Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 sierpnia 2025 22:11
  • Data zakończenia: 10 sierpnia 2025 22:58

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. wymiana osłony łożyska
B. zmniejszenie luzów łożyska
C. wymiana całego łożyska
D. zmniejszenie nadmiaru smaru w łożysku
Wymiana osłony łożyska może wydawać się odpowiednia, ale w rzeczywistości nie rozwiązuje problemu, ponieważ osłona ma na celu jedynie ochronę łożyska przed zanieczyszczeniami, a nie naprawę samego łożyska. Jeśli hałas jest spowodowany uszkodzeniem wewnętrznym łożyska, zmiana osłony nie przyniesie żadnych korzyści. W przypadku zmniejszenia nadmiaru smaru w łożysku, można sądzić, że problem z hałasem może być spowodowany nadmiernym smarowaniem, co w niektórych przypadkach może mieć sens, ale zbyt mała ilość smaru również prowadzi do szybszego zużycia i przegrzewania się łożyska. Analogicznie, zmniejszenie luzów łożyska może również wydawać się logiczne, ale w rzeczywistości luz jest krytycznym parametrem, który musi być dostosowany do specyfikacji producenta. Nadmierne luzowanie może prowadzić do wibracji i hałasów, ale próby dostosowania luzu bez zrozumienia rzeczywistego stanu technicznego łożyska mogą prowadzić do jeszcze większych problemów. Takie błędne podejścia do diagnostyki i napraw nie tylko mogą powodować dalsze uszkodzenia, ale także mogą prowadzić do kosztownych przestojów w produkcji, dlatego kluczowe jest podejście holistyczne i oparte na rzetelnej analizie stanu technicznego maszyny.

Pytanie 2

Z odległości jednego metra można zarejestrować temperaturę obudowy urządzenia

A. multimetrem.
B. fotometrem.
C. pirometrem.
D. daloczułkiem.
Wybór dalmierza, fotometru czy multimetru jako narzędzi do pomiaru temperatury obudowy urządzenia jest nieprawidłowy, ponieważ każde z tych urządzeń ma swoje specyficzne zastosowania, które nie obejmują bezpośredniego pomiaru temperatury. Dalmierz jest narzędziem wykorzystywanym do pomiaru odległości, które działa na zasadzie pomiaru czasu, w jakim fala elektromagnetyczna przebywa dystans między nadajnikiem a obiektem. Nie posiada on jednak zdolności do wyczuwania temperatury, co czyni go nieodpowiednim do tego typu pomiarów. Fotometr, z drugiej strony, jest urządzeniem służącym do pomiaru natężenia światła, co również nie ma związku z pomiarem temperatury. Użycie fotometru w tym kontekście prowadzi do fundamentalnych błędów myślowych dotyczących jego funkcji i przeznaczenia. Multimetr, chociaż jest wszechstronnym narzędziem pomiarowym, również nie może być użyty do bezpośredniego pomiaru temperatury obiektu z odległości. Jego główne funkcje obejmują pomiar napięcia, prądu i oporu, a nie temperatury. W przypadku pomiarów temperatury, multimetr może być użyty tylko w połączeniu z odpowiednimi czujnikami, jednak wymaga to kontaktu z obiektem lub jego bliskiego umiejscowienia, co nie jest zgodne z zasadą pomiaru stosowaną w pirometrii. Zrozumienie właściwego zastosowania tych narzędzi jest kluczowe dla uzyskania dokładnych i wiarygodnych wyników pomiarów.

Pytanie 3

Aby zwiększyć prędkość ruchu tłoczyska siłownika poprzez szybsze odpowietrzenie, wykorzystuje się zawór

A. podwójnego sygnału
B. przełączania obiegu
C. regulacji ciśnienia
D. szybkiego spustu
Patrząc na odpowiedzi dotyczące zaworu regulacji ciśnienia, podwójnego sygnału czy przełączania obiegu, można zauważyć, że jest tu sporo nieporozumień. Zawór regulacji ciśnienia ma za zadanie utrzymać konkretne ciśnienie w systemie, co jest super ważne dla stabilności, ale nie przyspiesza bezpośrednio ruchu tłoczyska. Kiedy potrzebujesz szybkiego odpowietrzenia, te opcje mogą być niewłaściwe, bo nie przyspieszają samego procesu. Zawór podwójnego sygnału pełni inne funkcje sterujące, ale szybkość siłownika to nie jego mocna strona. Zawór przełączania obiegu może zmieniać kierunek przepływu, ale też nie jest narzędziem do szybkiego usuwania cieczy z siłownika. Sporo osób myli te funkcje, co prowadzi do błędnych decyzji przy wyborze elementów hydraulicznych. Żeby skutecznie zwiększyć prędkość działania siłownika, trzeba dobrze zrozumieć, jak działają te zawory i jaki mają wpływ na cały system hydrauliczny. Identyfikacja i użycie zaworu szybkiego spustu to klucz do optymalizacji procesów hydraulicznych.

Pytanie 4

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać wał i schłodzić koło pasowe
C. Podgrzać koło pasowe oraz wał
D. Podgrzać koło pasowe i schłodzić wał
Wybór nieprawidłowych metod zamocowania koła pasowego na wale jest często wynikiem nieprawidłowego zrozumienia procesów fizycznych zachodzących podczas montażu. Schładzanie koła pasowego, jak sugeruje jedna z odpowiedzi, byłoby szkodliwe, ponieważ doprowadziłoby do zmniejszenia jego średnicy, co znacznie utrudniłoby, a wręcz uniemożliwiło, jego montaż na wałku. W przypadku rozgrzewania wału i schładzania koła pasowego, również nie osiągnęlibyśmy pożądanego efektu, ponieważ schłodzenie koła spowodowałoby, że jego średnica zmniejszyłaby się, co również prowadziłoby do trudności z montażem. Ponadto, pomysły na rozgrzanie obu elementów mogą wydawać się logiczne, jednak nie uwzględniają one zasady, że oba elementy muszą mieć różne temperatury, aby mogły ze sobą współdziałać. Metody te są sprzeczne z podstawowymi zasadami inżynierii mechanicznej oraz praktykami montażowymi, które zalecają różnicowanie temperatur w celu ułatwienia montażu. Efektywność procesów montażowych opiera się na zrozumieniu zachowań materiałów i ich reakcji na zmiany temperatury, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania maszyn. Dlatego tak ważne jest przestrzeganie sprawdzonych procedur, które gwarantują nie tylko wygodę montażu, ale również długotrwałe i niezawodne działanie urządzeń.

