Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 11 września 2025 21:25
  • Data zakończenia: 11 września 2025 21:42

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Przełącznik.
B. Modulator.
C. Wzmacniak.
D. Serwer.
Wybór innego urządzenia jako rozwiązania problemu podłączenia wielu urządzeń sieciowych do jednej sieci LAN jest niepoprawny, ponieważ każde z tych urządzeń pełni inną rolę w architekturze sieciowej. Modulator, na przykład, jest używany w komunikacji analogowej do przekształcania sygnałów cyfrowych w analogowe, co nie ma związku z bezpośrednim łączeniem urządzeń sieciowych w lokalnej sieci. Takie zamieszanie może prowadzić do mylnego postrzegania funkcji poszczególnych urządzeń i ich zastosowania w praktyce. Wzmacniak, który zwiększa sygnał w sieci, również nie ma możliwości jednoczesnego łączenia wielu urządzeń – jego rola ogranicza się do poprawy jakości sygnału, co jest istotne w przypadku dużych odległości, ale nie wpływa na zarządzanie ruchem danych. Serwer, z drugiej strony, to komputer, który świadczy usługi innym komputerom w sieci, ale nie pełni funkcji łączenia wielu urządzeń w ramach lokalnej sieci. Często błędne wnioski wynikają z niepełnego zrozumienia hierarchii i funkcji poszczególnych komponentów sieciowych. Właściwe zrozumienie roli przełącznika i innych urządzeń w sieci jest kluczowe dla efektywnego projektowania i zarządzania sieciami, co podkreśla znaczenie edukacji w tym zakresie. W kontekście najlepszych praktyk, stosowanie przełączników w sieciach LAN jest standardem, podczas gdy pozostałe urządzenia mają swoje wyspecjalizowane zastosowania.

Pytanie 2

Częścią odpowiedzialną za przekształcenie energii fal elektromagnetycznych na napięcie w radiowym odbiorniku jest

A. wzmacniacz w.cz.
B. demodulator
C. antenna odbiorcza
D. heterodyna
Wybór innych elementów, takich jak demodulator, heterodyna czy wzmacniacz w.cz., wskazuje na niepełne zrozumienie funkcji różnych komponentów w odbiorniku radiowym. Demodulator jest odpowiedzialny za odzyskiwanie sygnału zmodulowanego, co oznacza, że jego głównym zadaniem jest dekodowanie informacji przesyłanych na falach radiowych. W przypadku fal zmodulowanych, to właśnie demodulator, a nie antena, wykonuje kluczowe operacje, pozwalające na zrozumienie treści sygnału. Heterodyna, z kolei, działa na zasadzie przemiany częstotliwości sygnałów radiowych, co sprawia, że jest adjuwantem w systemach, które potrzebują zmiany pasma częstotliwości w celu lepszego odbioru. Wzmacniacz w.cz. natomiast, jeśli zostanie źle zrozumiany, może być mylony z anteną, ale jego rolą jest jedynie wzmocnienie sygnału, a nie jego konwersja. Właściwe rozróżnienie tych funkcji jest kluczowe dla każdego, kto chce działać w dziedzinie radiokomunikacji, zwłaszcza że każda z wymienionych technologii ma swoją specyfikę i zastosowanie. Typowym błędem myślowym jest mylenie tych komponentów i przypisywanie im niewłaściwych ról, co może prowadzić do nieefektywnych rozwiązań w projektowaniu systemów odbiorczych.

Pytanie 3

W trakcie profesjonalnej wymiany uszkodzonego układu scalonego SMD - kontrolera przetwornicy impulsowej w odbiorniku TV - powinno się zastosować

A. lutownicy gazowej
B. stacji lutowniczej grzałkowej
C. stacji na gorące powietrze
D. lutownicy transformatorowej
Użycie stacji lutowniczej grzałkowej do wymiany układów scalonych SMD niesie ze sobą wiele ryzyk i ograniczeń. Chociaż grzałkowe lutownice mogą być użyteczne do lutowania elementów przewlekanych, nie są one dostosowane do precyzyjnego podgrzewania małych komponentów SMD. W przypadku układów scalonych SMD, które często są montowane na tak zwanych 'padach' oraz mają bardzo małe wymiary, konieczne jest stosowanie narzędzi, które pozwalają na równomierne i kontrolowane rozprowadzenie ciepła. Stacje lutownicze grzałkowe mogą wytwarzać zbyt wysoką temperaturę w jednym miejscu, co prowadzi do deformacji płytki drukowanej lub uszkodzenia samych komponentów. Ponadto, lutownice gazowe, mimo swojej mobilności, nie oferują precyzyjnego podgrzewania, co jest niezbędne w przypadku wrażliwych komponentów SMD. Używanie lutownic transformatorowych również nie jest odpowiednie, ze względu na ich konstrukcję i sposób działania, które opiera się na dostarczaniu dużej ilości ciepła w krótkim czasie. Tego typu narzędzia mogą łatwo przegrzać elementy, co prowadzi do ich uszkodzenia oraz błędów w lutowaniu. W praktyce, podejście to jest niezgodne z nowoczesnymi standardami serwisowymi, które nakładają nacisk na precyzję, delikatność i bezpieczeństwo podczas naprawy układów elektronicznych. Dlatego kluczowe jest zrozumienie, że wybór odpowiednich narzędzi do wymiany komponentów SMD jest fundamentalnym krokiem w procesie naprawy, mającym na celu zapewnienie długotrwałej funkcjonalności urządzeń elektronicznych.

Pytanie 4

Aby podwoić zakres pomiarowy woltomierza o rezystancji wewnętrznej Rw = 150 kΩ, konieczne jest dodanie rezystora Rp o wartości rezystancji w układzie szeregowym

A. 150 kΩ
B. 450 kΩ
C. 300 kΩ
D. 75 kΩ
Odpowiedź 150 kΩ jest prawidłowa, ponieważ aby dwukrotnie rozszerzyć zakres pomiarowy woltomierza, konieczne jest dołączenie rezystora w szereg z woltomierzem. Woltomierz o rezystancji wewnętrznej Rw = 150 kΩ ma wartość rezystancji, która jest kluczowa w obliczeniach. Aby uzyskać nowy, pożądany zakres, suma rezystancji wewnętrznej woltomierza i dodatkowego rezystora musi być taka, aby całkowity opór był dwukrotnie większy niż początkowy. Przy dołączeniu rezystora Rp w szereg, całkowity opór wynosi Rw + Rp. Chcąc podwoić wartość Rw, musimy rozwiązać równanie Rw + Rp = 2 * Rw, co prowadzi do Rp = Rw. Zatem, dla Rw = 150 kΩ, Rp również wynosi 150 kΩ. Tego typu połączenia są powszechnie stosowane w praktyce inżynieryjnej, zwłaszcza w pomiarach elektrycznych, gdzie precyzja jest kluczowa. Dlatego w takich zastosowaniach, jak kalibracja przyrządów pomiarowych, istotne jest, aby znać zasady dołączania rezystorów w celu uzyskania dokładnych wyników pomiarów.

Pytanie 5

Jaką rolę pełni heterodyna w radiu?

