Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 17 lipca 2025 19:33
  • Data zakończenia: 17 lipca 2025 19:52

Egzamin niezdany

Wynik: 17/40 punktów (42,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie opisuje parametr określany jako liczba stopni swobody?

A. Manipulator
B. Prasa hydrauliczna
C. Pralka automatyczna
D. Kserokopiarka
Manipulator to urządzenie, które charakteryzuje się liczbą stopni swobody, co oznacza, że może poruszać się w wielu kierunkach i na różnych płaszczyznach. Liczba ta wskazuje, ile niezależnych ruchów manipulator może wykonać, co jest kluczowe w kontekście automatyzacji i robotyki. Przykładowo, w robotyce przemysłowej manipulatory stosowane są do precyzyjnego montażu, gdzie wymagana jest zdolność do ruchu w wielu osiach. Manipulatory z sześcioma stopniami swobody potrafią wykonywać ruchy podobne do ruchów ludzkiej ręki, co niezwykle zwiększa ich funkcjonalność. Ważne jest, aby projektowanie robotów uwzględniało standardy ergonomiczne oraz normy bezpieczeństwa, takie jak ISO 10218 dotyczące robotów przemysłowych, aby zapewnić ich efektywność i bezpieczeństwo w użytkowaniu. Wiedza na temat liczby stopni swobody jest kluczowa dla inżynierów i specjalistów zajmujących się automatyzacją, ponieważ pozwala na optymalne dobieranie i programowanie manipulatorów do konkretnych zadań produkcyjnych.

Pytanie 2

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnika mocy w układach napędów elektrycznych, o danych znamionowych zamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 230 V AC
B. 230 V DC
C. 400 V AC
D. 400 V DC
Poprawna odpowiedź to 400 V AC, co wynika z danych znamionowych regulatora DCRK 12, które wskazują na napięcie zasilania w zakresie 380...415V, 50/60Hz. W zastosowaniach przemysłowych, napięcia te są powszechnie stosowane w układach zasilających maszyny oraz urządzenia elektryczne. Napięcie 400 V AC jest standardem w Europie i wielu innych krajach, co czyni je odpowiednim wyborem dla aplikacji przemysłowych. Wartością wyjściową tego regulatora może być również dostosowanie do zmiennych warunków pracy, co jest istotne w kontekście optymalizacji współczynnika mocy. Znajomość standardowych napięć zasilających jest niezbędna dla inżynierów, aby projektować i wdrażać systemy zasilania, które są zarówno efektywne, jak i zgodne z normami bezpieczeństwa. W praktyce, korzystanie z odpowiednich napięć zasilających wpływa na stabilność i długowieczność sprzętu, co jest kluczowe w przemyśle.

Pytanie 3

Aby umożliwić wymianę informacji między urządzeniami sieciowymi, niezbędne jest zaangażowanie wszystkich elementów w sieci komunikacyjnej o określonej topologii

A. gwiazdy
B. pierścienia
C. magistrali
D. drzewa
Topologia pierścienia wymaga, aby każde urządzenie w sieci brało udział w przesyłaniu danych, co czyni ją unikalną w porównaniu do innych topologii. W sieci opartej na tej topologii wszystkie urządzenia są połączone w zamknięty krąg, co oznacza, że dane poruszają się w jednym kierunku, przechodząc przez każde urządzenie aż do dotarcia do końcowego odbiorcy. Przykładem zastosowania topologii pierścienia mogą być sieci token ring, które były popularne w latach 80. i 90. XX wieku. Dzięki temu, że każde urządzenie może przekazywać dane dalej, zwiększa się efektywność komunikacji, ale także wzrasta ryzyko awarii całej sieci w przypadku przerwania połączenia. Dlatego w projektowaniu takich sieci zaleca się stosowanie dodatkowych rozwiązań, jak np. mechanizmy detekcji błędów i redundancji, aby zminimalizować skutki ewentualnych awarii.

Pytanie 4

W jakim celu stosuje się enkodery w systemach automatyki?

A. Pomiar przemieszczenia i prędkości
B. Poprawa jakości dźwięku
C. Redukcja zużycia energii
D. Zwiększanie mocy silnika
Chociaż wydaje się, że enkodery mogą wpływać na różne aspekty działania systemów, nie zwiększają one mocy silnika. Moc silnika jest określana przez jego konstrukcję oraz zasilanie i nie jest bezpośrednio kontrolowana przez enkodery. Dlatego myślenie, że enkoder mógłby zwiększyć moc, jest błędnym przekonaniem. Co więcej, enkodery same w sobie nie redukują zużycia energii. Ich funkcją jest dostarczanie informacji o położeniu i prędkości, a nie bezpośrednia optymalizacja zużycia energii. Jednak dokładne dane z enkoderów mogą pomóc systemom sterującym w bardziej efektywnym zarządzaniu silnikami, co może pośrednio prowadzić do oszczędności energii. Ostatnia opcja, poprawa jakości dźwięku, jest całkowicie niepowiązana z funkcją enkoderów. Enkodery nie mają wpływu na jakość dźwięku, ponieważ ich zadaniem jest przetwarzanie sygnałów mechanicznych na elektryczne do precyzyjnego pomiaru ruchu, a nie przetwarzanie dźwięku. Te błędne przekonania mogą wynikać z niedokładnego zrozumienia funkcji i zastosowań enkoderów w systemach automatyki, które są bardziej złożone niż mogłoby się wydawać na pierwszy rzut oka.

Pytanie 5

Z jakiego systemu zasilania powinno korzystać urządzenie mechatroniczne, jeśli na schemacie sieci energetycznej zaznaczono symbol 400 V ~ 3/N/PE?

A. TT
B. TI
C. TN - S
D. TN - C
Wybór układów TT, TI i TN-C nie jest odpowiedni w kontekście zasilania urządzenia mechatronicznego, gdyż każdy z tych układów ma swoje ograniczenia, które nie spełniają wymagań przedstawionych w pytaniu. Układ TT, w którym odbiorca posiada niezależne uziemienie, może prowadzić do problemów z stabilnością zasilania, zwłaszcza w sytuacjach, gdy wystąpią różnice potencjałów pomiędzy uziemieniem transformatora a uziemieniem odbiorcy. Takie różnice mogą powodować niebezpieczne warunki pracy dla urządzeń mechatronicznych, które wymagają precyzyjnego i stabilnego napięcia. Z kolei układ TI, czyli sieć izolowana, jest stosunkowo rzadko używany w zasilaniu urządzeń mechatronicznych, ponieważ brak ziemi neutralnej sprawia, że w przypadku awarii, nie ma możliwości skutecznego odłączenia urządzenia. Ostatecznie, układ TN-C, który łączy przewody neutralne i ochronne, nie spełnia standardów bezpieczeństwa wymaganych dla nowoczesnych aplikacji, w których potrzebna jest separacja tych przewodów. Taki stan rzeczy może prowadzić do niebezpiecznych sytuacji, zwłaszcza w obecności zakłóceń czy awarii sprzętu. Dlatego konieczne jest stosowanie układu TN-S, aby zapewnić odpowiedni poziom bezpieczeństwa oraz niezawodności działania urządzeń mechatronicznych.

Pytanie 6

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Upload
B. Download
C. Write
D. Erase Memory
W kontekście programowania sterowników PLC, wybór operacji, które nie są związane z przesyłaniem programu z komputera do PLC, może prowadzić do poważnych nieporozumień. Opcja 'Upload' oznacza pobranie programu z PLC do komputera, co jest odwrotnością operacji, która jest wymagana w tym przypadku. Operatorzy często mylą te dwa terminy, co może skutkować utratą danych oraz niezamierzonymi zmianami w programie sterującym. Z kolei wybór 'Write' może być mylący, ponieważ nie precyzuje, że chodzi o przesyłanie kodu do PLC; w praktyce 'Write' może odnosić się do różnych typów operacji zapisu, zarówno w kontekście pamięci, jak i konfigurowania parametrów. Co więcej, operacja 'Erase Memory' to całkowite usunięcie danych z pamięci sterownika PLC i jest zupełnie nieodpowiednia w tym kontekście, ponieważ nie tylko nie przesyła programów, ale może prowadzić do poważnych konsekwencji, takich jak utrata krytycznych danych operacyjnych. Typowym błędem w podejściu do tego zagadnienia jest zrozumienie, że wszystkie te operacje są związane z przesyłaniem danych, podczas gdy każde z nich ma swoje specyficzne zastosowanie i konsekwencje. Zrozumienie różnicy między tymi operacjami jest kluczowe dla skutecznego programowania i zarządzania systemami automatyzacji.