Pytanie 5

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. spadku obrotów silnika
C. zmniejszenia reaktancji uzwojeń silnika
D. wzrostu obrotów silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 6

Jak można zweryfikować, czy przewód elektryczny jest w pełni sprawny?

A. omomierz
B. amperomierz
C. induktor
D. woltomierz
Induktor, amperomierz i woltomierz to urządzenia pomiarowe, które mają inne zastosowania i nie są odpowiednie do sprawdzania ciągłości przewodów elektrycznych. Induktor jest elementem pasywnym stosowanym w obwodach elektrycznych do magazynowania energii w polu magnetycznym, jednak jego rola nie obejmuje pomiaru oporu elektrycznego. Użycie induktora w kontekście diagnozowania przerwy w przewodzie jest niewłaściwe, gdyż nie dostarcza informacji o ciągłości przewodów. Amperomierz, z kolei, służy do pomiaru natężenia prądu w obwodzie. Pomimo że jego działanie może być pomocne w określaniu, czy prąd płynie przez dany obwód, nie dostarcza informacji o oporze i przerwach w przewodach, co czyni go nieodpowiednim narzędziem do tego celu. Woltomierz mierzy napięcie elektryczne, a jego użycie w kontekście sprawdzania przewodów również nie jest właściwe, ponieważ nie wskazuje on na problemy związane z oporem elektrycznym. Osoby, które wybierają te urządzenia do diagnozowania przerw w przewodach, mogą natrafić na pułapki myślowe, takie jak błędne założenia dotyczące ich funkcji i zastosowania, co prowadzi do nieefektywnego rozwiązywania problemów z instalacją elektryczną. Aby skutecznie diagnozować uszkodzenia przewodów, kluczowe jest zrozumienie funkcji każdego z urządzeń pomiarowych oraz ich właściwego zastosowania w praktyce.

Pytanie 7

Który z zaworów powinno się zastosować w układzie pneumatycznym, aby przyspieszyć wysuw tłoczyska w siłowniku dwustronnego działania?

A. Szybkiego spustu
B. Podwójnego sygnału
C. Przełącznika obiegu
D. Dławiąco zwrotnego
Wybór niewłaściwego zaworu w układzie pneumatycznym może prowadzić do istotnych problemów w kontekście efektywności i funkcjonalności systemu. Przykładowo, zastosowanie przełącznika obiegu nie przyniesie oczekiwanego zwiększenia prędkości wysuwu tłoczyska, gdyż jego główną funkcją jest kierowanie przepływu powietrza w zależności od pozycji elementu, co nie wpływa na czas działania siłownika. Użycie zaworu dławiąco-zwrotnego, który reguluje przepływ powietrza, może wręcz spowodować zmniejszenie prędkości wysuwu tłoczyska z racji na wprowadzenie dodatkowego oporu. Tego typu zawory są efektywne w kontrolowaniu prędkości, ale ich zastosowanie w sytuacji, gdy celem jest maksymalizacja prędkości, jest błędne. Podobnie, zawór podwójnego sygnału, który może działać w różnych konfiguracjach, nie jest odpowiedni do szybkiego uwalniania powietrza, a jego działanie jest bardziej złożone i nie sprzyja prostym operacjom, takim jak szybki wysuw tłoczyska. Kluczowym błędem w myśleniu jest założenie, że każdy zawór może spełniać tę samą funkcję w systemie pneumatycznym, co prowadzi do nieefektywnej pracy całego układu.

Pytanie 8

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. antyferromagnetyki
B. paramagnetyki
C. ferromagnetyki
D. diamagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 9

Poniższy zapis w metodzie Grafcet oznacza otwarcie zaworu 1V1

DOtworzyć zawór 1V1
t = 2s
A. impulsowo.
B. z opóźnieniem czasowym.
C. z ograniczeniem czasowym.
D. warunkowo.
Odpowiedź "z opóźnieniem czasowym" jest poprawna, ponieważ zapis w metodzie Grafcet zawiera informację o opóźnieniu, które jest kluczowym elementem w automatyzacji procesów. Opóźnienia czasowe w systemach automatyki są często stosowane do synchronizacji działań, co zapewnia płynne działanie całego systemu. W tym przypadku, akcja otwarcia zaworu 1V1 następuje po upływie 2 sekund od momentu aktywacji danego kroku. Przykładem zastosowania takiego opóźnienia może być scenariusz, w którym otwarcie zaworu musi być zsynchronizowane z innymi procesami, na przykład uruchomieniem pompy, która dostarcza ciecz do zaworu. W takich sytuacjach, stosowanie opóźnień jest zgodne z najlepszymi praktykami w projektowaniu systemów automatyki, co zwiększa niezawodność i bezpieczeństwo operacji. Ponadto, standardy branżowe, takie jak IEC 61131-3, podkreślają znaczenie precyzyjnego definiowania czasów reakcji w systemach sterowania, co także odnosi się do omawianego przypadku.

Pytanie 10

Wśród silników elektrycznych prądu stałego największy moment startowy wykazują silniki

A. szeregowe
B. obcowzbudne
C. bocznikowe
D. synchroniczne
Silniki prądu stałego szeregowe charakteryzują się tym, że uzwojenie wzbudzenia jest połączone szeregowo z uzwojeniem wirnika. Taki układ oznacza, że prąd płynący przez wirnik jest również tym samym prądem, który zasila uzwojenie wzbudzenia. W rezultacie, przy rozruchu silnika szeregowego, w momencie zerowej prędkości obrotowej, prąd osiąga wartość maksymalną, co generuje bardzo duży moment obrotowy. Jest to szczególnie istotne w zastosowaniach, gdzie wymagany jest wysoki moment startowy, na przykład w napędzie dźwigów, taśmociągów czy wózków widłowych. W kontekście standardów przemysłowych, silniki te często stosowane są w aplikacjach, gdzie wymagane jest szybkie pokonywanie oporów, co czyni je niezastąpionymi w wielu dziedzinach przemysłu. Dodatkowo, ich prosta konstrukcja oraz stosunkowo niskie koszty produkcji sprawiają, że są popularnym wyborem w wielu zastosowaniach.