A. Układu zmiany zakresów w obwodach wielkiej częstotliwości
B. Generatora sygnału o określonej częstotliwości
C. Wzmacniacza pośredniej częstotliwości
D. Filtra aktywnego środkowo przepustowego
Heterodyna w odbiorniku radiowym pełni kluczową rolę jako generator sygnału o określonej częstotliwości, który jest niezbędny do demodulacji sygnałów radiowych. Proces ten polega na wytworzeniu częstotliwości pośredniej, co umożliwia łatwiejsze przetwarzanie sygnału. Heterodyna działa poprzez sumowanie i różnicowanie częstotliwości sygnału odbieranego i sygnału generowanego przez oscylator lokalny. Dzięki temu możliwe jest uzyskanie stabilnej i przystosowanej do dalszego przetwarzania częstotliwości, co jest kluczowe w systemach radiowych, szczególnie w odbiornikach superheterodynowych. W praktyce, zastosowanie heterodyny przyczynia się do zwiększenia selektywności i czułości odbiornika, pozwalając na lepszą separację i identyfikację poszczególnych stacji radiowych. Standardy branżowe, takie jak IEEE 802.11 dla komunikacji bezprzewodowej, również korzystają z podobnych zasad, gdzie heterodyna odgrywa rolę w konwersji częstotliwości, co wpływa na jakość sygnału i zasięg transmisji. Warto dodać, że technologia ta jest szeroko stosowana w różnych dziedzinach, od telekomunikacji po radioastronomię, co potwierdza jej uniwersalność i znaczenie.

Pytanie 6

Jaka jest przybliżona wartość pasożytniczej częstotliwości lustrzanej (Fl) w zakresie AM dla sygnału radiowego o częstotliwości nośnej fs = 1 450 kHz oraz częstotliwości pośredniej odbiornika fp = 465 kHz (fl=f<Sub>s+2fp)?

A. 1,45 MHz
B. 1915 kHz
C. 2,38 MHz
D. 930 kHz
Wybór wartości innej niż 2,38 MHz zazwyczaj wynika z nieprawidłowego zrozumienia wzoru na pasożytniczą częstotliwość lustrzaną. Najczęściej popełnianym błędem jest pominięcie czynników związanych z częstotliwościami używanymi w obliczeniach. Na przykład, niektórzy mogą założyć, że częstotliwość lustrzana jest tylko sumą częstotliwości nośnej i pośredniej, co jest nieprawidłowe, ponieważ w tym przypadku należy uwzględnić dodatkowy czynnik mnożenia przez 2 dla częstotliwości pośredniej. Wartością, która może być mylona z wynikami obliczeń, jest częstotliwość nośna (1,45 MHz), która nie uwzględnia wpływu częstotliwości pośredniej. W przypadku odpowiedzi jako 930 kHz, mylone jest z zastosowaniem jedynie częstotliwości pośredniej bez jej podwajania. Odpowiedzi, które sugerują błędne wartości, wskazują na brak zrozumienia jak ważne jest dokładne stosowanie formuł przy obliczeniach związanych z sygnałami radiowymi. W praktyce, zrozumienie tych zależności jest niezbędne do prawidłowego projektowania systemów odbiorczych i zapewnienia ich efektywności, co jest kluczowe w standardach radiowych, w których działają stacje nadawcze i odbiorcze. Dlatego istotne jest przyswojenie odpowiednich zasad obliczeniowych i ich zastosowanie w rzeczywistych scenariuszach, aby móc skutecznie radzić sobie z problemami związanymi z odbiorem sygnałów.

Pytanie 7

Jakie jest znaczenie tzw. krosowania przewodu skrętki, który jest zakończony dwoma wtykami RJ-45, podczas łączenia różnych urządzeń w sieci LAN?

A. Na zapewnieniu takiej samej sekwencji ułożenia żył skrętki w obu wtykach RJ-45
B. Na zastosowaniu oddzielnych ekranów dla poszczególnych żył skrętki
C. Na odpowiedniej zamianie kolejności ułożenia żył skrętki w jednym wtyku RJ-45 w stosunku do drugiego wtyku
D. Na uziemieniu ekranu skrętki
Krosowanie przewodu skrętki polega na zamianie kolejności żył w jednym wtyku RJ-45 w porównaniu do drugiego. Tego rodzaju połączenie jest niezbędne w przypadku łączenia dwóch urządzeń, które obydwa pełnią funkcję urządzeń końcowych, na przykład dwóch komputerów. Standard T568A oraz T568B definiuje, jak powinny być ułożone żyły w wtykach RJ-45, a krosowanie polega na tym, że w jednym wtyku żyły są ułożone zgodnie z jednym standardem, a w drugim zgodnie z drugim standardem, co pozwala na poprawne przesyłanie sygnałów. Przykładem zastosowania krosowania jest połączenie dwóch komputerów bezpośrednio za pomocą kabla, co pozwala na utworzenie lokalnej sieci bez użycia switcha. W praktyce krosowanie przewodów jest istotną umiejętnością dla techników sieciowych, gdyż umożliwia elastyczne konfigurowanie sieci lokalnych w zależności od potrzeb, zgodnie z zasadami wydajności i niskich opóźnień w komunikacji."

Pytanie 8

Jakie kroki należy podjąć w pierwszej kolejności podczas wymiany przekaźnika w obwodzie sterowania?

A. Odłączyć kable przymocowane do cewki przekaźnika
B. Zdjąć przekaźnik z szyny TH-35
C. Zatrzymać zasilanie w obwodzie sterowania
D. Wyjąć przewody przymocowane do styków przekaźnika
Wyłączenie napięcia w obwodzie sterowania jest kluczowym krokiem przed przystąpieniem do wymiany przekaźnika. Bezpieczeństwo operatora oraz zachowanie integralności sprzętu są najważniejszymi priorytetami w pracy z instalacjami elektrycznymi. W przypadku przekaźników, ich cewki mogą być pod napięciem, co stwarza ryzyko porażenia prądem elektrycznym. Standardy BHP oraz zalecenia branżowe jednoznacznie wskazują, że przed wszelkimi pracami serwisowymi należy zawsze wyłączyć zasilanie. Przykładowo, w przemyśle automatyki, powszechnie stosuje się praktykę umieszczania znaków ostrzegawczych w pobliżu paneli sterujących informujących o konieczności wyłączenia zasilania przed jakimikolwiek interwencjami. Dopiero po upewnieniu się, że napięcie zostało wyłączone, można bezpiecznie odłączać przewody i demontować przekaźnik, co zapobiega nie tylko wypadkom, ale także uszkodzeniu urządzeń. Zastosowanie tej zasady jest fundamentem profesjonalizmu w każdej działalności związanej z elektrycznością.

Pytanie 9

Aby przeprowadzić ocenę jakości sygnału cyfrowej telewizji satelitarnej, wymagane jest użycie miernika

A. DVB-C
B. DVB-T
C. DVB-H
D. DVB-S
Odpowiedź DVB-S jest prawidłowa, ponieważ jest to standard telewizji satelitarnej, który jest wykorzystywany do przesyłania sygnałów cyfrowych przez satelity. Mierniki DVB-S są zaprojektowane specjalnie do analizy sygnałów satelitarnych, co obejmuje pomiar jakości sygnału, siły sygnału oraz innych parametrów, takich jak BER (Bit Error Rate) i MER (Modulation Error Ratio). Zastosowanie takiego miernika jest kluczowe dla instalacji anten satelitarnych i optymalizacji ich ustawienia, co może znacząco wpłynąć na jakość odbioru. Na przykład, w przypadku ustawiania anteny, ważne jest, aby uzyskać jak najwyższą jakość sygnału, aby zminimalizować utratę pakietów danych i zniekształcenia obrazu. Standard DVB-S jest powszechnie stosowany w Europie i wielu innych regionach, co czyni go najlepszym wyborem dla profesjonalistów w dziedzinie telekomunikacji satelitarnej. Warto pamiętać, że podczas pomiarów należy także zwrócić uwagę na warunki atmosferyczne, które mogą wpływać na jakość sygnału.

Pytanie 10

Jakiego modułu dotyczy usterka w telewizorze, jeśli nie odbiera on sygnału z zewnętrznej anteny w transmisji naziemnej, a jednocześnie prawidłowo wyświetla obraz z podłączonego tunera satelitarnego przez przewód EUROSCART oraz z kamery VHS-C za pomocą przewodu S-Video?