Pytanie 7

Jak często powinny być realizowane przeglądy techniczne urządzeń oraz systemów mechatronicznych?

A. Systematycznie, co pięć lat.
B. Przynajmniej raz do roku.
C. Co dwa lata.
D. Zgodnie z ustalonym harmonogramem przeglądów.
Odpowiedź 'Zgodnie z planem przeglądów' jest prawidłowa, ponieważ przeglądy techniczne urządzeń i systemów mechatronicznych powinny być realizowane zgodnie z ustalonym harmonogramem, który najczęściej jest określany przez producenta. Plan przeglądów uwzględnia specyfikę działania danego urządzenia, jego intensywność eksploatacji oraz warunki środowiskowe, w jakich pracuje. Przykładowo, w przypadku systemów automatyki przemysłowej, regularne przeglądy mogą obejmować sprawdzenie stanu czujników, przetestowanie oprogramowania oraz kontrolę elementów mechanicznych. Dobre praktyki branżowe wskazują, że przestrzeganie ustalonego planu przeglądów nie tylko zapewnia niezawodność i długowieczność systemów, ale także ma kluczowe znaczenie dla bezpieczeństwa pracy. Dodatkowo, stosowanie się do zasad wynikających z norm ISO, takich jak ISO 9001, podkreśla znaczenie regularnej konserwacji i przeglądów w systemach zarządzania jakością.

Pytanie 8

Jakie parametry są najczęściej regulowane w systemach mechatronicznych z wykorzystaniem regulacji PID?

A. Wilgotność, napięcie, waga
B. Dźwięk, drgania, przyspieszenie
C. Prędkość, temperatura, ciśnienie
D. Kolor, natężenie światła, zapach
Regulacja PID, czyli proporcjonalno-całkująco-różniczkująca, jest jednym z najczęściej stosowanych algorytmów sterowania w mechatronice i automatyce. Jest używana do precyzyjnego utrzymania zadanych wartości parametrów procesowych, takich jak prędkość, temperatura czy ciśnienie. Przykładowo, w przemyśle produkcyjnym PID może kontrolować temperaturę pieca poprzez regulację dopływu paliwa lub prędkość taśmociągu poprzez kontrolę silnika napędowego. PID działa na zasadzie minimalizacji różnicy (błędu) pomiędzy wartością zadaną a rzeczywistą, wykorzystując trzy składowe: proporcjonalną, całkującą i różniczkującą, co pozwala na szybkie i stabilne osiągnięcie wartości zadanej. Algorytmy PID są powszechnie stosowane ze względu na swoją prostotę, efektywność i zdolność do adaptacji w różnych warunkach, a także na bazie ich solidnego wsparcia teoretycznego i łatwości implementacji w systemach cyfrowych.

Pytanie 9

Jakie urządzenie powinno być użyte, aby zredukować natężenie prądu rozruchowego silnika indukcyjnego, który napędza systemy mechatroniczne?

A. Układ miękkiego startu
B. Sterownik PLC
C. Włącznik z opóźnieniem
D. Ochrona przed przeciążeniem
Wybór zabezpieczenia nadprądowego jako sposobu na ograniczenie prądu rozruchowego silnika indukcyjnego jest chybiony. Zabezpieczenia te mają na celu ochronę obwodów przed nadmiernym prądem, ale nie są w stanie kontrolować prądu rozruchowego, który jest zjawiskiem chwilowym. Zamiast tego, ich zadaniem jest odłączenie zasilania w momencie, gdy prąd przekroczy określoną wartość, co może prowadzić do niepotrzebnych przerw w pracy urządzeń. Ponadto, stosowanie sterownika PLC w kontekście redukcji prądu rozruchowego również nie jest skutecznym rozwiązaniem. PLC są zaprojektowane do zarządzania procesami automatyzacji, ale same w sobie nie mają mechanizmów ograniczających prąd rozruchowy. Włącznik z opóźnieniem, mimo że może opóźniać załączenie urządzeń, nie wpływa na natężenie prądu w chwili uruchomienia silnika. Te błędne koncepcje mogą wynikać z niepełnego zrozumienia działania silników oraz ich charakterystyki pracy. Kluczem do skutecznego zarządzania prądem rozruchowym jest zastosowanie odpowiednich technologii, takich jak układ miękkiego startu, który w sposób aktywny kontroluje proces uruchamiania i minimalizuje niekorzystne skutki dużych prądów w momencie startu. W praktyce, brak właściwego podejścia do tego problemu może prowadzić do uszkodzeń sprzętu, wzrostu kosztów eksploatacji oraz obniżenia efektywności całego systemu.

Pytanie 10

Jaką z wymienionych czynności można przeprowadzić podczas pracy silnika prądu stałego?

A. Dokręcić śruby mocujące silnik do podłoża
B. Wyczyścić łopatki wentylatora
C. Przeczyścić odpowiednimi środkami elementy wirujące silnika
D. Wymienić szczotki komutatora
Dokręcanie śrub mocujących silnik do podłoża w czasie pracy silnika prądu stałego jest czynnością bezpieczną, ponieważ nie wpływa na działanie samego silnika ani nie zagraża jego integralności. W praktyce, silnik powinien być odpowiednio zamocowany, aby uniknąć drgań i potencjalnych uszkodzeń. W sytuacjach, gdy silnik pracuje, można przeprowadzać różne czynności, które nie ingerują w jego układ elektryczny czy mechaniczny. W przypadku niewłaściwego zamocowania, silnik może ulegać uszkodzeniom mechanicznym, co w dłuższej perspektywie prowadzi do awarii. Dlatego dobrym zwyczajem jest regularne sprawdzanie mocowania silnika oraz ich stanu, co jest zgodne z najlepszymi praktykami w zakresie konserwacji. Warto również zaznaczyć, że zgodnie z normami bezpieczeństwa, wszelkie inne prace elektryczne powinny być wykonywane wyłącznie po odłączeniu urządzenia od zasilania, co pozwala uniknąć poważnych wypadków.

Pytanie 11

Jakiego czujnika należy używać do obserwacji temperatury uzwojeń silnika elektrycznego?

A. Tensometru
B. Termistora
C. Warystora
D. Hallotronu
Termistor jest elementem, który charakteryzuje się znaczną zmianą oporu elektrycznego w zależności od temperatury. Dzięki temu, jest idealnym czujnikiem do monitorowania temperatury uzwojeń silników elektrycznych, gdzie precyzyjne pomiary są kluczowe dla ich prawidłowego działania. W zastosowaniach przemysłowych, gdzie silniki elektryczne pracują w trudnych warunkach, termistory są wykorzystywane do zabezpieczania przed przegrzaniem, co może prowadzić do uszkodzenia silnika. Dobrą praktyką w branży jest stosowanie termistorów w obwodach ochronnych, co pozwala na automatyczne wyłączanie silnika w przypadku osiągnięcia krytycznej temperatury. Dzięki swojej prostocie i niezawodności, termistory są szeroko stosowane w różnych aplikacjach, takich jak klimatyzacja, wentylacja oraz w systemach automatyki przemysłowej. Warto również zauważyć, że termistory mogą być stosowane w różnych konfiguracjach, co czyni je wszechstronnym rozwiązaniem w monitorowaniu temperatury. Ich zastosowanie przyczynia się do zwiększenia efektywności energetycznej oraz niezawodności urządzeń elektrycznych.