Pytanie 11

W celu kontroli siłowników jednostronnego działania wykorzystuje się zawory rozdzielające

A. 3/2
B. 5/2
C. 4/2
D. 4/3
Rozważając inne typy zaworów rozdzielających, takie jak 4/2, 4/3 oraz 5/2, można zauważyć, że nie spełniają one wymagań dla siłowników jednostronnego działania. Zawór 4/2, mimo że ma cztery porty i może obsługiwać różne funkcje, jest przeznaczony do siłowników dwustronnego działania, gdzie wymagane jest kontrolowanie ruchu w obu kierunkach. Zawór 4/3 działa w podobny sposób, oferując cztery porty, ale z dodatkowymi funkcjami, co również nie jest potrzebne w przypadku jednostronnego działania. Zawór 5/2, z pięcioma portami, jest jeszcze bardziej skomplikowany i często używany w bardziej złożonych układach, gdzie potrzebne są różne kombinacje przepływu powietrza. Takie podejścia mogą prowadzić do nadmiernej komplikacji układu, co zwiększa ryzyko awarii oraz utrudnia diagnostykę. Użytkownicy mogą mylnie sądzić, że więcej portów lub bardziej skomplikowane układy oznaczają lepszą funkcjonalność, jednak w przypadku prostych aplikacji, takich jak siłowniki jednostronnego działania, kluczowe jest stosowanie najprostszych rozwiązań, które zapewniają efektywność oraz niezawodność. W praktyce dobrą praktyką jest dobieranie elementów zgodnie z ich przeznaczeniem oraz prostotą układu, co sprzyja efektywności działania systemu.

Pytanie 12

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Mechaniczną
B. Stroboskopową
C. Optyczną
D. Elektromagnetyczną
Wybór metody pomiaru prędkości obrotowej, która nie jest odpowiednia dla specyficznych warunków pracy, może prowadzić do wielu problemów w procesie produkcyjnym. Metoda mechaniczna, na przykład, często wymaga fizycznego kontaktu z obiektem pomiarowym, co może być niemożliwe w sytuacji, gdy dostęp do maszyny jest ograniczony. Taki pomiar może także zakłócić pracę urządzenia, co jest szczególnie niepożądane w dynamicznych środowiskach produkcyjnych. Z kolei metoda elektromagnetyczna, która opiera się na detekcji zmian w polu magnetycznym, może być mniej precyzyjna w przypadku małych obiektów lub w środowisku o dużym poziomie zakłóceń elektromagnetycznych. Właściwe zrozumienie zasad działania tych metod jest kluczowe, aby uniknąć błędnych pomiarów, które mogą prowadzić do fałszywych wniosków o stanie maszyny. Na przykład, przy pomiarach mechanicznych często występuje błąd wynikający z tarcia lub nieodpowiedniego ustawienia narzędzi, a w przypadku pomiarów elektromagnetycznych, pojawiające się zakłócenia mogą zafałszować odczyty. Dlatego tak ważne jest, aby wybierać metody pomiarowe, które są dostosowane do specyficznych wymagań danego procesu oraz środowiska operacyjnego.

Pytanie 13

W instalacjach niskonapięciowych (systemach TN) jako elementy zabezpieczające mogą być wykorzystywane

A. dławiki blokujące
B. wyłączniki różnicowoprądowe
C. wyłączniki montażowe
D. izolatory długiej osi
Wyłączniki różnicowoprądowe, znane także jako RCD (Residual Current Devices), odgrywają kluczową rolę w systemach niskiego napięcia, zwłaszcza w układach TN. Ich głównym zadaniem jest ochrona ludzi przed porażeniem prądem elektrycznym oraz zapobieganie pożarom, które mogą być spowodowane upływem prądu do ziemi. Działają na zasadzie wykrywania różnicy prądów między przewodami fazowymi a neutralnym. W przypadku wykrycia takiej różnicy, wyłącznik natychmiast odłącza zasilanie, co może uratować życie w sytuacji zagrożenia. W praktyce, wyłączniki różnicowoprądowe są stosowane w domach, biurach i obiektach przemysłowych, gdzie istnieje ryzyko kontaktu z wodą lub innymi czynnikami, które mogą zwiększyć ryzyko porażenia prądem. Standardy takie jak PN-EN 61008 i PN-EN 61009 określają wymagania dotyczące tych urządzeń, co sprawia, że ich stosowanie jest nie tylko zalecane, ale często obowiązkowe w nowych instalacjach elektrycznych. Ponadto, regularne testowanie wyłączników różnicowoprądowych jest niezbędne dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 14

Jakie z wymienionych elementów powinny być stosowane, aby uniknąć wycieków płynów?

A. Podkładki
B. Płytki
C. Uszczelki
D. Zawleczki
Uszczelki są kluczowym elementem w wielu zastosowaniach, które mają na celu zapobieganie wyciekaniu płynów. Działają one na zasadzie wypełnienia przestrzeni między dwoma lub więcej elementami, co eliminuje możliwość przedostawania się cieczy. W praktyce uszczelki są stosowane w połączeniach rur, zbiornikach, pompach oraz silnikach, gdzie ich rola jest nieoceniona. Na przykład, w silnikach spalinowych uszczelki głowicy są niezbędne, aby zapobiec wyciekowi oleju oraz płynu chłodzącego, co mogłoby prowadzić do poważnych uszkodzeń. W branży produkcyjnej i przemysłowej stosuje się różne materiały do produkcji uszczelek, takie jak guma, silikon, teflon czy materiały kompozytowe, które są dostosowane do specyficznych warunków pracy. Zgodność z normami ISO oraz innymi standardami branżowymi zapewnia, że uszczelki spełniają wymagania dotyczące szczelności i odporności na różne czynniki chemiczne i termiczne. Zastosowanie uszczelek zgodnie z najlepszymi praktykami znacząco wpływa na trwałość i efektywność systemów, w których są stosowane.

Pytanie 15

Czy panewka stanowi część składową?