A. Wzmacniacza wizji
B. Synchronizacji i odchylania
C. Wielkiej i pośredniej częstotliwości
D. Selektora i separatora
Odpowiedzi dotyczące selektora i separatora, wzmacniacza wizji oraz synchronizacji i odchylania są błędne, ponieważ nie odpowiadają one na rzeczywisty problem opisany w pytaniu. Selekcja sygnałów i separacja sygnału audio-wideo są procesami, które nie mają bezpośredniego wpływu na odbiór sygnałów telewizyjnych z anteny, a ich uszkodzenie zazwyczaj nie powoduje utraty odbioru, jeśli inne źródła sygnału są nadal aktywne. Wzmacniacz wizji natomiast jest odpowiedzialny głównie za zwiększenie poziomu sygnału wideo, ale nie ma wpływu na sygnał z anteny. Jeśli wzmacniacz wizji byłby uszkodzony, telewizor mógłby nadal działać z sygnałem z innych źródeł, jak w tym przypadku. Podobnie, odpowiedzialność modułu synchronizacji i odchylania dotyczy synchronizacji obrazu oraz stabilności wyświetlania, a nie samego odbioru sygnału z anteny. Typowym błędem myślowym jest więc utożsamianie funkcji poszczególnych modułów z ogólną zdolnością telewizora do odbierania sygnałów telewizyjnych. Właściwe podejście do diagnostyki wymaga zwrócenia uwagi na moduły, które bezpośrednio odpowiadają za przetwarzanie sygnałów z anteny.

Pytanie 11

Na podstawie analizy instalacji telewizyjnej nie jest możliwe określenie

A. korozji czaszy anteny
B. uszkodzenia powłoki kabla
C. uszkodzeń elektroniki konwertera
D. zniekształceń lustra czaszy anteny
Odpowiedź wskazująca, że na podstawie oględzin instalacji telewizyjnej nie można określić uszkodzenia elektroniki konwertera jest poprawna, ponieważ konwerter jest elementem, który przetwarza sygnał z anteny na sygnał, który może być odbierany przez telewizor. Uszkodzenia elektroniki konwertera, takie jak awarie układów scalonych czy uszkodzenia spowodowane przepięciami, mogą nie być widoczne podczas wizualnej inspekcji. W praktyce, aby ocenić stan elektroniki konwertera, konieczne jest przeprowadzenie testów parametrów sygnału oraz diagnostyki elektronicznej. Obejmuje to m.in. użycie specjalistycznych narzędzi, jak mierniki sygnału, które pozwalają na sprawdzenie jakości sygnału oraz analizy parametrów pracy konwertera. Zgodnie z dobrymi praktykami, zaleca się również regularne przeglądy i konserwację instalacji, aby zminimalizować ryzyko awarii elementów elektronicznych.

Pytanie 12

Aby zmierzyć rezystancję rezystora za pomocą metody technicznej, należy użyć

A. dwóch watomierzy
B. częstotliwościomierza
C. woltomierza i amperomierza
D. dwóch woltomierzy
Metody pomiaru rezystancji rezystora nie można realizować za pomocą częstotliwościomierza, dwóch watomierzy ani dwóch woltomierzy. Częstotliwościomierz służy do pomiaru częstotliwości sygnałów elektrycznych i nie jest zaprojektowany do określenia wartości rezystancji w układzie. Stąd jego użycie do pomiaru rezystancji jest nieodpowiednie. W przypadku dwóch watomierzy, ich funkcja polega na pomiarze mocy czynnej w obwodzie, co również nie jest związane z bezpośrednim mierzeniem rezystancji. Tego typu pomiary wymagają określenia napięcia i prądu, co wymaga zastosowania specjalistycznych urządzeń, jak woltomierze i amperomierze. Użycie dwóch woltomierzy również nie jest praktycznym podejściem do pomiaru rezystancji, ponieważ nie pozwala na bezpośrednie odniesienie pomiaru napięcia do wartości prądu. W literaturze fachowej podkreśla się, że do pomiarów rezystancji należy używać multimetru lub kombinacji woltomierza i amperomierza, co zapewnia precyzyjność wyników. Niezrozumienie relacji między napięciem, prądem a rezystancją prowadzi do częstych błędów w pomiarach oraz niewłaściwego stosowania narzędzi pomiarowych, co może skutkować fałszywymi odczytami i zafałszowanymi wynikami analizy układów elektrycznych.

Pytanie 13

HDMI to standard wykorzystywany do przesyłania sygnału

A. cyfrowego dźwięku
B. analogowego obrazu
C. cyfrowego wideo i dźwięku
D. analogowego obrazu i dźwięku
HDMI, czyli High-Definition Multimedia Interface, to standardowy interfejs stworzony do przesyłania sygnałów wysokiej jakości audio i wideo w postaci cyfrowej. Umożliwia on jednoczesne przesyłanie wielu kanałów audio oraz obrazu w rozdzielczości HD i wyższej. W praktyce oznacza to, że podłączając urządzenie, takie jak telewizor czy monitor, do źródła sygnału, na przykład odtwarzacza Blu-ray czy komputera, użytkownik może cieszyć się krystalicznie czystym dźwiękiem i obrazem bez strat jakości. HDMI stało się de facto standardem w elektronice użytkowej, a jego wszechstronność znajduje zastosowanie w telewizorach, projektorach, konsolach do gier oraz systemach kina domowego. Dodatkowo, HDMI obsługuje różne technologie, takie jak CEC (Consumer Electronics Control), które pozwala na sterowanie wieloma urządzeniami za pomocą jednego pilota. Warto również wspomnieć o różnych wersjach HDMI, które oferują różne możliwości, między innymi obsługę 4K czy HDR, co dodatkowo zwiększa jego użyteczność w nowoczesnych zastosowaniach multimedialnych.

Pytanie 14

Który typ pamięci nieulotnej w urządzeniach elektronicznych pozwala na aktualizację firmware bez konieczności użycia dedykowanego programatora?

A. EEPROM
B. OTP ROM
C. FLASH ROM
D. EPROM
Wybór EEPROM, OTP ROM lub EPROM jako odpowiedzi na pytanie o rodzaj pamięci stałej, która umożliwia aktualizację firmware bez specjalnego programatora, jest błędny z kilku powodów. EEPROM (ang. Electrically Erasable Programmable Read-Only Memory) pozwala na elektroniczne kasowanie i ponowny zapis danych, jednak proces ten jest bardziej czasochłonny niż w przypadku FLASH ROM. Ponadto, chociaż EEPROM można wykorzystać do przechowywania firmware, jego ograniczenia w zakresie liczby cykli zapisu i kasowania sprawiają, że nie jest idealnym rozwiązaniem dla często aktualizowanego oprogramowania. OTP ROM (ang. One-Time Programmable Read-Only Memory) to rodzaj pamięci, która można zaprogramować tylko raz. Po zapisaniu danych nie ma możliwości ich modyfikacji, co czyni tę pamięć zupełnie nieodpowiednią do aktualizacji firmware, gdyż jest ona zaprojektowana do jednorazowego użytku. EPROM (ang. Erasable Programmable Read-Only Memory) również wymaga specjalnego programatora do kasowania i zapisywania, co czyni go mniej praktycznym w kontekście aktualizacji. W praktyce wybór niewłaściwego rodzaju pamięci do aktualizacji firmware może prowadzić do problemów z utrzymaniem urządzeń, a także do zwiększonych kosztów związanych z koniecznością użycia specjalistycznego sprzętu. Zrozumienie różnic między tymi typami pamięci jest kluczowe dla skutecznego zarządzania aktualizacjami i zapewnienia bezpieczeństwa urządzeń elektronicznych.

Pytanie 15

Która czynność może zostać pominięta podczas oceny stanu technicznego systemu alarmowego?