Pytanie 12

Podczas czynności konserwacyjnych wykryto niewystarczający poziom sprężania powietrza w sprężarce tłokowej. Który z wymienionych komponentów sprężarki z pewnością nie uległ zniszczeniu?

A. Korbowód tłoka
B. Zawór ssący
C. Gładź cylindra
D. Uszczelka głowicy
Korbowód tłoka jest kluczowym elementem układu tłokowego sprężarki, ale jego stan nie wpływa bezpośrednio na poziom sprężania powietrza. Działa on jako przekaźnik ruchu, przekształcając ruch obrotowy wału korbowego na ruch posuwisty tłoka. W przypadku niskiego poziomu sprężania, przyczyny mogą leżeć w innych elementach, takich jak zawory lub gładź cylindra. Na przykład, zużycie gładzi cylindra może prowadzić do nieszczelności, co skutkuje obniżonym sprężaniem. Korbowód, będąc elementem mechanicznym, jest bardziej odporny na uszkodzenia, jeśli nie jest obciążony innymi problemami, takimi jak rozszczelnienie. Dobra praktyka w konserwacji sprężarek zaleca regularne kontrole stanu korbowodu oraz jego smarowanie, aby zminimalizować ryzyko uszkodzeń. Korbowód tłoka powinien być również sprawdzany pod kątem luzów, aby zapewnić efektywność całego układu sprężania.

Pytanie 13

W systemie regulacji dwustanowej zauważono zbyt częste wahania wokół wartości docelowej. W celu redukcji częstotliwości tych wahań, konieczne jest w regulatorze cyfrowym

A. zmniejszyć zakres histerezy
B. zmniejszyć wartość sygnału zadawania
C. zwiększyć zakres histerezy
D. zwiększyć wartość sygnału regulacyjnego
Wydaje mi się, że wybór niepoprawnej odpowiedzi może wynikać z pewnego nieporozumienia na temat tego, jak działa histereza w regulatorach dwustanowych. Zmniejszenie szerokości histerezy sprawia, że system staje się bardziej czuły na małe zmiany, co prowadzi do częstszych zmian stanu wyjścia. Można powiedzieć, że to trochę jakby zamiast pomagać, jeszcze bardziej komplikuje sytuację, bo prowadzi do nadmiernej reakcji na małe fluktuacje. To z kolei zwiększa oscylacje zamiast je redukować. Poza tym, zmniejszenie histerezy jest po prostu sprzeczne z podstawowymi zasadami regulacji. Stabilność systemu osiągamy też przez odpowiednie dostrojenie parametrów regulatora. Większa amplituda sygnału regulującego też nie rozwiąże problemu, bo jedynie zwiększy zakres zmian, co może powodować jeszcze większy chaos. Zmniejszenie wartości sygnału zadającego może wydawać się rozsądne, ale też nie pomoże w pozbyciu się oscylacji, tylko wpłynie na to, jak wysoko czy nisko działa regulator. W praktyce inżynieryjnej ważne jest, żeby unikać sytuacji, które mogą sprawić, że system będzie bardziej wrażliwy na zakłócenia, bo to prowadzi do niechcianych oscylacji.

Pytanie 14

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).
A. Za duża moc silnika.
B. Za mała częstotliwość.
C. Za małe obciążenie na wale silnika.
D. Za duża temperatura otoczenia.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 15

Który z wymienionych fragmentów kodu assemblera wskazuje na realizację operacji dodawania przez procesor?

A. MUL
B. ADD
C. SUB
D. DIV
Kod 'ADD' jest skrótem od angielskiego słowa 'addition', co w kontekście programowania assemblerowego oznacza operację dodawania. W zasadzie instrukcja ta instruuje procesor, aby dodał wartości znajdujące się w dwóch rejestrach lub pomiędzy rejestrami a pamięcią. Przykładowo, jeśli mamy rejestry R1 i R2, używając instrukcji 'ADD R1, R2', procesor doda wartość z R2 do wartości w R1 i zapisze wynik z powrotem w R1. To podejście jest kluczowe w obliczeniach arytmetycznych i w wielu algorytmach przetwarzania danych. Dodatkowo, stosowanie instrukcji 'ADD' w kodzie assemblera jest zgodne z najlepszymi praktykami w programowaniu niskopoziomowym, gdzie precyzyjne zarządzanie operacjami arytmetycznymi jest niezbędne dla wydajności aplikacji. Użycie tej instrukcji jest również powszechne w kontekście optymalizacji kodu, gdzie reducowanie liczby operacji arytmetycznych przekłada się na szybsze działanie programów.

Pytanie 16

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Dwustawny
B. Proporcjonalny
C. Całkujący
D. Różniczkujący
Wybór odpowiedzi inne niż "dwustawny" wskazuje na pewne nieporozumienia dotyczące sposobu działania różnych typów regulatorów. Regulator całkujący jest stosowany w systemach, gdzie istotne jest uwzględnienie długu regulacyjnego, co czyni go nieodpowiednim w przypadku nieciągłej regulacji temperatury. Jego działanie polega na ciągłym dostosowywaniu sygnału wyjściowego na podstawie skumulowanej różnicy między wartością zadaną a rzeczywistą, co nie jest skuteczne przy prostym włączaniu i wyłączaniu. Regulator różniczkujący z kolei reaguje na szybkość zmian, co również nie jest istotne w kontekście systemu, który wymaga jedynie dwóch stanów. Z kolei regulator proporcjonalny, który dostosowuje sygnał wyjściowy w oparciu o bieżące odchylenie wartości, także nie pasuje do opisanej sytuacji, ponieważ nie zapewnia jednoznacznej kontroli temperatury w trybie on/off. Często przyczyną błędnych odpowiedzi jest mylenie charakterystyk różnych typów regulatorów z ich praktycznymi zastosowaniami w systemach automatyki. Kluczowe jest zrozumienie, że regulator dwustawny najlepiej odpowiada wymaganiom nieciągłego sterowania, co odróżnia go od pozostałych typów, które są bardziej odpowiednie w kontekście regulacji ciągłej.

Pytanie 17

W przypadku siłownika zasilanego powietrzem pod ciśnieniem równym 8 barów, który jest w stanie wykonać maksymalnie nmax = 50 cykli/min, a w trakcie jednego cyklu zużywa 1,4 litra powietrza, jakie powinny być parametry sprężarki do jego zasilania?

A. Wydajność 60 l/min, ciśnienie maksymalne 1,0 MPa
B. Wydajność 80 l/min, ciśnienie maksymalne 0,7 MPa
C. Wydajność 80 l/min, ciśnienie maksymalne 1,0 MPa
D. Wydajność 60 l/min, ciśnienie maksymalne 0,7 MPa
W przypadku niepoprawnych odpowiedzi kluczowym błędem często jest niedoszacowanie wymagań dotyczących wydajności sprężarki. Odpowiedzi z wydajnością 60 l/min są niewystarczające, ponieważ całkowite zużycie powietrza przez siłownik wynosi 70 l/min, co oznacza, że sprężarka o wydajności 60 l/min nie będzie w stanie zaspokoić potrzeb siłownika, prowadząc do jego niewłaściwej pracy. Dla prawidłowego funkcjonowania urządzeń pneumatycznych, sprężarka powinna mieć wydajność wyższą od maksymalnego zapotrzebowania, co w tym przypadku nie zostało uwzględnione. Również błędnym podejściem jest ustalanie ciśnienia maksymalnego na poziomie 0,7 MPa. Przy ciśnieniu roboczym siłownika wynoszącym 8 barów (0,8 MPa), sprężarka musi oferować ciśnienie nieco wyższe, aby zapewnić odpowiednią wydajność. Ustalenie ciśnienia zbyt niskiego wpływa na efektywność działania całego systemu oraz może prowadzić do uszkodzeń siłowników z powodu braku odpowiedniego ciśnienia. Kadra techniczna powinna zatem pamiętać o konieczności przewidywania zapotrzebowania oraz stosowania marginesu bezpieczeństwa, co jest kluczowe w projektowaniu systemów pneumatycznych. W praktyce, zawsze warto stosować się do wytycznych producentów oraz norm branżowych, aby zminimalizować ryzyko awarii i zapewnić ciągłość produkcji.