A. sprzęgła sztywnego tulejowego
B. łożyska kulkowego
C. łożyska ślizgowego
D. zaworu pneumatycznego
Wybór łożyska kulkowego, zaworu pneumatycznego lub sprzęgła sztywnego tulejowego jako elementów składowych panewki jest niepoprawny i wynika z nieporozumień dotyczących funkcji i konstrukcji tych komponentów. Łożyska kulkowe, bazujące na kulkach jako elementach tocznych, działają na zasadzie redukcji tarcia dzięki rozdzieleniu powierzchni kontaktowych, co różni się od funkcji panewki w łożyskach ślizgowych, które polegają na bezpośrednim kontakcie między powierzchniami, ale przy zastosowaniu odpowiednich materiałów redukujących tarcie. Zawory pneumatyczne to zupełnie inna kategoria podzespołów, które służą do kontrolowania przepływu powietrza w systemach pneumatycznych, co nie ma związku z funkcją panewki. Sprzęgła sztywne, z kolei, są używane do łączenia wałów w taki sposób, że nie absorbują drgań, co również nie dotyczy panewki, która ma na celu umożliwienie ruchu wału w sposób kontrolowany. Te nieprawidłowe odpowiedzi pokazują typowe błędy myślowe wynikające z braku zrozumienia podstawowych zasad działania mechanizmów w maszynach oraz specyfiki poszczególnych komponentów. Kluczowe jest zrozumienie, że każdy element ma swoją unikalną funkcję i zastosowanie, a ich zrozumienie jest fundamentem inżynierii mechanicznej. W branży inżynieryjnej a także w codziennej praktyce technicznej, znajomość charakterystyki i zastosowania poszczególnych elementów jest niezbędna do prawidłowego projektowania i eksploatacji maszyn.

Pytanie 16

Ile powinna wynosić średnica tłoka siłownika pneumatycznego z jednostronnym tłoczyskiem, aby przy zasilaniu powietrzem o ciśnieniu 8 barów można uzyskać przy wysuwaniu tłoczyska siłę 160 N (przyjmując sprawność siłownika 100%)?

F = P · S
S = π · r2
A. 20 mm
B. 32 mm
C. 10 mm
D. 16 mm
Poprawna odpowiedź to 16 mm, co wynika z zastosowania wzoru na siłę F = P * S, gdzie F to siła, P to ciśnienie, a S to pole powierzchni tłoka. Przy ciśnieniu 8 barów i wymaganej sile 160 N, możemy obliczyć pole powierzchni tłoka jako S = F/P. Po przeliczeniu otrzymujemy S = 160 N / 800000 Pa = 0.0002 m². Następnie, przy korzystaniu ze wzoru na pole powierzchni koła S = π * r², możemy obliczyć promień, a następnie średnicę tłoka. Optymalizacja średnicy tłoka jest kluczowa w projektowaniu siłowników pneumatycznych, aby zapewnić ich efektywność energetyczną i odpowiednią wydajność. W praktyce, dokładne obliczenia i dobór średnicy tłoka wpływa na dynamikę działania systemów pneumatycznych, co jest istotne w automatyce przemysłowej. Zgodność z przepisami i standardami branżowymi, takimi jak ISO 6431, jest również ważna przy doborze komponentów siłowników.

Pytanie 17

Ciecze hydrauliczne, które przekazują energię, lecz nie oferują ochrony przed korozją ani smarowania, to ciecze klasy

A. HR
B. HH
C. HL
D. HG
Ciecze hydrauliczne typu HL, HG i HR mocno różnią się od HH i mogą wprowadzać w błąd, jeśli chodzi o zastosowanie. Ciecze HL mają dodatki, które chronią przed korozją i smarują, więc są lepsze tam, gdzie trzeba dbać o elementy przed zużyciem. Gdy są stosowane w warunkach wysokiego ciśnienia i temperatury, ich smarujące właściwości mogą bardzo wpłynąć na żywotność hydrauliki. Jeśli chodzi o ciecze HG, to one są stworzone z myślą o ryzykownych środowiskach, jak przemysł petrochemiczny, gdzie istnieje większe zagrożenie pożarem. Z kolei ciecze HR, też chroniące przed korozją, sprawdzają się w bardziej skomplikowanych układach hydraulicznych, gdzie obciążenia są większe i warunki pracy trudniejsze. Często mylimy się przy wyborze cieczy hydraulicznych, bo nie rozumiemy ich specyficznych potrzeb, dlatego warto znać klasyfikacje i właściwości płynów, żeby dopasować je do wymagań, a takie normy jak ISO 11158 są tu bardzo pomocne.

Pytanie 18

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. trójfazowym 230 V/400 V
B. jednofazowym symetrycznym 2 x 115 V
C. stałym 110 V
D. stałym 24 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 19

Wartość natężenia oświetlenia podczas wykonywania precyzyjnych zadań powinna wynosić

A. 600 lx
B. 800 lx
C. 300 lx
D. 100 lx
Wybór natężenia oświetlenia mniejszego niż 800 lx w kontekście precyzyjnych prac wiąże się z wieloma niebezpiecznymi konsekwencjami. Natężenie 600 lx, 300 lx czy 100 lx może wydawać się wystarczające w mniej wymagających warunkach, jednak w przypadku zadań wymagających dużej dokładności, takich jak montaż komponentów elektronicznych lub prace laboratoryjne, zbyt niskie oświetlenie może prowadzić do poważnych błędów. Przykładowo, oświetlenie na poziomie 600 lx może nie dostarczyć wystarczającej widoczności, co zwiększa ryzyko popełnienia błędów, które mogą skutkować uszkodzeniem delikatnych części lub złożeniem wadliwych produktów. Natężenie 300 lx to wartość, która w praktyce jest stosowana w biurach, ale nie jest to poziom odpowiedni dla precyzyjnych prac, gdzie każdy detal ma znaczenie. Natomiast 100 lx to wartość, która mogłaby być tolerowana w pomieszczeniach magazynowych, ale nie w sytuacjach wymagających szczególnej uwagi. Z tego względu, przy podejmowaniu decyzji o poziomie oświetlenia, ważne jest, aby kierować się standardami i zaleceniami branżowymi, które jasno określają wymagania w tej dziedzinie. Nieprawidłowe oszacowanie natężenia oświetlenia może prowadzić do nieefektywności pracy oraz zwiększenia ryzyka wypadków. Z tego względu, dla zapewnienia bezpieczeństwa i jakości, zawsze należy dążyć do osiągnięcia optymalnych warunków oświetleniowych.

Pytanie 20

Jakiego typu silnik należy wykorzystać do zasilania systemu, który wymaga bardzo wysokiego momentu rozruchowego (przekraczającego moment znamionowy)?

