe znaczenie w kontekście długotrwałej obsługi maszyn. Obowiązujące wytyczne dotyczące BHP podkreślają znaczenie świadomości zagrożeń oraz stosowania odpowiednich środków ochrony indywidualnej, co jest fundamentem odpowiedzialnego zachowania w miejscu pracy.

Pytanie 40

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 0,8 mm
B. 2,0 mm
C. 0,5 mm
D. 5,0 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.