Pytanie 18

W programie PLC sygnały niskie lub wysokie przypisane m.in. do wejść i wyjść dyskretnych powinny być definiowane jako zmienne w formacie

A. D
B. B
C. b
D. W
Sformułowanie odpowiedzi jako 'B', 'D' lub 'W' wskazuje na niepoprawne zrozumienie podstawowych koncepcji dotyczących reprezentacji danych w systemach PLC. Odpowiedzi te odnoszą się do jednostek niosących większą ilość danych, takich jak bajty, słowa czy podwójne słowa. Każda z tych jednostek składa się z wielu bitów, co czyni je niewłaściwymi do reprezentowania prostych stanów niski/wysoki. Użycie bajtów i słów jest typowe w kontekście przechowywania bardziej złożonych informacji, jak liczby całkowite czy tekst, a nie pojedyncze stany dyskretne. W praktyce, bity powinny być używane do stanu wejść i wyjść w systemach PLC, ponieważ ich binarna natura idealnie sprawdza się w prostych zadaniach logicznych, takich jak włączanie i wyłączanie urządzeń. Właściwe podejście do reprezentacji danych jest kluczowe dla optymalizacji wydajności systemu oraz efektywności jego działania. Omyłkowe przypisanie stanów do jednostek wyższych, takich jak bajty, prowadzi do nadmiernego zużycia pamięci oraz utrudnia programowanie i diagnostykę, co jest niezgodne z najlepszymi praktykami przemysłowymi. Zrozumienie, że bity są podstawową jednostką informacji w systemach cyfrowych, jest kluczowe dla skutecznego projektowania i implementacji systemów automatyki.

Pytanie 19

Jakiego symbolu literowego zgodnego z normą IEC 61131 używa się w programie sterującym do wskazywania komórek pamięci danych w programowalnym sterowniku?

A. W
B. Q
C. M
D. I
Wybór symboli literowych 'I', 'Q' lub 'W' zamiast 'M' może prowadzić do poważnych nieporozumień w kontekście adresowania danych w programowalnych sterownikach logicznych. Symbol 'I' oznacza wejścia, co odnosi się do sygnałów, które są odczytywane przez sterownik PLC z zewnętrznych źródeł, takich jak czujniki czy przyciski. W kontekście programowania nie jest to odpowiednie dla adresowania komórek pamięci, które są przeznaczone do przechowywania danych operacyjnych. Z kolei symbol 'Q' odnosi się do wyjść, czyli sygnałów generowanych przez PLC, które kontrolują urządzenia wykonawcze, takie jak silniki czy zawory. Wybór tego symbolu również nie jest uzasadniony w kontekście pytania, ponieważ nie dotyczy on pamięci, lecz wyników operacji. Symbol 'W' wskazuje na słowa, jednak nie jest on związany bezpośrednio z komórkami pamięci w takim sensie, jak 'M' to definiuje. Użycie błędnych symboli literowych wskazuje na brak zrozumienia podstaw normy IEC 61131-3 oraz ich zastosowania w praktyce. Zrozumienie, że każdy z tych symboli ma swoje specyficzne zastosowanie, jest kluczowe dla skutecznego programowania oraz diagnostyki systemów automatyki. Bez tej wiedzy, programiści mogą napotkać poważne trudności w implementacji oraz utrzymaniu systemów automatyki, co w dłuższej perspektywie może prowadzić do zwiększenia kosztów i obniżenia efektywności operacyjnej.

Pytanie 20

Aby zmienić wartość skoku gwintu, należy dostosować wartość numeryczną obok litery adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. T (wybór narzędzia)
B. F (prędkość posuwu)
C. Q (promień wodzący)
D. D (korektor narzędzia)
Zaznaczyłeś odpowiedź F dotycząca prędkości posuwu, co jest całkowicie trafne. Ten parametr F w kodzie G jest kluczowy, bo steruje prędkością, z jaką narzędzie się porusza podczas skanowania G31. Gdy zmieniamy skok gwintu w CNC, zwłaszcza przy toczeniu, musimy naprawdę uważać na prędkość posuwu, bo to ma ogromny wpływ na jakość gwintu. Jeśli posuw będzie za szybki, może wyjść zbyt płytki skok, a jak będzie za wolny, to narzędzia się szybciej zużyją i jakość wykonania będzie kiepska. Warto wziąć pod uwagę standardy przemysłowe, które mówią o tym, że prędkość posuwu powinna być dopasowana do materiału, którego używamy, i kształtu narzędzia, żeby wszystko działało jak najlepiej. Jak obrabiamy metale ferromagnetyczne i nieżelazne, to dobrze jest zerknąć na tabele prędkości skrawania, żeby wiedzieć, jakie wartości zastosować do konkretnej pracy. To klucz do dłuższej trwałości narzędzi i lepszego wykończenia detali.

Pytanie 21

Jakie musi być ciśnienie powietrza, aby siłownik o przekroju cylindra 312,5 mm2 i efektywności 80% wytworzył siłę nacisku równą 100 N?

A. 5 bar
B. 4 bar
C. 3 bar
D. 6 bar
Wybór niewłaściwego ciśnienia powietrza może wynikać z nieporozumienia dotyczącego relacji między siłą, polem przekroju cylindra i sprawnością siłownika. Na przykład, wybór 3 bar i 5 bar może sugerować, że siła nacisku jest odwrótnie proporcjonalna do ciśnienia, co jest błędnym założeniem. W rzeczywistości, przy stałym polu przekroju, wyższe ciśnienie prowadzi do większej siły nacisku. Wartości 6 bar i 3 bar również nie są zgodne z wymaganiami, ponieważ nie uwzględniają efektywności siłownika. W praktyce, brak uwzględnienia sprawności (η = 0,8) w obliczeniach może prowadzić do niepoprawnych wyników, co jest częstym błędem w analizach technicznych. Prawidłowe obliczenia powinny zawsze brać pod uwagę efektywność siłownika, ponieważ wpływa ona na rzeczywistą siłę, jaką można uzyskać. W kontekście siłowników pneumatycznych, niewłaściwe ciśnienie może prowadzić do nieefektywności i zwiększonego zużycia energii, co jest sprzeczne z zasadami optymalizacji procesów przemysłowych. Aby uniknąć takich błędów, ważne jest zrozumienie podstawowych zasad działania siłowników oraz stosowanie wzorów i standardów branżowych w codziennej praktyce inżynierskiej.

Pytanie 22

Na podstawie harmonogramu czynności serwisowych przedstawionych w tabeli określ, jak często należy przeprowadzać kontrolę działania zaworów bezpieczeństwa.

Harmonogram czynności serwisowych (fragment)
Lp.Czynność serwisowaOkres wykonywania
1.Sprawdzanie temperatury pracyCodziennie
2.Kontrola przewodu zasilającegoCodziennie
3.Sprawdzanie podciśnienia generowanego przez sprężarkęCo 3 miesiące
4.Kontrola obiegu oleju w sprężarceCo 3 miesiące
5.Sprawdzanie zaworówCo 6 miesięcy
6.Kontrola działania zaworów bezpieczeństwaCo 6 miesięcy
7.Kontrola ustawień zabezpieczenia przeciążeniowego w sprężarceCo 6 miesięcy
8.Sprawdzanie rurociągu, skraplacza, części chłodniczychCo rok
9.Sprawdzanie łączników i bezpiecznikówCo rok
A. Raz na rok.
B. Raz na kwartał.
C. Raz na pół roku.
D. Raz na dzień.
Kontrola działania zaworów bezpieczeństwa co 6 miesięcy jest kluczowym elementem strategii zarządzania bezpieczeństwem w każdym zakładzie przemysłowym. Zgodnie z normami branżowymi, takimi jak ISO 9001 oraz dyrektywami Unii Europejskiej, regularne inspekcje i konserwacje urządzeń zabezpieczających są niezbędne dla zapewnienia ich prawidłowego działania w sytuacjach kryzysowych. Zawory bezpieczeństwa są zaprojektowane w celu ochrony systemu przed nadmiernym ciśnieniem, a ich awaria może prowadzić do poważnych incydentów, w tym eksplozji. Przykładowo, w przemyśle petrochemicznym, podejmowanie działań prewencyjnych, takich jak systematyczna kontrola zaworów, pozwala na identyfikację potencjalnych problemów zanim dojdzie do ich wystąpienia. Ponadto, zaleca się prowadzenie dokumentacji związanej z każdym przeglądem, co ułatwia późniejsze audyty oraz pozwala na lepsze planowanie konserwacji.