A. Szeregowy
B. Bocznikowy
C. Asynchroniczny
D. Krokowy
Silnik szeregowy jest najbardziej odpowiedni do aplikacji wymagających wysokiego momentu rozruchowego, ponieważ jego konstrukcja pozwala na uzyskanie znacznie większego momentu przy niskich obrotach. W silniku szeregowym, uzwojenia wirnika są połączone szeregowo z uzwojeniem stojana, co powoduje, że przepływ prądu przez uzwojenia wirnika i stojana jest taki sam. W rezultacie, gdy silnik startuje, prąd wzrasta, co prowadzi do znaczącego wzrostu momentu obrotowego. Taka charakterystyka sprawia, że silniki szeregowe są powszechnie stosowane w aplikacjach takich jak dźwigi, przenośniki, czy inne urządzenia wymagające dużego momentu rozruchowego. Przykładowo, silniki szeregowe są wykorzystywane w systemach transportu materiałów, gdzie konieczne jest pokonanie początkowego oporu. Dobrą praktyką w branży jest dobór silnika szeregowego do zastosowań, gdzie moment rozruchowy przewyższa moment znamionowy, co zapewnia efektywne i bezpieczne użytkowanie maszyn.

Pytanie 21

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
B. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
C. nastąpiła awaria wewnętrzna sterownika
D. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 22

Jakie medium powinno być użyte do łączenia systemów komunikacyjnych w obiekcie przemysłowym, gdzie występują znaczące zakłócenia elektromagnetyczne?

A. Kabel UTP
B. Sygnał radiowy
C. Kabel telefoniczny
D. Światłowód
Zakłócenia elektromagnetyczne stanowią poważny problem w komunikacji, zwłaszcza w środowiskach przemysłowych. Wybór niewłaściwego medium do transmisji danych w takich warunkach może prowadzić do poważnych problemów z jakością sygnału i stabilnością połączeń. Sygnał radiowy, mimo swojej elastyczności, jest bardzo podatny na zakłócenia, co czyni go nieodpowiednim wyborem w miejscach o dużym natężeniu ruchu elektromagnetycznego. Zasięg i jakość sygnału radiowego są często ograniczone przez przeszkody, co może skutkować spadkiem wydajności komunikacji. Kabel UTP, chociaż popularny w wielu zastosowaniach, również cierpi z powodu zakłóceń elektromagnetycznych, ponieważ działa na zasadzie przesyłania sygnału elektrycznego. W środowiskach z silnymi zakłóceniami może wystąpić zjawisko crosstalk, które prowadzi do utraty danych i błędów w komunikacji. Kabel telefoniczny, podobnie jak UTP, jest również narażony na te problemy, a jego zastosowanie w halach przemysłowych może skutkować niestabilnością połączeń. Warto pamiętać, że standardy branżowe, takie jak ANSI/TIA-568, podkreślają znaczenie właściwego doboru medium w zależności od warunków pracy, co w przypadku silnych zakłóceń jednoznacznie wskazuje na światłowód jako najlepsze rozwiązanie.

Pytanie 23

Z wykorzystaniem równania F_u = η ∙ S ∙ p oblicz powierzchnię S tłoka siłownika, w przypadku gdy siłownik generuje siłę czynną F_u = 1,6 kN przy ciśnieniu p = 1 MPa oraz współczynniku sprawności η = 0,8.

A. 2000 mm2
B. 1500 mm2
C. 3000 mm2
D. 1000 mm2
Wybór niewłaściwej odpowiedzi może wynikać z nieprawidłowego przekształcenia wzoru lub błędnego zrozumienia zależności między siłą, ciśnieniem a powierzchnią tłoka. Na przykład, przy wyborze opcji 1500 mm2, można pomyśleć, że siła jest wystarczająca, ale nie uwzględnia się współczynnika sprawności. W przypadku opcji 3000 mm2, być może nie rozumiano, że większa powierzchnia tłoka nie zawsze przekłada się na większą siłę, zwłaszcza przy tym samym ciśnieniu. Jeśli chodzi o odpowiedź 1000 mm2, mogło to wynikać z błędnego założenia, że ciśnienie jest wyższe, niż w rzeczywistości, co prowadzi do mylnego wniosku o mniejszej powierzchni. Te błędy myślowe często wynikają z nieścisłości w rozumieniu podstawowych zasad hydrauliki. W praktyce inżynieryjnej istotne jest, aby przy obliczeniach uwzględniać wszystkie istotne elementy, w tym współczynniki sprawności, aby uniknąć nieprawidłowych wyników. Kluczowe jest również dostosowanie obliczeń do specyfikacji technicznych i norm, które regulują projektowanie i zastosowanie siłowników hydraulicznych, by zapewnić ich efektywność oraz bezpieczeństwo w użytkowaniu.

Pytanie 24

W wyniku incydentu u rannego wystąpił krwotok zewnętrzny, a w ranie pozostało ciało obce. Co należy zrobić w pierwszej kolejności?

A. wezwać pomoc i nałożyć opatrunek uciskowy powyżej rany siedzącego rannego
B. założyć jałowy opatrunek na ranę i umieścić rannego z uniesionymi kończynami powyżej poziomu serca
C. nałożyć jałowy opatrunek na ranę siedzącego rannego i wezwać lekarza
D. usunąć ciało obce, położyć rannego i wezwać lekarza
Usunięcie obcego ciała z rany może się wydawać słuszne, ale w praktyce to dość ryzykowne. Może to prowadzić do większego krwawienia lub dodatkowych uszkodzeń tkanek. Tak naprawdę zasada pierwszej pomocy mówi, żeby unikać wszelkich działań, które mogą pogorszyć sytuację, w tym usuwania ciał obcych, które mogą działać jak „korki”, ograniczając krwotok. W przypadku krwotoku ważne jest, by zmniejszyć przepływ krwi, a najlepszym sposobem jest ucisk na ranę i uniesienie kończyn. Użycie opatrunku uciskowego to standard w pierwszej pomocy, bo skutecznie zmniejsza krwawienie i stabilizuje poszkodowanego. Nie zapominaj, że zawsze trzeba wezwać pomoc, ale najpierw skup się na podstawowych zasadach opieki nad poszkodowanym. Niezrozumienie tych rzeczy może spowodować opóźnienia w skutecznej pomocy i zwiększyć ryzyko zdrowotnych konsekwencji.