A. Weryfikacja działania czujek PIR
B. Ocena działania sygnalizatorów
C. Analiza historii alarmów
D. Kontrola montażu czujek PIR
Sprawdzanie historii alarmów, mimo że jest istotnym elementem zarządzania systemem alarmowym, nie jest bezpośrednio związane z oceną stanu technicznego instalacji. Historia alarmów dostarcza informacji o wcześniejszych zdarzeniach, ale nie wpływa na bieżące funkcjonowanie komponentów systemu. Kluczowe działania w ocenie stanu technicznego to testowanie i sprawdzanie czujników oraz sygnalizatorów, które powinny działać poprawnie, aby zapewnić bezpieczeństwo. Przykładem może być przeprowadzanie regularnych testów samych czujek PIR oraz ich kalibracja, co jest zgodne z normami PN-EN 50131-1. W przypadku usterek, które mogą nie być widoczne w historii alarmów, natychmiastowe testowanie komponentów staje się kluczowe dla zapobiegania fałszywym alarmom i zwiększenia efektywności ochrony. Przegląd instalacji powinien również obejmować kontrolę fizyczną ich zamontowania, co jest istotne dla ich właściwego funkcjonowania.

Pytanie 16

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
B. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
C. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
D. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
W odpowiedziach wskazujących na błędne zrozumienie koncepcji dodatniego sprzężenia zwrotnego można zauważyć kilka nieporozumień. Przykładowo, stwierdzenie, że sprzężenie zwrotne polega na przesyłaniu sygnału wejściowego na wyjście w fazie z sygnałem wyjściowym, jest mylące. W rzeczywistości, dodatnie sprzężenie zwrotne wymaga, aby sygnał na wejściu i wyjściu były zgodne, co prowadzi do wzmocnienia sygnału, a nie do jego osłabienia. Takie podejście, jak sugerowane w błędnych odpowiedziach, może wprowadzać w stan niestabilności systemu, ponieważ nie zapewnia harmonijnego działania. Inny przykład błędnego myślenia to stwierdzenie, że sygnał wejściowy powinien być przesyłany w przeciwfazie, co inżynerzy określają jako ujemne sprzężenie zwrotne. Ujemne sprzężenie zwrotne, w przeciwieństwie do dodatniego, zmniejsza amplitudę sygnału, co może być użyteczne w stabilizowaniu systemu, ale jest całkowicie sprzeczne z ideą dodatniego sprzężenia zwrotnego. Takie nieporozumienia mogą prowadzić do poważnych błędów projektowych, które mogą wpływać na wydajność systemów elektronicznych. Warto pamiętać, że podczas projektowania systemów inżynieryjnych istotne jest zrozumienie nie tylko definicji, ale także praktycznych implikacji różnych rodzajów sprzężeń zwrotnych, co jest kluczowe dla zapewnienia stabilności i efektywności działania systemów.

Pytanie 17

Jakie z podanych rodzajów sprzężeń między poszczególnymi stopniami wzmacniacza wielostopniowego gwarantuje separację galwaniczną?

A. Sprzężenia transformatorowe
B. Sprzężenia rezystancyjne
C. Sprzężenia bezpośrednie
D. Sprzężenia pojemnościowe
Separacja galwaniczna w wzmacniaczach wielostopniowych to coś, co czasem mylone jest z różnymi rodzajami sprzężeń. Pojemnościowe sprzężenie, mimo że może trochę wpływać na sygnał, nie daje nam prawdziwej separacji galwanicznej. W sumie, opiera się ono na pojemności między przewodami i przy wyższych częstotliwościach może to prowadzić do różnych problemów. Sprzężenie rezystancyjne, które to jest po prostu podłączenie rezystorów między stopniami wzmacniacza, w ogóle nie izoluje obwodów, więc nie może dać separacji galwanicznej. Bezpośrednie sprzężenie, które łączy stopnie bez jakiejkolwiek izolacji, też nie rozwiąże tego problemu. Używając tych metod, inżynierowie mogą nieświadomie zmieniać parametry sygnału, co niestety psuje jakość i stabilność wzmacniacza. Dobrze jest pamiętać, że skuteczna separacja galwaniczna wymaga zastosowania rozwiązań, które fizycznie oddzielają obwody, a w wzmacniaczach wielostopniowych najlepiej osiąga się to przez sprzężenie transformatorowe.

Pytanie 18

Jakie elementy zawiera oznaczenie typu tranzystora?

A. cyfry oraz wielkie litery
B. tylko litery
C. tylko cyfry
D. cyfry i małe litery
Oznaczenie typu tranzystora rzeczywiście składa się z cyfr oraz wielkich liter, co jest zgodne z przyjętymi standardami w branży półprzewodników. Przykładem może być tranzystor typu BC547, gdzie 'BC' to oznaczenie serii, a '547' to numer katalogowy, który jest cyfrą. Takie oznaczenie ułatwia inżynierom oraz technikom identyfikację i dobór odpowiednich komponentów do projektów elektronicznych. Ponadto, zgodnie z normami międzynarodowymi, jak IEC 60747, oznaczenia tranzystorów powinny być jednoznaczne i pozwalać na szybkie zrozumienie specyfikacji, takich jak maksymalne napięcie, prąd czy zastosowanie. Używanie cyfr i wielkich liter pozwala na tworzenie bardziej zróżnicowanych i precyzyjnych oznaczeń, co jest kluczowe w kontekście profesjonalnych aplikacji elektronicznych oraz w dokumentacji technicznej, gdzie jasność i zrozumiałość oznaczeń mają ogromne znaczenie dla efektywności pracy zespołów inżynieryjnych. Te praktyki pomagają także w dostosowywaniu komponentów do różnych norm i standardów obowiązujących na rynkach międzynarodowych.

Pytanie 19

Przedstawiony na zdjęciu klucz Dallas jest elementem systemu

Ilustracja do pytania
A. sieci komputerowej.
B. dostępu i zabezpieczeń.
C. telewizji dozorowej.
D. automatyki przemysłowej.
Klucz Dallas, znany również jako iButton, jest kluczowym elementem w systemach kontroli dostępu i zabezpieczeń. Jego zastosowanie polega na bezpiecznej identyfikacji użytkowników, co czyni go niezwykle użytecznym w różnych aplikacjach, takich jak automatyczne otwieranie drzwi, autoryzacja dostępu do systemów komputerowych oraz zabezpieczenia w budynkach użyteczności publicznej. Klucz działa na zasadzie komunikacji z czytnikiem, co pozwala na szybką weryfikację tożsamości. Praktyczne zastosowania obejmują m.in. systemy kontroli dostępu w biurach, fabrykach czy instytucjach finansowych, gdzie bezpieczeństwo jest priorytetem. Dobre praktyki w branży wskazują na konieczność używania unikalnych identyfikatorów, co znacznie podnosi poziom bezpieczeństwa. Warto również zwrócić uwagę na standardy, takie jak ISO/IEC 27001, które dotyczą zarządzania bezpieczeństwem informacji, a systemy oparte na kluczach Dallas mogą wspierać implementację tych standardów poprzez efektywne zarządzanie dostępem i identyfikacją użytkowników.