Pytanie 23

Jakie działania regulacyjne w systemie mechatronicznym opartym na falowniku i silniku indukcyjnym należy podjąć, aby obniżyć prędkość obrotową silnika bez zmiany wartości poślizgu?

A. Zmniejszyć częstotliwość napięcia zasilającego
B. Zwiększyć proporcjonalnie częstotliwość i wartość napięcia zasilającego
C. Zwiększyć wartość napięcia zasilającego
D. Obniżyć proporcjonalnie częstotliwość oraz wartość napięcia zasilającego
Poprawna odpowiedź polega na zmniejszeniu proporcjonalnie częstotliwości oraz wartości napięcia zasilającego w silniku indukcyjnym napędzanym przez przemiennik częstotliwości. W praktyce, takie działanie prowadzi do obniżenia prędkości wirowania wirnika, przy jednoczesnym zachowaniu stałego poziomu poślizgu. Poślizg jest to różnica między prędkością synchronizacyjną a rzeczywistą prędkością obrotową wirnika, a jego wartość pozostaje stabilna, gdy zmienia się obie te parametry w równym stopniu. W aplikacjach przemysłowych, gdy chcemy kontrolować prędkość silników, często stosuje się systemy regulacji, które uwzględniają te zależności. Zmniejszenie zarówno częstotliwości, jak i napięcia jest zgodne z zasadami dobrych praktyk w inżynierii mechatronicznej i pozwala na efektywne zarządzanie energią oraz minimalizację zużycia energii. Dodatkowo, takie podejście zapobiega przeciążeniom silnika oraz wydłuża jego żywotność.

Pytanie 24

W jakim trybie powinny być przedstawiane na schematach układów sterowania zestyki elementów stycznych?

A. Przewodzenia
B. Wzbudzonym
C. Niewzbudzonym
D. Nieprzewodzenia
Odpowiedzi "Wzbudzonym", "Przewodzenia" oraz "Nieprzewodzenia" są niepoprawne, gdyż nie odzwierciedlają standardowych praktyk w przedstawianiu schematów układów sterowania. Stan wzbudzony odnosi się do aktywacji zestyki, co jest niewłaściwe w kontekście schematów, które mają na celu prezentację stanu początkowego układu przed jego uruchomieniem. Przedstawianie zestyki w stanie wzbudzonym wprowadzałoby niejasności, ponieważ nie wskazuje, jak układ zachowuje się w warunkach spoczynkowych. Odpowiedź dotycząca przewodzenia również jest błędna, ponieważ stan przewodzenia oznacza, że zestyka jest w pozycji włączonej, co nie powinno być stosowane do układów przed ich uruchomieniem. Z kolei stan nieprzewodzenia również nie stanowi właściwego opisu, ponieważ nie nawiązuje do konwencji układów sterowania, w których jasno definiuje się, że początkowy stan musi być niewzbudzony. Typowe błędy w myśleniu, które prowadzą do wyboru tych odpowiedzi, wynikają z niepełnego zrozumienia zasad działania zestyki w kontekście automatyki oraz niewłaściwej interpretacji ich roli na schematach. Ważne jest, aby zawsze dążyć do jednoznaczności w dokumentacji technicznej, by uniknąć zamieszania i błędnych interpretacji działań układu.

Pytanie 25

Gdzie nie mogą być umieszczone przewody sieci komunikacyjnych?

A. W pobliżu przewodów silnoprądowych
B. Na zewnątrz obiektów
C. W pomieszczeniach z dużym zakurzeniem
D. W pomieszczeniach o niskich temperaturach
Odpowiedzi, które wskazują inne miejsca, w których przewody sieci komunikacyjnych mogą być zainstalowane, nie są zgodne z najlepszymi praktykami inżynieryjnymi i normami branżowymi. Umieszczanie przewodów w pomieszczeniach o dużym zapyleniu, mimo że może wydawać się na pierwszy rzut oka akceptowalne, stwarza ryzyko ich zanieczyszczenia oraz uszkodzenia, co negatywnie wpłynie na jakość transmisji. Z kolei instalacja na zewnątrz budynków bez odpowiednich zabezpieczeń i osłon jest niewskazana, ze względu na wpływ warunków atmosferycznych, które mogą prowadzić do degradacji materiałów i, w konsekwencji, do awarii systemu. Miejsca o niskich temperaturach również nie są odpowiednie do instalacji przewodów komunikacyjnych, ponieważ niskie temperatury mogą powodować sztywność materiałów, co zwiększa ryzyko ich pęknięcia lub złamania. Często występujące błędy myślowe, takie jak przekonanie, że brak bezpośrednich zagrożeń w danym otoczeniu czyni je odpowiednim do instalacji, prowadzą do błędnych decyzji projektowych. Dlatego ważne jest, aby przy planowaniu instalacji przewodów komunikacyjnych kierować się normami i wytycznymi, które zapewniają długoterminową efektywność i bezpieczeństwo systemów.

Pytanie 26

Zakłada się, że projektowane urządzenie mechatroniczne będzie umieszczone w obudowie IP 65. Oznacza to, że

Stopnie ochrony IP zgodnie z normą PN-EN 60529
OznaczenieOchrona przed wnikaniem do urządzeniaOznaczenieOchrona przed wodą
IP 0Xbrak ochronyIP X0brak ochrony
IP 1Xobcych ciał stałych
o średnicy > 50 mm
IP X1kapiąca
IP 2Xobcych ciał stałych
o średnicy > 12,5 mm
IP X2kapiąca – odchylenie obudowy
urządzenia do 15°
IP 3Xobcych ciał stałych
o średnicy > 2,5 mm
IP X3opryskiwaną pod kątem
odchylonym max. 60° od
pionowego
IP 4Xobcych ciał stałych
o średnicy > 1 mm
IP X4rozpryskiwaną ze wszystkich
kierunków
IP 5Xpyłu w zakresie
nieszkodliwym dla
urządzenia
IP X5laną strumieniem
IP 6Xpyłu w pełnym zakresieIP X6laną mocnym strumieniem
----------------IP X7przy zanurzeniu krótkotrwałym
IP X8przy zanurzeniu ciągłym
A. nie będzie chronione przed pyłem.
B. posiadać będzie najwyższy stopień ochrony przed wodą.
C. nie będzie chronione przed wodą.
D. posiadać będzie najwyższy stopień ochrony przed pyłem.
Wybór odpowiedzi sugerującej, że urządzenie nie będzie chronione przed pyłem jest mylny, ponieważ oznaczenie IP 65 jednoznacznie wskazuje, że zapewnia ono pełną ochronę przed pyłem. Z kolei stwierdzenie, że nie będzie chronione przed wodą jest również nieprawidłowe, ponieważ stopień 5 oznacza, że urządzenie jest zabezpieczone przed strumieniem wody. Takie nieporozumienia mogą wynikać z braku znajomości klasyfikacji IP oraz ich znaczenia w praktycznych zastosowaniach. Odpowiedzi wskazujące na brak ochrony przed wodą lub pyłem pomijają kluczowe aspekty, które są istotne w ocenie wydajności i niezawodności urządzeń w trudnych warunkach. Typowym błędem myślowym jest rozpatrywanie ochrony przed wodą i pyłem jako niezależnych od siebie. W rzeczywistości istnieje jasny związek między tymi dwoma aspektami, co podkreśla znaczenie stopni ochrony według normy PN-EN 60529. Aby uniknąć takich pomyłek, warto zaznajomić się z tabelami ochrony i zrozumieć, co oznaczają poszczególne cyfry w oznaczeniach IP. Niektóre urządzenia stosowane w przemysłach, takich jak motoryzacja czy budownictwo, muszą spełniać rygorystyczne normy ochrony, aby zapewnić ich prawidłowe działanie w narażonych warunkach. Dlatego zrozumienie oznaczeń IP i ich praktycznego znaczenia jest kluczowe dla skutecznego wyboru sprzętu.