Pytanie 25

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Grafitowy
B. Silikonowy
C. Molibdenowy
D. Litowy
Wybór niewłaściwego smaru do gumowych elementów może prowadzić do ich uszkodzenia oraz znacznie skrócić ich żywotność. Smar grafitowy, choć ceniony w aplikacjach gdzie wymagana jest odporność na wysokie temperatury i obciążenia, nie jest odpowiedni dla gumy. Grafit może wnikać w strukturę gumy, co prowadzi do jej degradacji, a efekt smarowania nie jest w pełni skuteczny. Zastosowanie smaru molibdenowego również nie jest zalecane, ponieważ zawiera on cząsteczki metalu, które mogą uszkodzić delikatne struktury gumowe, a także nie zapewnia odpowiedniej elastyczności w porównaniu do smarów silikonowych. Z kolei smar litowy, chociaż popularny w wielu zastosowaniach przemysłowych, również nie jest optymalny dla gumy. Może on powodować twardnienie materiału, co jest szczególnie problematyczne w aplikacjach, gdzie elementy gumowe muszą zachować swoją elastyczność i zdolność do odkształcania. Zastosowanie niewłaściwych smarów często wynika z błędnych przekonań dotyczących ich uniwersalności, co może prowadzić do nieodwracalnych szkód. Używanie odpowiednich smarów, takich jak silikonowy, zgodnie z zaleceniami producentów i standardami branżowymi, jest kluczem do efektywnej konserwacji elementów gumowych.

Pytanie 26

Podwyższenie temperatury oleju w systemie hydraulicznym prowadzi do

A. zwiększenia lepkości oleju
B. zwiększenia efektywności układu
C. zmniejszenia objętości oleju
D. zmniejszenia lepkości oleju
Jak temperatura oleju w hydraulice rośnie, to jego lepkość spada. Fajnie, bo to zjawisko można zobaczyć nie tylko w olejach hydraulicznych, ale i w innych cieczach. Po prostu, im wyższa temperatura, tym cząsteczki oleju mają więcej energii i szybciej się poruszają. W praktyce, olej staje się bardziej płynny, co znaczy, że lepiej krąży w układzie hydraulicznym. Dzięki mniejszej lepkości łatwiej pokonywane są opory, co sprawia, że wszystko działa lepiej. W branży hydraulicznej dobrze jest pilnować temperatury oleju. Jak pracuje długo w wysokich temperaturach, to warto pomyśleć o wymianie lub użyciu innego oleju, który lepiej znosi upały. Te wszystkie standardy, jak ISO 4406 dotyczący czystości oleju, są mega ważne, by olej zachował swoje właściwości w trudniejszych warunkach.

Pytanie 27

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. dwutlenek węgla
B. piana gaśnicza
C. proszek gaśniczy
D. woda
Wybór środków gaśniczych jest niezwykle istotny w kontekście ochrony przeciwpożarowej i powiązanych z nią zagrożeń. W przypadku użycia wody, chociaż jest to popularny środek gaśniczy do zwalczania pożarów grupy A, czyli materiałów stałych, może być skrajnie nieodpowiedni w przypadku pożarów zagrażających sprzętowi elektronicznemu. Woda może spowodować zwarcia, a w konsekwencji jeszcze większe straty. Piana gaśnicza, która jest skuteczna w gaszeniu cieczy palnych, może również nie być odpowiednia do ochrony sprzętu komputerowego ze względu na ryzyko uszkodzenia elementów elektronicznych. Ponadto piana nie jest zalecana do gaszenia pożarów grupy C, ponieważ nie ma zdolności do odcięcia źródła tlenu w przypadku gazów palnych. Z kolei dwutlenek węgla, chociaż skuteczny w gaszeniu pożarów grupy B i C, nie jest uniwersalnym środkiem, ponieważ może nie zadziałać w przypadku pożarów materiałów stałych. Wybór niewłaściwego środka gaśniczego może prowadzić do poważnych konsekwencji, dlatego kluczowa jest znajomość klasyfikacji pożarów oraz właściwego doboru środków gaśniczych do konkretnej sytuacji. W praktyce, zrozumienie różnic pomiędzy tymi środkami pomaga w podjęciu świadomej decyzji podczas akcji gaśniczej oraz minimalizuje ryzyko wystąpienia dodatkowych strat.

Pytanie 28

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 5°38'
B. 2°49'
C. 22°30'
D. 11°15'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.

Pytanie 29

Element oznaczony symbolem BC 107 to tranzystor?

A. germanowy impulsowy
B. germanowy mocy
C. krzemowy w.cz.
D. krzemowy m.cz.
Odpowiedź 'krzemowy m.cz.' jest poprawna, ponieważ tranzystor BC 107 to tranzystor bipolarny wykonany z krzemu, który jest powszechnie stosowany w aplikacjach analogowych, zwłaszcza w obwodach wzmacniaczy niskosygnałowych. Krzem charakteryzuje się lepszymi właściwościami elektrycznymi w porównaniu do germanowych odpowiedników, co czyni go bardziej odpowiednim dla większości zastosowań. Tranzystor BC 107 ma maksymalne napięcie kolektor-emiter wynoszące 45V oraz maksymalny prąd kolektora do 100mA, co czyni go odpowiednim do niskonapięciowych zastosowań. Jego zastosowania obejmują wzmacniacze, przełączniki oraz zastosowania w układach cyfrowych. W kontekście praktycznym, użytkownicy powinni pamiętać, że dobór odpowiedniego tranzystora do aplikacji ma kluczowe znaczenie dla efektywności i niezawodności układu elektronicznego. Dlatego zawsze warto zapoznać się ze specyfikacjami technicznymi danego elementu przed jego zastosowaniem w projekcie.

Pytanie 30

Aby zachować odpowiedni poziom ciśnienia w systemach hydraulicznych, wykorzystuje się zawory

A. redukujące
B. dławiące
C. odcinające
D. rozdzielające
Zawory redukcyjne odgrywają kluczową rolę w zarządzaniu ciśnieniem w układach hydraulicznych. Ich głównym zadaniem jest obniżenie ciśnienia roboczego na określonym poziomie, co jest istotne w wielu zastosowaniach przemysłowych. Zawory te działają poprzez automatyczne regulowanie przepływu cieczy, co pozwala na utrzymanie stabilnych warunków pracy w układzie. Na przykład, w systemach hydraulicznych zasilających maszyny produkcyjne, zawory redukcyjne zapewniają, że ciśnienie nie przekracza wartości określonej przez producenta, co zapobiega uszkodzeniom i zwiększa bezpieczeństwo operacji. Dobre praktyki w branży hydraulicznej zalecają regularne sprawdzanie i konserwację zaworów redukcyjnych, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, zgodność z normami takimi jak ISO 4414 dotycząca bezpieczeństwa w hydraulice, podkreśla wagę stosowania właściwych zaworów w celu minimalizacji ryzyka awarii systemów hydraulicznych.