Pytanie 20

Tabela przedstawia wybrane dane techniczne regulatora temperatury. Do jego wejścia można bezpośrednio podłączyć

Napięcie zasilające230 V AC; 50 Hz
Wejście pomiarowePt100/Pt500/Pt1000
Zakres pomiarowy-100 °C ÷ 600 °C
Rezystancja przewodów pomiarowychmaksymalnie 20 Ω w każdym przewodzie
Wyjścia przekaźnikowe2 styki zwierne; 2 A/250 V AC (cosφ=1)
Pamięć danychEEPROM
Stopień ochrony frontu urządzeniaIP65
Stopień ochrony zaciskówIP20
A. czujnik pirometryczny.
B. termistor.
C. czujnik rezystancyjny.
D. termoparę.
Wiesz, czujniki takie jak termistor, termopara czy czujnik pirometryczny to często te, które ludzie mylą z czujnikami rezystancyjnymi. Ale one działają na zupełnie innych zasadach. Termistory zmieniają rezystancję w szerszym zakresie temperatur, ale mają ograniczony zakres pomiarowy, co nie jest najlepsze do długotrwałego monitorowania w skrajnych warunkach. Z kolei termopary działają dzięki zjawisku Seebecka – wytwarzają napięcie, gdy są różne temperatury na dwóch złączach z różnych materiałów. Można nimi mierzyć wysokie temperatury, ale są mniej dokładne niż czujniki rezystancyjne. A czujniki pirometryczne to zupełnie inna bajka, bo mierzą temperaturę z daleka, więc nie nadają się do bezpośredniego podłączenia do regulatora temperatury. Wszystkie te czujniki mają swoje miejsce, ale jeśli ich nie zrozumiesz, to możesz źle je wybrać, co nie jest fajne. Dlatego warto znać różnice między tymi technologiami i wiedzieć, gdzie je najlepiej wykorzystać.

Pytanie 21

Zamontowanie na jednym końcu toru transmisyjnego źródła sygnału o stałej i znanej mocy oraz na przeciwnym końcu miernika mocy optycznej pozwala bezpośrednio ustalić

A. długość światłowodu
B. miejsce spawu lub zgięcia światłowodu
C. tłumienie złączy
D. całkowite tłumienie toru optycznego
Podłączenie źródła sygnału o stałej i znanej mocy do toru transmisyjnego oraz miernika mocy optycznej po drugiej stronie pozwala na bezpośrednie określenie całkowitego tłumienia toru optycznego. Całkowite tłumienie to suma wszystkich strat sygnału, które mogą wystąpić w torze transmisyjnym, w tym strat spowodowanych przez złącza, spawy oraz straty wewnętrzne samego włókna. Miernik mocy optycznej, po zmierzeniu mocy sygnału na wyjściu, umożliwia obliczenie różnicy między mocą wprowadzaną a mocą mierzona, co daje wartość całkowitego tłumienia. Zrozumienie i pomiar całkowitego tłumienia jest kluczowe w projektowaniu i utrzymaniu systemów światłowodowych, ponieważ wpływa na jakość sygnału oraz zasięg transmisji. W praktyce, technicy często wykorzystują te pomiary do diagnostyki i optymalizacji sieci, a także do monitorowania stanu infrastruktury zgodnie z normami takich organizacji jak IEC czy ITU.

Pytanie 22

Na rysunku przedstawiono symbol graficzny

Ilustracja do pytania
A. routera.
B. mostu.
C. modemu.
D. przełącznika.
Zgadza się, na rysunku przedstawiono symbol graficzny routera. Router jest kluczowym urządzeniem w sieciach komputerowych, pełniącym funkcję łączenia różnych sieci, a także zarządzania ruchem danych pomiędzy nimi. Symbol routera, często przedstawiany jako okrąg z czterema strzałkami skierowanymi w różne kierunki, odzwierciedla jego zdolność do kierowania pakietów danych w wielu kierunkach. Przykładami zastosowania routerów są domowe sieci Wi-Fi, które umożliwiają wielu urządzeniom łączenie się z internetem, oraz sieci korporacyjne, gdzie routery łączą różne lokalizacje geograficzne. W kontekście standardów branżowych, routery często współpracują z protokołami takimi jak OSPF, BGP czy RIP, co pozwala na efektywne zarządzanie trasowaniem pakietów. Zrozumienie roli routera w sieci jest kluczowe dla każdej osoby zajmującej się administracją sieci oraz projektowaniem architektury sieciowej.

Pytanie 23

Jaką ilość energii wykorzystało urządzenie o mocy 150 W, działające przez 12 godzin?

A. 0,6 kWh
B. 1,2 kWh
C. 0,18 kWh
D. 1,8 kWh
Żeby obliczyć, ile energii zużywa jakieś urządzenie, trzeba użyć wzoru: energia (w kWh) to moc (w kW) razy czas (w h). Weźmy na przykład sprzęt o mocy 150 W. Najpierw musimy tę moc przeliczyć na kilowaty, co wychodzi nam 0,15 kW. Potem, gdy pomnożymy to przez czas pracy, czyli 12 godzin, mamy 0,15 kW razy 12 h, co daje 1,8 kWh. To ważne, bo takie obliczenia pomagają nam oszczędzać energię i lepiej zarządzać wydatkami na prąd. Jak dobrze rozumiemy, jak to wszystko działa, łatwiej planować, ile wydamy na rachunki oraz podejmować mądre decyzje, jeśli chodzi o kupno energooszczędnych sprzętów. W praktyce, te wszystkie liczby są też podstawą etykiet energetycznych, które pokazują, jak efektywne są urządzenia. Warto więc regularnie patrzeć na to, ile energii zużywamy, bo to nie tylko pomoże zaoszczędzić pieniądze, ale też zmniejszyć nasz wpływ na środowisko.

Pytanie 24

Mostek wykorzystywany jest do pomiaru parametrów cewek indukcyjnych?

A. Wheatstone'a
B. Wiena
C. Thomsona
D. Maxwella
Mostek Maxwella to naprawdę fajny układ do pomiarów cewek. Dzięki niemu można zmierzyć różne parametry, jak indukcyjność czy rezystancję, a wszystko to w miarę dokładnie. Działa na zasadzie równowagi, więc można określić indukcyjność bez zakłócania innych wartości w obwodzie. W laboratoriach elektronicznych i inżynieryjnych jest wykorzystywany do testowania różnych komponentów, jak transformatory czy dławiki. Ważne jest też, że mostek Maxwella spełnia normy IEC i IEEE, co daje nam pewność, że pomiary są rzetelne. W porównaniu do mostka Wheatstone'a, który skupia się głównie na rezystancji, mostek Maxwella ma szersze możliwości, jeśli chodzi o analizę cewek. I jeszcze jedna rzecz – dzięki pomiarom można ocenić, jak czynniki jakości (Q) wpływają na wydajność układów indukcyjnych, co jest naprawdę istotne w projektowaniu obwodów elektronicznych. Moim zdaniem, jeśli zajmujesz się elektroniką, warto znać ten mostek.

Pytanie 25

Dzięki działaniu negatywnego sprzężenia zwrotnego, wzmocnienie tego układu

A. pozostaje takie samo
B. wynosi 0
C. zwiększa się
D. zmniejsza się
W przypadku rozważania wpływu sprzędzenia zwrotnego na wzmocnienie układu, niektóre odpowiedzi mogą być mylące. Utrzymywanie wzmocnienia bez zmian jest błędnym założeniem, gdyż ujemne sprzężenie zwrotne ma jasno określony wpływ na obniżenie wzmocnienia. W rzeczywistości, analogowe układy wzmacniające, takie jak wzmacniacze operacyjne, zawsze podlegają wpływowi sprzężenia zwrotnego, co jest kluczowe dla ich poprawnego działania. Dalsze zwiększanie wzmocnienia w kontekście ujemnego sprzężenia zwrotnego jest niemożliwe, ponieważ mechanizm ten działa zgodnie z zasadą redukcji wzmocnienia, co skutkuje stabilizacją. W odpowiedzi sugerującej, że wzmocnienie jest równe zeru, występuje znaczący błąd rozumienia natury sprzężenia zwrotnego. Owszem, wzmocnienie może dążyć do zera w niektórych ekstremalnych przypadkach, ale nie jest to normą w zastosowaniach praktycznych. Takie podejście zniekształca zrozumienie funkcjonalności wzmacniaczy i ich zdolności do pracy w różnych warunkach. Dlatego, interpretując ujemne sprzężenie zwrotne, kluczowe jest zrozumienie jego roli w stabilizacji wzmocnienia oraz w poprawie jakości sygnału, co jest fundamentalnym aspektem inżynierii elektronicznej.