Pytanie 27

W trakcie konserwacji układu przekaźników, który jest zabezpieczony bezpiecznikiem topikowym, należy przeprowadzić inspekcję układu, oczyścić go oraz

A. przeanalizować jego działanie oraz skontrolować działanie bezpiecznika topikowego
B. pomalować obudowę farbą i skontrolować momenty dokręcania połączeń śrubowych
C. wymienić przewody elektryczne w układzie i nałożyć cienką warstwę wazeliny na złącza
D. zweryfikować stan połączeń elektrycznych i stan izolacji podłączonych przewodów
Sprawdzanie stanu połączeń elektrycznych oraz izolacji przyłączonych przewodów podczas konserwacji układu przekaźnikowego jest kluczową czynnością, która ma na celu zapewnienie bezpieczeństwa oraz niezawodności systemu. Dobrą praktyką jest regularne monitorowanie stanu tych elementów, ponieważ ich uszkodzenie może prowadzić do awarii, a w konsekwencji do zagrożenia pożarowego czy uszkodzenia sprzętu. Warto zwrócić uwagę na takie aspekty jak: zużycie izolacji, oznaki przegrzewania się przewodów oraz korozję połączeń. Wymiana uszkodzonych elementów oraz zastosowanie odpowiednich materiałów izolacyjnych, zgodnych z normami IEC 60364, pozwala zminimalizować ryzyko uszkodzeń. Regularne przeglądy oraz konserwacje układów elektrycznych są zalecane przez producentów urządzeń i są integralną częścią zarządzania bezpieczeństwem w obiektach przemysłowych i komercyjnych.

Pytanie 28

Do którego segmentu pamięci w sterowniku PLC podczas wykonywania programu są generowane odniesienia do sprawdzania stanów fizycznych wejść urządzenia?

A. Użytkowej
B. Roboczej
C. Systemowej
D. Programu
Wybór innych bloków pamięci, takich jak Programu, Użytkowej czy Roboczej, odzwierciedla brak zrozumienia podstawowej architektury sterowników PLC oraz zasad ich działania. Blok Programu jest zarezerwowany dla logiki działania aplikacji, gdzie definiowane są sekwencje operacji, ale nie przechowuje on informacji o rzeczywistych stanach fizycznych wejść. Z kolei blok Użytkowej, który może zawierać dodatkowe funkcje lub instrukcje zdefiniowane przez użytkownika, nie ma dostępu do danych o stanach wejść. Natomiast blok Roboczej jest używany do przechowywania danych tymczasowych i nie ma związku z zarządzaniem stanami wejść lub wyjść. Typowym błędem myślowym jest przekonanie, że wszystkie bloki pamięci są równorzędne i mogą pełnić te same funkcje. Należy pamiętać, że każdy blok ma swoje specyficzne zastosowanie i funkcjonalność. Właściwe zrozumienie podziału pamięci w sterownikach PLC jest kluczowe dla skutecznego programowania i diagnozowania systemów automatyki. Wiedza ta jest również zgodna z normami takimi jak IEC 61131, które definiują struktury oraz sposób zarządzania pamięcią w systemach sterujących.

Pytanie 29

Przyczyny szarpania oraz niestabilności w działaniu hydraulicznych systemów napędowych mogą obejmować

A. zbyt niską lepkość oleju
B. wyciek w systemie hydraulicznym
C. zbyt wysoką lepkość oleju
D. zapowietrzenie czynnika roboczego
Wybór odpowiedzi dotyczącej zbyt małej lepkości oleju wskazuje na niepełne zrozumienie zasad działania układów hydraulicznych. Zbyt mała lepkość oleju może prowadzić do nieprawidłowego smarowania elementów układu, co w dłuższym czasie skutkuje ich zużyciem i awarią. Jednak nie ma bezpośredniego związku z szarpaniem napędów, ponieważ niższa lepkość nie powoduje powstawania pęcherzyków powietrza, a raczej wpływa na płynność i szybkość przepływu. W przypadku nieszczelności w układzie hydraulicznym również nie możemy mówić o zapowietrzeniu jako bezpośredniej przyczynie. Nieszczelności mogą prowadzić do utraty ciśnienia, ale niekoniecznie do wprowadzenia powietrza do układu. Z kolei zbyt duża lepkość oleju może powodować trudności w przepływie, co jest problemem, ale nie jest bezpośrednią przyczyną szarpania. Kluczowe jest zrozumienie, że każdy z tych czynników wpływa na układ hydrauliczny, ale to zapowietrzenie jest bezpośrednią przyczyną destabilizacji pracy napędów, co podkreśla znaczenie monitorowania jakości czynnika roboczego oraz ciśnienia w układzie. W praktyce, dbałość o odpowiednią lepkość oraz ciśnienie oleju to fundamenty zapewniające stabilne i niezawodne działanie maszyn hydraulicznych.

Pytanie 30

Przegląd instalacji hydraulicznej urządzenia mechatronicznego obejmuje

A. sprawdzenie stanu przewodów
B. wymianę rozdzielacza
C. oczyszczenie filtra oleju w układzie
D. zmierzenie natężenia prądu w obciążeniu pompy
Wybór odpowiedzi związanej z pomiarem natężenia prądu obciążenia pompy lub wymianą rozdzielacza świadczy o niepełnym zrozumieniu zakresu oględzin instalacji hydraulicznej. Oględziny te mają na celu ocenę stanu poszczególnych elementów hydrauliki, co bezpośrednio odnosi się do przewodów, które muszą być w doskonałej kondycji, aby zapewnić prawidłowy przepływ medium. Podobnie, czyszczenie filtra oleju, choć istotne dla prawidłowego funkcjonowania układu, nie jest tożsame z kontrolą stanu przewodów. Często zdarza się, że osoby niewystarczająco zaznajomione z zasadami hydrauliki mylą działania serwisowe z regularnymi oględzinami. W rzeczywistości, nieprzywiązanie uwagi do stanu przewodów może prowadzić do przykładów, takich jak niewłaściwe ciśnienie w układzie, co z kolei może spowodować uszkodzenia nie tylko samego układu hydraulicznego, ale i innych elementów maszyny. Dlatego ważne jest, aby pamiętać, że oględziny instalacji hydraulicznych koncentrują się na ocenie ich stanu, a nie na działaniach naprawczych, które są już następstwem tych oględzin.

Pytanie 31

Zauważono, że silnik indukcyjny pracuje z nadmiernym hałasem, a źródło dźwięku znajduje się w łożysku tocznym. Jak można rozwiązać ten problem?

A. Smarując łożysko olejem
B. Wymieniając łożysko
C. Uzupełniając smar w łożysku
D. Zamieniając osłony łożyska
Głośna praca silnika indukcyjnego, wynikająca z nieprawidłowości w łożysku tocznym, wskazuje na jego zniszczenie lub zużycie mechaniczne. Wymiana łożyska to jedyne skuteczne rozwiązanie, które zapewni długotrwałe działanie silnika. W przypadku łożysk tocznych, ich efektywność zależy od odpowiedniego smarowania oraz stanu mechanicznego. Regularna konserwacja i wymiana łożysk są zgodne z normami branżowymi, które zalecają okresowe przeglądy urządzeń elektrycznych. Wymiana uszkodzonego łożyska na nowe pozwala na przywrócenie optymalnej pracy silnika oraz minimalizuje ryzyko dodatkowych uszkodzeń. Warto również zwrócić uwagę na dobór właściwego typu łożyska, które powinno odpowiadać specyfikacji producenta silnika. Praktyka pokazuje, że zaniedbanie wymiany łożyska może prowadzić do poważnych awarii mechanicznych, co wiąże się z kosztami napraw oraz przestojami produkcyjnymi. Dlatego kluczowe jest podejście proaktywne w zakresie konserwacji łożysk.