Pytanie 31

Proces oceny stanu technicznego elementu mechanicznego zaczyna się od

A. oględzin
B. montażu
C. pomiarów
D. obróbki
Oględziny są pierwszym krokiem w ocenie stanu technicznego podzespołów mechanicznych, ponieważ pozwalają na wstępną identyfikację ewentualnych uszkodzeń, zużycia czy nieprawidłowości. W trakcie oględzin należy zwrócić uwagę na widoczne oznaki uszkodzeń, takie jak pęknięcia, wgniecenia, korozja czy nieszczelności. Dobrą praktyką jest stosowanie standardów takich jak ISO 9001, które podkreślają znaczenie systematycznego podejścia do oceny stanu technicznego. W praktyce inżynierskiej, oględziny są często wspierane narzędziami wizualnymi, takimi jak mikroskopy, kamery inspekcyjne czy oświetlenie UV, co umożliwia dokładniejsze zidentyfikowanie problemów. Na przykład, w przypadku oceny stanu łożysk, oględziny mogą ujawnić wyciek smaru lub oznaki przegrzania, co jest kluczowe dla dalszych działań, takich jak pomiary czy planowanie konserwacji.

Pytanie 32

Elementy zespołów przeznaczone do montażu powinny być ułożone na stanowisku pracy zgodnie z

A. formą
B. poziomem skomplikowania
C. rozmiarem
D. kolejnością montażu
Części podzespołów przeznaczone do montażu powinny być uporządkowane na stanowisku pracy według kolejności montowania, ponieważ takie podejście znacząco zwiększa efektywność oraz bezpieczeństwo pracy. Przede wszystkim, właściwe zorganizowanie stanowiska roboczego według sekwencji montażu pozwala na płynne przechodzenie z jednego etapu do drugiego, co minimalizuje ryzyko pomyłek i opóźnień. Przykładowo, w przemyśle elektronicznym przy montażu komponentów na płytach PCB, kolejność ich umieszczania ma kluczowe znaczenie dla funkcjonowania całego układu. Umożliwia to także lepszą kontrolę jakości, ponieważ każdy etap montażu można łatwo nadzorować. Dobre praktyki w zakresie organizacji stanowisk pracy, takie jak zasady 5S, promują utrzymanie porządku i efektywną organizację miejsca pracy, co wspiera optymalizację procesów produkcyjnych i zapewnia zachowanie wysokich standardów bezpieczeństwa.

Pytanie 33

Jakie czynności są niezbędne do utrzymania sprawności urządzeń hydraulicznych?

A. Miesięczny demontaż oraz montaż pomp
B. Codzienna wymiana oleju
C. Regularna wymiana rozdzielacza
D. Regularna wymiana filtrów
Okresowa wymiana filtrów w urządzeniach hydraulicznych jest kluczowa dla zapewnienia ich sprawności oraz wydajności. Filtry hydrauliczne mają za zadanie zatrzymywać zanieczyszczenia, które mogą uszkodzić pompy, zawory oraz inne elementy układu hydraulicznego. Zanieczyszczenia te mogą pochodzić z różnych źródeł, takich jak procesy tarcia wewnętrznych komponentów, a także z zewnątrz, na przykład w wyniku nieprawidłowego napełniania systemu olejem. Regularna wymiana filtrów zgodnie z zaleceniami producentów oraz standardami branżowymi, takimi jak ISO 4406, pozwala na minimalizację ryzyka awarii oraz wydłużenie żywotności całego systemu hydraulicznego. Przykładem dobrych praktyk jest wprowadzenie harmonogramu konserwacji, który uwzględnia częstotliwość wymiany filtrów, co pozwala na monitorowanie stanu oleju oraz zanieczyszczeń w systemie. Taka praktyka jest szczególnie ważna w zastosowaniach przemysłowych, gdzie nieprzewidziane przestoje mogą generować znaczne straty finansowe.

Pytanie 34

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Gaussotron.
C. Warystor.
D. Termistor.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 35

Filtr o charakterystyce pasmowo-zaporowej

A. tłumi sygnały o częstotliwościach w obrębie określonego pasma częstotliwości.
B. przepuszcza sygnały w zakresie określonego pasma częstotliwości.
C. przepuszcza sygnały o niskich częstotliwościach.
D. tłumi sygnały o niskich częstotliwościach.
Filtr pasmowo-zaporowy to urządzenie elektroniczne, które ma na celu tłumienie sygnałów o częstotliwościach znajdujących się w określonym pasmie, co czyni go niezwykle przydatnym w różnych zastosowaniach inżynieryjnych. Działa on na zasadzie eliminacji zakłóceń, które mogą wpływać na jakość sygnału w systemach komunikacyjnych, audio oraz telewizyjnych. Przykładami zastosowania filtrów pasmowo-zaporowych są systemy audio, gdzie eliminuje się szumy z zakresu częstotliwości, które nie są potrzebne dla jakości dźwięku, oraz w telekomunikacji, gdzie pozwala to na poprawę jakości odbioru sygnałów bez zakłóceń. W kontekście standardów branżowych, filtry pasmowo-zaporowe są zgodne z normami ITU (Międzynarodowa Unia Telekomunikacyjna) i IEEE, co zapewnia ich efektywność oraz kompatybilność w różnych systemach. Warto także pamiętać, że konstrukcja tych filtrów może być zrealizowana zarówno w technologii analogowej, jak i cyfrowej, co zwiększa ich wszechstronność w nowoczesnych aplikacjach.

Pytanie 36

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozchodzenie się mgły olejowej w instalacji
B. odfiltrowanie cząstek stałych z powietrza
C. rozbijanie kropli oleju strumieniem sprężonego powietrza
D. spływ kondensatu wodnego do najniższego punktu instalacji
Zrozumienie roli nachylenia w instalacjach pneumatycznych jest kluczowe, jednak niepoprawne odpowiedzi sugerują różne koncepcje dotyczące funkcji kondensatu i jego zarządzania. Odpowiedź wskazująca na rozbijanie kropel oleju strumieniem sprężonego powietrza nie uwzględnia faktu, że olej wchodzi w interakcję z kondensatem, co może prowadzić do powstawania szkodliwych emulsji, które są trudne do usunięcia. Ponadto, rozchodzenie się mgły olejowej w instalacji nie jest celem nachylenia rur; pożądane jest, aby olej był skutecznie odfiltrowywany, a nie rozprzestrzeniany w instalacji. W kontekście odfiltrowania cząstek stałych, nachylenie nie ma bezpośredniego wpływu na proces filtracji, który zależy od użycia odpowiednich filtrów i separatorów. W praktyce, błędne myślenie dotyczące tych koncepcji może prowadzić do nieefektywności w systemie, co w dłuższej perspektywie może skutkować zwiększonymi kosztami eksploatacji i ryzykiem uszkodzeń instalacji. Zgodnie z zasadami dobrych praktyk, należy regularnie monitorować i konserwować systemy pneumatyczne, aby zapewnić ich prawidłowe funkcjonowanie i uniknąć problemów związanych z kondensatem.