Pytanie 26

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. watomierza
B. analizatora
C. omomierza
D. mostka RLC
Użycie omomierza do pomiaru indukcyjności jest błędem, ponieważ to urządzenie jest zaprojektowane do pomiaru rezystancji elektrycznej, a nie indukcyjności. Indukcyjność jest właściwością, która opisuje zdolność cewki do magazynowania energii w polu magnetycznym, co nie jest mierzone w jednostkach rezystancji. Stosowanie omomierza w tym kontekście prowadzi do całkowicie mylnych wyników i nieprawidłowych wniosków dotyczących charakterystyki cewki. Analizator, z kolei, jest narzędziem, które może być używane do szerszej analizy sygnałów, lecz nie jest bezpośrednio przeznaczony do pomiaru indukcyjności, co czyni go nieodpowiednim w tej sytuacji. Z kolei watomierz, który mierzy moc, nie ma zastosowania w kontekście pomiaru indukcyjności, ponieważ nie dostarcza informacji na temat właściwości komponentów pasywnych, takich jak cewki. Błędne przekonania dotyczące zastosowania tych narzędzi mogą wynikać z niepełnej wiedzy na temat ich specyfiki i sposobu działania. W przypadku pomiaru indukcyjności kluczowe jest zrozumienie, że każdy typ urządzenia pomiarowego ma swoje ściśle określone zastosowanie i użycie niewłaściwego narzędzia prowadzi do błędnych wyników oraz niewłaściwego projektowania obwodów.

Pytanie 27

Elementem systemu alarmowego jest

A. czujka PIR
B. konwerter
C. unifon
D. elektrozaczep
Czujka PIR (Passive Infrared Sensor) jest kluczowym podzespołem systemów alarmowych, odpowiedzialnym za wykrywanie ruchu poprzez monitorowanie zmian w promieniowaniu podczerwonym emitowanym przez obiekty znajdujące się w jej zasięgu. Działa na zasadzie detekcji ciepła emitowanego przez ludzi i zwierzęta, co sprawia, że jest niezwykle skuteczna w zabezpieczaniu różnych obiektów. Przykładem zastosowania czujek PIR jest ich montaż w strefach wejściowych do budynków, gdzie mogą wykrywać intruzów przed wejściem do środka. Standardy ISO 9001 oraz EN 50131 wskazują na znaczenie takich czujników w systemach zabezpieczeń, gwarantując ich niezawodność i efektywność. Dobrą praktyką jest również ich integracja z systemami alarmowymi, co pozwala na automatyczne uruchamianie alarmów w przypadku detekcji ruchu, co znacząco zwiększa bezpieczeństwo obiektu.

Pytanie 28

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. ma za zadanie skupiać wiązki detekcji na pyroelemencie
B. gwarantuje efektywne działanie systemu przeciwsabotażowego
C. jest komponentem wyłącznie dekoracyjnym
D. emituje promieniowanie podczerwone w stronę intruza
Wykorzystanie soczewek Fresnela w czujkach ruchu PIR nie jest związane z ich rolą w przeciwdziałaniu sabotażowi. Odpowiedź sugerująca, że soczewka ta zapewnia skuteczne działanie układu przeciwsabotażowego jest myląca, ponieważ soczewki Fresnela nie mają zdolności aktywnego zapobiegania sabotażowi, a ich funkcja polega głównie na skupieniu promieniowania podczerwonego. Sugerowanie, że soczewka jest jedynie elementem dekoracyjnym, również jest nieprawidłowe. Soczewki te są zaprojektowane w celu maksymalizacji efektywności detekcji, a ich forma wynika z wymogów technicznych, a nie estetycznych. Ponadto, soczewki Fresnela nie emitują promieniowania podczerwonego w kierunku intruza; zamiast tego to detektory PIR monitorują zmiany w promieniowaniu podczerwonym wydobywającym się z obiektów, które są w ruchu. Warto zrozumieć, że błędne założenia o działaniu czujników PIR mogą prowadzić do poważnych konsekwencji w ich zastosowaniach w systemach zabezpieczeń. Zamiast myśleć, że soczewka pełni funkcję dekoracyjną lub aktywnego elementu obrony, kluczowe jest dostrzeganie jej roli w detekcji i odpowiedzi na zmiany w otoczeniu, co jest podstawą ich funkcjonalności. Dobre praktyki w zakresie zabezpieczeń podkreślają znaczenie zrozumienia technologii stosowanej w systemach monitoringu, co pozwala na lepsze wykorzystanie ich możliwości.

Pytanie 29

Element, którego napięcie na wyjściu jest uzależnione od porównania dwóch napięć na wejściu, to

A. układ całkujący.
B. układ różniczkujący.
C. komparator.
D. sumator.
Komparator to kluczowy element w elektronice analogowej, który pozwala na porównywanie dwóch napięć wejściowych. Działa on na zasadzie analizy, które z napięć jest wyższe, co prowadzi do zmian stanu wyjściowego. W praktyce komparatory są szeroko stosowane w systemach automatyki, takich jak kontrola poziomu cieczy, gdzie mogą szybko zareagować na zmiany napięcia sygnalizujące zmiany w poziomie cieczy. Dodatkowo komparatory są fundamentem w konstrukcji układów takich jak odbiorniki sygnałów, przetworniki analogowo-cyfrowe oraz w systemach zabezpieczeń. Warto zwrócić uwagę, że komparator działa niezależnie od wartości napięć, koncentrując się jedynie na relacji między nimi, co czyni go niezwykle wszechstronnym narzędziem w inżynierii. W kontekście standardów, komparatory są często używane w układach zgodnych z normami przemysłowymi, co zapewnia ich niezawodność i efektywność w różnych aplikacjach.

Pytanie 30

Standard umożliwiający bezprzewodową, optyczną transmisję danych zawiera interfejs

A. Bluetooth
B. WiFi
C. LoRa
D. IrDa
IrDa, czyli Infrared Data Association, to standard, który rzeczywiście zapewnia bezprzewodową, optyczną transmisję danych. W przeciwieństwie do innych standardów, takich jak Bluetooth, WiFi czy LoRa, które operują na falach radiowych, IrDa korzysta z podczerwieni do przesyłania informacji. Technologia ta była szeroko stosowana w urządzeniach, takich jak telefony komórkowe, laptopy czy drukarki, zwłaszcza w latach 90. i na początku 2000. Zastosowanie IrDa wymaga bezpośredniego widzenia między urządzeniami, co oznacza, że odległość i kąt widzenia mają kluczowe znaczenie dla jakości połączenia. Chociaż obecnie technologia ta jest mniej popularna na rzecz bardziej uniwersalnych standardów, takich jak Bluetooth, jej zalety obejmują niskie zużycie energii oraz bezpieczeństwo, ponieważ sygnał podczerwieni jest trudniejszy do przechwycenia niż fale radiowe. Warto także zauważyć, że IrDa był jednym z pierwszych standardów umożliwiających wymianę danych między urządzeniami bez użycia kabli, co miało ogromny wpływ na rozwój technologii mobilnych.