Pytanie 32

Jakie ciśnienie cieczy powinno być w układzie hydraulicznym, aby siłownik o powierzchni czynnej tłoka A = 80 cm2 był w stanie wygenerować siłę F = 150 kN?

A. 1,875 bara
B. 1875 barów
C. 187,5 bara
D. 18,75 bara
Analizując pozostałe odpowiedzi, warto zwrócić szczególną uwagę na błędne zrozumienie relacji między siłą, ciśnieniem a powierzchnią tłoka. Odpowiedzi takie jak 1,875 bara czy 18,75 bara sugerują, że osoba udzielająca odpowiedzi może nie dostrzegać proporcji między jednostkami. Przy obliczaniu ciśnienia, kluczowe jest prawidłowe przeliczenie jednostek. 1,875 bara to zbyt niskie ciśnienie, które w żadnym przypadku nie mogłoby wygenerować siły 150 kN na powierzchni 80 cm², ponieważ przy takim ciśnieniu uzyskalibyśmy siłę nieprzekraczającą 15 kN, co jest znacznie poniżej wymaganej wartości. Z kolei odpowiedź 187,5 bara, choć poprawna, wyjaśnia, dlaczego takie podejście jest właściwe. 1875 barów to zbyt wysoka wartość ciśnienia, która mogłaby prowadzić do uszkodzenia układów hydraulicznych. Takie błędy często wynikają z nieprawidłowej interpretacji wzoru i błędnego przeliczania jednostek, co skutkuje znacznymi różnicami w obliczeniach. W hydraulice, precyzyjne obliczenia są niezbędne, a zrozumienie podstawowych zasad, takich jak prawo Pascala, jest kluczowe dla efektywnego projektowania systemów. Nie można też zapominać, że w praktyce, ciśnienie musi być dostosowane do specyfikacji komponentów układu, co może się różnić w zależności od zastosowania i wymagań technicznych. Zastosowanie nieprawidłowych wartości ciśnienia może prowadzić do awarii, a w skrajnych przypadkach do zagrażających życiu wypadków w miejscu pracy.

Pytanie 33

Młot pneumatyczny, który jest częścią robota frezarskiego, ma zamontowane urządzenie do smarowania. Jakie z zaleceń dotyczących uzupełnienia oleju, jeśli nie zostanie spełnione, może prowadzić do obrażeń pracownika obsługującego?

A. Przed odkręceniem korka wlewu oleju konieczne jest odcięcie dopływu sprężonego powietrza oraz spuścić powietrze z wnętrza młota.
B. Należy wlać do młota zalecaną ilość oleju, tak aby poziom oleju nie przekraczał najniższego zwoju gwintu, a następnie umieścić korek wlewu oleju i dokręcić go.
C. Najpierw należy oczyścić powierzchnię wokół korka wlewu oleju, a następnie przystąpić do jego odkręcania.
D. Warto sprawdzić, czy wąż doprowadzający sprężone powietrze oraz jego złącza są w dobrym stanie, a także upewnić się, że wszystkie połączenia zostały wykonane prawidłowo.
Wybór tej odpowiedzi pokazuje niedostateczne zrozumienie kluczowych zasad bezpieczeństwa związanych z obsługą narzędzi pneumatycznych. Oczyszczenie powierzchni wokół korka wlewu oleju, chociaż ważne dla zachowania czystości i uniknięcia zanieczyszczenia oleju, nie eliminuje ryzyka związanego z ciśnieniem wewnętrznym. Zatem nie można go uznać za priorytetowy krok w kontekście ochrony zdrowia pracownika. Kolejnym elementem, który może być mylnie interpretowany, jest zasada uzupełniania oleju do określonego poziomu. Choć ważne jest, aby nie przekraczać zalecanego poziomu, to nie ma ona bezpośredniego wpływu na bezpieczeństwo przy wykręcaniu korka. Wreszcie, sprawdzanie stanu węża doprowadzającego sprężone powietrze, chociaż istotne dla ogólnej sprawności systemu, nie adresuje konkretnego zagrożenia, jakie może wystąpić przy nieprzestrzeganiu procedur związanych z ciśnieniem w młocie. Należy pamiętać, że skutki zaniedbania zasad bezpieczeństwa mogą być bardzo poważne, w tym wystąpienie obrażeń ciała, co sprawia, że ignorowanie tych zasad jest szczególnie niebezpieczne.

Pytanie 34

Które z poniższych działań jest częścią procesu programowania sterowników PLC?

A. Tworzenie i testowanie logiki sterowania
B. Kalibracja czujników ciśnienia
C. Wymiana filtrów powietrza
D. Smarowanie ruchomych części mechanicznych
Kalibracja czujników ciśnienia, chociaż istotna dla zapewnienia dokładności pomiarów w systemach mechatronicznych, nie jest częścią procesu programowania sterowników PLC. To zadanie związane z utrzymaniem ruchu i precyzyjnym ustawieniem parametrów czujnika, aby jego odczyty były zgodne z rzeczywistością. Proces kalibracji zwykle odbywa się oddzielnie od programowania i wymaga specjalistycznej wiedzy na temat charakterystyki czujnika oraz narzędzi kalibracyjnych. Smarowanie ruchomych części mechanicznych to kolejny przykład działań związanych z eksploatacją, a nie programowaniem. Regularne smarowanie zapobiega nadmiernemu zużyciu i awariom części mechanicznych, zapewniając płynną i efektywną pracę maszyn. Choć jest to krytyczny element konserwacji, nie wiąże się bezpośrednio z programowaniem sterowników PLC, które koncentruje się na sterowaniu logiką i procesami. Wymiana filtrów powietrza to typowe zadanie konserwacyjne, mające na celu utrzymanie jakości powietrza w układach pneumatycznych lub klimatyzacyjnych. Filtry powietrza mogą się zatykać, co prowadzi do spadku wydajności systemu i potencjalnych uszkodzeń komponentów. Choć regularna wymiana filtrów jest niezbędna dla prawidłowego funkcjonowania systemu, nie jest to działanie związane z programowaniem PLC. Takie zadania są często realizowane przez personel zajmujący się konserwacją, a nie przez programistów PLC, którzy skupiają się na tworzeniu i modyfikowaniu kodu sterującego operacjami systemu. W ten sposób, zadania te są niepoprawne w kontekście pytania dotyczącego programowania PLC.

Pytanie 35

Jedną z metod umożliwiających identyfikację nieprawidłowości w pracy urządzeń oraz instalacji mechatronicznych o dużej mocy jest technologia obrazowania w podczerwieni. Który z wymienionych instrumentów jest stosowany w takich badaniach?

A. Termometr elektroniczny
B. Oscyloskop cyfrowy
C. Tester kabli
D. Kamera termograficzna
W przypadku testowania urządzeń i instalacji mechatronicznych dużej mocy, wybór odpowiednich narzędzi ma kluczowe znaczenie dla skuteczności wykrywania nieprawidłowości. Tester okablowania, choć użyteczny w kontekście sprawdzania integralności połączeń elektrycznych, nie jest narzędziem umożliwiającym obrazowanie termalne, co jest niezbędne do analizy ciepła generowanego przez urządzenia w ruchu. W związku z tym, nie można go zastosować do wykrywania problemów związanych z przegrzewaniem się komponentów, które mogą prowadzić do poważnych uszkodzeń. Oscyloskop cyfrowy, z kolei, jest narzędziem do analizy sygnałów elektrycznych, jednakże jego funkcjonalność nie obejmuje obrazowania w podczerwieni, przez co również nie może być wykorzystywany do monitorowania temperatury elementów mechatronicznych. Termometr termoelektryczny natomiast, mimo że może pomóc w pomiarze temperatury, nie dostarcza informacji w sposób wizualny, co ogranicza jego użyteczność w kontekście diagnostyki termograficznej. Błędem myślowym jest zatem przypuszczanie, że narzędzia te mogą zastąpić kamerę termograficzną, która jest specjalistycznym urządzeniem pozwalającym na kompleksową analizę rozkładu temperatury i identyfikację nieprawidłowości w działaniu instalacji mechatronicznych.