Pytanie 37

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Filtr
B. Smarownica
C. Zawór redukcyjny
D. Sprężarka
Wydaje mi się, że wybranie sprężarki jako części zespołu przygotowania powietrza to trochę nieporozumienie. Sprężarka jest tym, co generuje sprężone powietrze, a zespół przygotowania to trochę inna sprawa, bo chodzi o obróbkę tego powietrza przed jego użyciem w przemyśle. Zawór redukcyjny to kluczowa sprawa, bo reguluje ciśnienie powietrza, co jest niezbędne do prawidłowego działania maszyn. Filtry mają za zadanie usunąć niechciane cząstki i wodę, co jest istotne, żeby nie uszkodzić urządzeń. Smarownice też są ważne, bo nawilżają powietrze, a to potrzebne w systemach, gdzie smarowanie musi być precyzyjne. Wszystkie te elementy są naprawdę częścią przygotowania powietrza, a ich funkcje mają ogromne znaczenie dla efektywności i bezpieczeństwa operacji. Nie można tego bagatelizować, bo złe zarządzanie może prowadzić do awarii.

Pytanie 38

Jaką z wymienionych czynności należy regularnie przeprowadzać w trakcie konserwacji systemu pneumatycznego?

A. Usuwać kondensat wodny
B. Wymieniać szybkozłącza
C. Regulować ciśnienie powietrza
D. Wymieniać rury pneumatyczne
Usuwanie kondensatu wodnego z układu pneumatycznego jest kluczową czynnością konserwacyjną, która zapobiega wielu problemom technicznym. Kondensat wodny, który powstaje w wyniku różnicy temperatury między powietrzem a elementami układu, może prowadzić do korozji, uszkodzeń uszczelek oraz obniżenia efektywności działania systemu. Regularne usuwanie kondensatu jest nie tylko zalecane, ale wręcz wymagane przez standardy branżowe, takie jak ISO 8573, które definiują jakość sprężonego powietrza. Przykładem praktycznego zastosowania tej wiedzy jest instalacja odpowiednich separatorów kondensatu w systemie, które automatycznie usuwają wodę, minimalizując ryzyko jej nagromadzenia. Dodatkowo, regularne przeglądy układu oraz kontrola poziomu kondensatu w zbiornikach powinny być integralną częścią planu konserwacji, co pozwala na wczesne wykrywanie potencjalnych problemów i zapewnienie ciągłości pracy urządzeń.

Pytanie 39

Urządzenie, którego dane techniczne przedstawiono w tabeli,

Ciecz roboczaOlej mineralny
WydajnośćDm3/min47 przy n=1450 min-1, p=1 MPa
Ciśnienie na wlocieMPa-0,02 (podciśnienie) do 0,5 (nadciśnienie)
Ciśnienie na wylocieMPamax. 10
Ciśnienie przeciekówMPamax. 0,2
Moment obrotowyNmmax. 235
Prędkość obrotowaobr/min1 000 do 1 800
Optymalna temperatura pracyK313÷338
Filtracjaμm16
A. otwiera i zamyka przepływ oleju.
B. steruje kierunkiem przepływu oleju.
C. utrzymuje stałe ciśnienie niezależnie od kierunku przepływu oleju.
D. wytwarza strumień oleju w układach i urządzeniach hydraulicznych.
Wybrana odpowiedź jest poprawna, ponieważ urządzenie opisane w tabeli to pompa hydrauliczna, która ma na celu wytwarzanie strumienia oleju w układach hydraulicznych. Wydajność na poziomie 47 dm³/min oraz ciśnienie robocze 1 MPa wskazują na typowe parametry działania pomp hydraulicznych. W praktyce, pompy te są kluczowe w wielu zastosowaniach, takich jak systemy hydrauliczne w maszynach budowlanych, pojazdach, a także w przemyśle. Dobrą praktyką jest regularne monitorowanie parametrów pracy pompy, co pozwala na wczesne wykrywanie usterek i zapewnia długotrwałą efektywność systemu. Ponadto, zgodnie z normami hydraulicznymi, ważne jest, aby pompy były dobierane do konkretnych aplikacji, co zwiększa ich wydajność i bezpieczeństwo działania.

Pytanie 40

Czujnik Pt 100 pokazany na ilustracji służy do pomiaru

A. ciśnienia cieczy
B. temperatury powietrza
C. napięcia elektrycznego
D. objętości cieczy
Podczas analizy dostępnych odpowiedzi warto zauważyć, że czujnik Pt 100 jest nieodpowiedni do pomiaru napięcia elektrycznego, ciśnienia cieczy ani objętości cieczy. Czujnik napięcia opiera się na zupełnie innych zasadach działania, gdzie wykorzystuje się różnice potencjałów elektrycznych, a nie zmiany oporności materiału. W przypadku ciśnienia cieczy, pomiary odbywają się zazwyczaj za pomocą manometrów lub czujników piezorezystancyjnych, które reagują na siłę wywieraną przez ciecz na przetwornik. Z kolei pomiar objętości cieczy zazwyczaj przeprowadza się przy użyciu przepływomierzy, które mierzą ilość cieczy przepływającej przez określony punkt w jednostce czasu, a nie poprzez analizę oporności materiału. Zrozumienie fundamentalnych właściwości czujników pomiarowych jest kluczowe, ponieważ różne typy czujników są projektowane do specyficznych zastosowań, które wymagają unikalnych cech. Wybór nieodpowiednich czujników do danego zadania prowadzi do błędnych wyników pomiarów i może skutkować poważnymi konsekwencjami w systemach, gdzie precyzja jest kluczowa, jak w medycynie czy przemyśle chemicznym. Dlatego istotne jest, aby przy wyborze odpowiednich czujników kierować się ich zasadą działania oraz przeznaczeniem, co jest zgodne z dobrymi praktykami w zakresie inżynierii pomiarowej.