Pytanie 31

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Thomsona
B. Wheatstone’a
C. Wiena
D. Maxwella
Mostek Maxwella jest stosowany głównie do pomiarów indukcyjności, a jego zasada działania opiera się na równoważeniu impedancji w obwodzie prądu zmiennego. Stąd wynika, że nie nadaje się on do dokładnego pomiaru rezystancji, zwłaszcza tych bardzo małych. Mostek Wiena, z kolei, jest układem używanym głównie do pomiaru impedancji w obwodach prądu zmiennego, co sprawia, że jego zastosowanie do pomiarów rezystancji jest ograniczone i mniej precyzyjne niż w przypadku mostka Thomsona. Mostek Wheatstone’a, znany z prostoty i stosunkowo dobrej dokładności, jest odpowiedni do pomiaru rezystancji, ale jego skuteczność spada przy niskich wartościach rezystancji ze względu na wpływ szumów i błędów pomiarowych. W praktyce, błędne wybory pomiarowe wynikają często z nieznajomości specyfikacji i ograniczeń poszczególnych mostków, co prowadzi do niepoprawnych wniosków na temat ich zastosowania. Zrozumienie tych różnic jest kluczowe dla prawidłowego doboru narzędzi w pracach badawczych oraz przemysłowych.

Pytanie 32

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm
A. JVRO7N431K
B. TSV07D471
C. B72210S0301K101
D. JVR14N431K
Warystor JVR14N431K jest odpowiednim zamiennikiem dla uszkodzonego MYG 10K-431 z kilku powodów. Po pierwsze, oba warystory mają identyczne napięcie znamionowe: 275 V AC oraz 350 V DC, co jest kluczowe dla zapewnienia, że nowy komponent będzie działał w tych samych warunkach. Po drugie, JVR14N431K charakteryzuje się wyższą energią tłumienia wynoszącą 132 J/2 ms, co oznacza, że może skuteczniej absorbować i tłumić przepięcia, co jest istotne w obwodach narażonych na nagłe skoki napięcia. W praktyce, gdy w układzie występują przepięcia, warystory pełnią rolę ochronną, zapobiegając uszkodzeniu innych komponentów. Zastosowanie warystora o wyższej energii tłumienia w tym przypadku zwiększa niezawodność całego systemu elektronicznego. Również wspomniany raster wynoszący 7,5 mm zapewnia, że nowy warystor będzie odpowiednio pasował do istniejącego miejsca w obwodzie, co ułatwia jego wymianę i zabezpiecza przed błędami montażowymi. W branży elektronicznej kluczowe jest przestrzeganie standardów jakości oraz dobrych praktyk w doborze komponentów, dlatego stosowanie zamienników z porównywalnymi parametrami jest niezbędne. Zastosowanie JVR14N431K nie tylko spełnia wymogi techniczne, ale także przyczynia się do długotrwałej eksploatacji urządzenia.

Pytanie 33

Po włożeniu płyty DVD do odtwarzacza, szuflada napędu najpierw się wsuwa, a następnie od razu wysuwa. Jaka może być najprawdopodobniejsza przyczyna tego problemu?

A. Uszkodzony silnik odtwarzacza płyty
B. Luźny pasek zamykający szufladę lub styk krańcowy
C. Uszkodzony laser
D. Uszkodzony silnik przesuwu tacki
Uszkodzony silnik napędu płyty, uszkodzony silnik przesuwu szuflady oraz uszkodzony laser, mimo że mogą być problemami w odtwarzaczach DVD, nie są najprawdopodobniejszymi przyczynami opisanego zachowania tacki. W przypadku uszkodzonego silnika napędu płyty, zazwyczaj obserwuje się problemy z odczytem płyt, a nie z mechanizmem wysuwania tacki. Silnik ten odpowiada za obracanie płyty po jej umieszczeniu oraz może być przyczyną problemów z odtwarzaniem, ale nie wywołuje natychmiastowego wysunięcia tacki. Podobnie, uszkodzony silnik przesuwu szuflady mógłby prowadzić do opóźnień w zamykaniu lub otwieraniu, ale nie do cyklicznego wysuwania się tacki. Co więcej, uszkodzony laser, będący odpowiedzialnym za odczyt danych z płyty, również nie wpływa na mechanizm zamykania tacki. Często błędnie przypisuje się problemy z zamykaniem tacki uszkodzeniom w bardziej skomplikowanych komponentach, podczas gdy najprostsze rozwiązania, takie jak sprawdzenie pasków oraz styków krańcowych, są pomijane. Właściwe podejście do diagnostyki sprzętu polega na systematycznym sprawdzaniu elementów najprostszych, zanim przejdziemy do bardziej skomplikowanych ustaleń. W branży naprawy elektroniki, zwłaszcza w przypadku urządzeń mechanicznych, stosuje się zasadę eliminacji, co pozwala na szybsze i efektywniejsze diagnozowanie usterek.

Pytanie 34

Tabela przedstawia ustawienia zworek czujki ruchu. W jakim położeniu należy ustawić zworki w celu włączenia wysokiej ochrony, diody LED i detekcji ruchu pojedynczym sygnałem?

J1
Opcja Digital Shield (ochrony przed zakłóceniami)
Wył = wysoka ochrona
Wł. = niska ochrona
J2
Ustawienia LED
Wył = wyłączony
Wł. = włączony
J3
Pojedyncze lub podwójne sygnały detekcji
Wył = podwójne
Wł. = pojedyncze
A. J1-włączona, J2-wyłączona, J3-wyłączona.
B. J1-wyłączona, J2-wyłączona, J3-wyłączona.
C. J1-wyłączona, J2-włączona, J3-włączona.
D. J1-wyłączona, J2-wyłączona, J3-włączona.
Aby włączyć wysoką ochronę, diodę LED i detekcję ruchu pojedynczym sygnałem, zworki muszą być ustawione zgodnie z określonymi wymaganiami. Zworka J1 musi być wyłączona, co oznacza, że czujka będzie działać w trybie wysokiej ochrony. W kontekście standardów ochrony, tryb wysoki zapewnia większą czułość detekcji, co jest kluczowe w środowiskach o podwyższonej konieczności zabezpieczeń. Zworka J2 powinna być włączona, co aktywuje diodę LED, informując użytkownika o stanie czujki. Zworka J3, również włączona, umożliwia detekcję ruchu na pojedynczym sygnale, co jest istotne w systemach alarmowych, gdzie szybka reagowanie na incydent jest kluczowe. Ustawienia te są zgodne z najlepszymi praktykami w zakresie instalacji systemów zabezpieczeń i zapewniają optymalną funkcjonalność urządzenia. Należy pamiętać, że niewłaściwe ustawienie zworek może skutkować obniżeniem efektywności detekcji, co w kontekście ochrony mienia może prowadzić do poważnych konsekwencji.

Pytanie 35

Aby dokonać naprawy przetwornicy zasilającej w telewizorze, należy wykorzystać instrukcję

A. serwisową
B. użytkownika
C. programowania
D. instalacji
Poprawna odpowiedź to instrukcja serwisowa, ponieważ zawiera szczegółowe informacje dotyczące diagnostyki, naprawy oraz konserwacji urządzeń elektronicznych, w tym przetwornic zasilających w telewizorach. Instrukcje serwisowe są dostosowane do konkretnych modeli urządzeń i zazwyczaj zawierają schematy blokowe, opisy komponentów oraz procedury testowe. Przykładem zastosowania takiej instrukcji jest identyfikacja uszkodzonych elementów, takich jak kondensatory czy tranzystory, które mogą wpływać na funkcjonalność przetwornicy. Warto również zwrócić uwagę na dobre praktyki branżowe, takie jak korzystanie z oryginalnych części zamiennych oraz stosowanie odpowiednich narzędzi podczas naprawy, co zapewnia długotrwałą i bezpieczną eksploatację urządzenia. Ponadto, instrukcje serwisowe często zawierają informacje o wymaganiach dotyczących bezpieczeństwa, co jest kluczowe podczas pracy z urządzeniami elektrycznymi. Dlatego zawsze warto mieć tę dokumentację pod ręką podczas przeprowadzania napraw.