Pytanie 36

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem B
B. Symbolem P
C. Symbolem A
D. Symbolem T
Odpowiedzi takie jak "Symbolem B", "Symbolem T" czy "Symbolem A" są niepoprawne, ponieważ każda z tych liter oznacza zupełnie inne elementy w schemacie układu hydraulicznego. Oznaczenie B może odnosić się do elementów odpowiadających za przepływ powrotu, podczas gdy T zazwyczaj oznacza elementy związane z rozdzielaniem strumienia płynu. Oznaczenie A z kolei może być stosowane do różnych rodzajów przyłączy lub akcesoriów, które nie mają bezpośredniego związku z przewodem tłocznym. Tego typu błędy myślowe często wynikają z braku zrozumienia podstawowych zasad funkcjonowania układów hydraulicznych oraz ich schematów. Kluczowym aspektem jest to, że każdy symbol ma swoje specyficzne znaczenie i nie można ich używać zamiennie. Ignorowanie tych różnic może prowadzić do poważnych problemów podczas instalacji czy konserwacji układów hydraulicznych, dlatego ważne jest, aby dokładnie znać i rozumieć każdy symbol. Wiedza na ten temat jest niezbędna, aby zapewnić prawidłowe działanie i bezpieczeństwo systemów hydraulicznych, a także uniknąć potencjalnych awarii, które mogą być kosztowne i niebezpieczne.

Pytanie 37

Jakim akronimem opisuje się systemy wspomagania komputerowego w procesie produkcji?

A. CNC
B. CAE
C. CAD
D. CAM
Odpowiedź CAM oznacza Computer Aided Manufacturing, co w tłumaczeniu na polski oznacza systemy komputerowego wspomagania wytwarzania. Systemy te są kluczowe w nowoczesnym przemyśle, ponieważ umożliwiają automatyzację procesów produkcyjnych, co zwiększa efektywność, precyzję oraz redukuje koszty produkcji. Przykładowo, w przemyśle motoryzacyjnym, systemy CAM są używane do sterowania maszynami CNC (Computer Numerical Control), które wykonują złożone operacje obróbcze na metalowych komponentach. Dzięki CAM inżynierowie mogą tworzyć skomplikowane modele w oprogramowaniu CAD (Computer Aided Design) i następnie bezpośrednio przesyłać je do maszyn produkcyjnych. To podejście nie tylko zwiększa dokładność, ale również umożliwia szybszą adaptację do zmieniających się potrzeb rynku, co jest zgodne z najlepszymi praktykami w zakresie Lean Manufacturing i Industry 4.0.

Pytanie 38

Jaka prędkość wyjścia tłoka siłownika hydraulicznego o powierzchni czynnej A = 3·10-3 m2 będzie, jeśli natężenie przepływu wynosi Q = 1,5·10-3 m3/s?

A. 5 m/s
B. 0,5 m/s
C. 3 m/s
D. 0,3 m/s
W przypadku odpowiedzi, które nie są poprawne, kluczowe jest zrozumienie merytorycznych podstaw hydrauliki, które leżą u podstaw obliczeń prędkości w siłownikach. Odpowiedzi takie jak 0,3 m/s, 5 m/s czy 3 m/s mogą wydawać się logiczne na pierwszy rzut oka, ale wynikają z fundamentalnych błędów w interpretacji danych. Na przykład, odpowiedź 0,3 m/s nie uwzględnia prawidłowego stosunku natężenia przepływu do powierzchni tłoka, co prowadzi do niedoszacowania prędkości. Z kolei odpowiedzi 5 m/s i 3 m/s sugerują, że natężenie przepływu byłoby znacznie wyższe niż podane, co jest sprzeczne z definicją i właściwościami natężenia przepływu w układach hydraulicznych. Kluczowym błędem myślowym jest pominięcie faktu, że zmiana powierzchni przekroju poprzecznego wpływa bezpośrednio na prędkość przepływu. Aby obliczenie było poprawne, należy zawsze odnosić się do wzoru v = Q/A. W praktyce, błędne obliczenia mogą prowadzić do niewłaściwego doboru komponentów w układzie hydraulicznym, co w skrajnych przypadkach może skutkować awarią urządzenia lub nieefektywną pracą, a także zwiększonym zużyciem energii. Z tego powodu zrozumienie podstawowych zasad obliczeń hydraulicznych jest kluczowe dla inżynierów i techników pracujących w branży.

Pytanie 39

Który z wymienionych programów jest przeznaczony do tworzenia kodów NC dla obrabiarek numerycznych?

A. hwentor
B. Solid Edge
C. Edgecam
D. IntelliCAD
Edgecam to naprawdę fajne oprogramowanie CAD/CAM, które często wykorzystuje się w przemyśle do tworzenia kodów NC dla maszyn CNC. Dzięki temu modułowi CAM, projektanci i inżynierowie mogą precyzyjnie zaplanować ścieżki narzędziowe. To jest mega ważne, gdyż te ścieżki pozwalają na automatyczne kontrolowanie maszyn. Program obsługuje różne procesy, jak frezowanie czy toczenie, co czyni go bardzo uniwersalnym w obróbce metali. Z tego co wiem, Edgecam ma dość zaawansowane algorytmy, które pomagają w skróceniu czasu obróbki i zmniejszeniu zużycia narzędzi. Przykład? W branży motoryzacyjnej świetnie się sprawdza do projektowania skomplikowanych części, gdzie precyzja i efektywność są kluczowe. A do tego, z tego co pamiętam, Edgecam bez problemu integruje się z ERP i innymi narzędziami inżynieryjnymi, co daje pełną kontrolę nad produkcją. To jest naprawdę zgodne z najlepszymi praktykami w inżynierii produkcji.

Pytanie 40

Która z poniższych czynności serwisowych nie jest konieczna do wykonania codziennie przed uruchomieniem szlifierki kątowej?

A. Oględziny stanu przewodu zasilającego
B. Sprawdzenie mocowania osłony tarczy i rękojeści
C. Pomiar przewodności bezpiecznika
D. Dokręcenie nakrętki mocującej tarczę
Oględziny stanu przewodu zasilającego, sprawdzenie mocowania osłony tarczy i rękojeści oraz dokręcenie nakrętki mocującej tarczę to czynności, które są kluczowe dla zapewnienia bezpieczeństwa podczas pracy z szlifierką kątową. Zaniedbanie jakiejkolwiek z tych czynności może prowadzić do poważnych zagrożeń. Na przykład, brak dokładnej kontroli stanu przewodu zasilającego może skutkować zwarciem lub porażeniem prądem, co jest szczególnie niebezpieczne w warunkach, gdzie mogą występować czynniki wodne. Podobnie, luźne mocowanie osłony tarczy stwarza ryzyko, że tarcza podczas pracy wypadnie, co może prowadzić do kontuzji. Dokręcenie nakrętki mocującej tarczę jest niezbędne, aby zapewnić stabilne działanie narzędzia, a wszelkie luzy mogą prowadzić do drgań i zwiększonego zużycia elementów. Regularność w tych czynnościach konserwacyjnych jest kluczowa, gdyż ich pominięcie może prowadzić do uszkodzenia narzędzia oraz narażenia zdrowia użytkownika. W praktyce, wiele firm stosuje harmonogramy konserwacji, które uwzględniają te czynności jako codzienne procedury przed rozpoczęciem pracy, co stanowi standard w branży. Bezpieczeństwo użytkowników i wydajność pracy powinny być zawsze na pierwszym miejscu.