Pytanie 36

Liczba (0001 0010 0100) BCD przedstawiona w kodzie BCD (ang. Binary-Coded Decimal) po przekształceniu na system dziesiętny będzie miała wartość

A. 111
B. 321
C. 123
D. 124
Odpowiedzi 123, 111 oraz 321 są błędne z kilku powodów, które można omówić. Liczba 123, choć zbliżona do poprawnej odpowiedzi, jest rezultatem niepoprawnej interpretacji kodu BCD. Liczba ta wynikałaby z błędnej konwersji, gdzie pierwsza grupa 0001 byłaby poprawnie zakodowana jako 1, ale kolejne grupy 0010 i 0011 zostałyby źle zinterpretowane. Podobnie, liczba 111 jest całkowicie mylona, ponieważ nie uwzględnia właściwych wartości cyfrowych reprezentowanych przez bity. Grupa 0100, która koduje cyfrę 4, nie może w żaden sposób przyczynić się do uzyskania liczby 111, co pokazuje, że odpowiedzi opierają się na błędnych założeniach. Co więcej, liczba 321 również nie jest zgodna z przedstawionym kodem BCD, gdyż cyfry w tej odpowiedzi sugerują odwrotną interpretację, w której dochodzi do błędnego zakodowania cyfr. W praktyce, niepoprawne zrozumienie kodowania BCD może prowadzić do poważnych błędów w obliczeniach i konwersjach w systemach elektronicznych. Kluczowym błędem myślowym, który można zauważyć, jest pomijanie zasady, że każda cyfra w kodzie BCD jest niezależnie kodowana w 4 bitach, co wpływa na sposób interpretacji wartości dziesiętnych w systemach cyfrowych. Zrozumienie koncepcji BCD jest zatem istotne dla prawidłowego funkcjonowania wielu systemów elektronicznych i komputerowych.

Pytanie 37

W najbardziej prawdopodobny sposób ciemny, trudny do zobaczenia obraz na monitorze może być spowodowany

A. uszkodzeniem płyty głównej
B. uszkodzeniem świetlówki matrycy
C. spadkiem pojemności kondensatorów elektrolitycznych
D. przerwanym kablem sygnałowym
Uszkodzenie świetlówki matrycy jest najczęstszą przyczyną ciemnego i ledwo widocznego obrazu na monitorze. Świetlówki, będące źródłem światła w monitorach LCD, mogą ulegać awariom z różnych powodów, takich jak zużycie, uszkodzenia mechaniczne czy problemy z zasilaniem. Gdy świetlówka nie działa prawidłowo, oznacza to, że nie emituje odpowiedniej ilości światła, co skutkuje słabym lub wręcz niewidocznym obrazem. W praktyce, jeśli zauważysz, że ekran jest ciemny, ale sprzęt nadal działa (np. słychać dźwięki uruchamiania systemu), to często oznacza, że świetlówka wymaga wymiany. Zgodnie z dobrymi praktykami w diagnostyce komputerowej, zawsze warto najpierw sprawdzić źródło światła monitora, zanim przystąpimy do bardziej skomplikowanych napraw, takich jak wymiana płyty głównej czy przewodów. Ponadto, regularna konserwacja i czyszczenie komponentów monitorów mogą znacząco wpłynąć na ich trwałość, co jest zgodne z branżowymi standardami dotyczącymi utrzymania sprzętu elektronicznego.

Pytanie 38

Jaki typ generatora powinno się wykorzystać w bloku podstawy czasu oscyloskopu?

A. Generator piłokształtny
B. Generator impulsowy
C. Generator prostokątny
D. Generator sinusoidalny
Generator piłokształtny jest kluczowym elementem w bloku podstawy czasu oscyloskopu, ponieważ generuje sygnały, które zmieniają się w sposób liniowy na pewnym odcinku czasu, a następnie natychmiastowo wracają do stanu początkowego. Taki kształt sygnału umożliwia oscyloskopowi precyzyjne ustawienie podstawy czasu, co jest fundamentalne dla analizy sygnałów. W praktyce, generator piłokształtny jest używany do tworzenia sygnałów testowych, które pozwalają inżynierom na kalibrację i diagnostykę układów elektronicznych oraz na ocenę ich wydajności w różnych warunkach pracy. Zgodnie z normami branżowymi, zastosowanie generatorów piłokształtnych jest zalecane w analizie sygnałów, ponieważ zapewniają one lepszą reprezentację sygnałów o zmiennych kształtach. Dodatkowo, sygnał piłokształtny jest szczególnie przydatny w aplikacjach związanych z cyfrowym przetwarzaniem sygnałów, gdzie precyzyjne pomiary czasowe i amplitudowe są kluczowe.

Pytanie 39

Jakie urządzenie łączy komputer z lokalną siecią komputerową?

A. most
B. karta sieciowa
C. wyposażenie bramowe
D. firewall
Karta sieciowa to taki kluczowy element, który łączy komputer z lokalną siecią, jakby to był most między różnymi urządzeniami. Jej główne zadanie to umożliwienie komunikacji, co jak wiadomo, odbywa się poprzez zamianę danych na sygnały elektryczne i przesyłanie ich przez różne media, jak kable Ethernet czy fale radiowe w sieciach bezprzewodowych. Karty sieciowe występują w różnych wersjach, na przykład jako karty rozszerzeń do montażu w gniazdach PCI albo jako wbudowane urządzenia w laptopach. Każda z nich ma swój unikalny adres MAC, który jest, mówiąc kolokwialnie, takim identyfikatorem w sieci. Standardy, jak IEEE 802.3 dla Ethernet czy IEEE 802.11 dla Wi-Fi, mówią, jak te karty powinny działać, żeby wszystko ze sobą współpracowało. Dzięki nim użytkownicy mogą korzystać z różnych zasobów sieciowych, jak serwery, drukarki czy internet, co jest niezbędne, szczególnie w biurach i domach.

Pytanie 40

W przypadku wzmacniaczy prądu stałego pomiędzy kolejnymi stopniami nie wykorzystuje się sprzężenia pojemnościowego, ponieważ kondensator

A. tak jak dioda, przewodzi sygnał w jednym kierunku
B. nie przekazuje składowej stałej sygnału
C. tworzy przerwę dla sygnału o wysokiej częstotliwości
D. jest zworą dla sygnału stałego
Wzmacniacze prądu stałego są projektowane z myślą o obsłudze sygnałów stałych, w związku z czym zastosowanie sprzężenia pojemnościowego byłoby nieodpowiednie. W odpowiedzi, która sugeruje, że kondensator stanowi zwarcie dla sygnału stałego, nie uwzględnia się faktu, że kondensator na dłuższą metę działa jak izolator w obwodach stałoprądowych, co w praktyce oznacza, że nie przepuszcza składowej stałej sygnału. Natomiast w kontekście sygnałów zmiennych, kondensator działa jako element przejściowy, co jest mylone z jego rolą w obwodach DC. Również stwierdzenie, że kondensator stanowi przerwę dla sygnału o dużej częstotliwości, jest nieprecyzyjne. W rzeczywistości kondensator przewodzi wysokie częstotliwości, co czyni go odpowiednim do sprzężenia w wzmacniaczach AC. Dodatkowo, koncepcja, że kondensator przewodzi sygnał tylko w jednym kierunku, jest błędna. Kondensatory nie mają kierunkowości przewodzenia jak diody; zamiast tego gromadzą ładunek i mogą działać w różnych kierunkach w zależności od napięcia. Typowe błędy myślowe prowadzące do takich nieprawidłowych odpowiedzi często wynikają z mylenia podstawowych zasad działania kondensatorów oraz ich ról w różnych typach obwodów. Warto przypomnieć, że zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji układów elektronicznych.