Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 14 września 2025 20:58
  • Data zakończenia: 14 września 2025 21:16

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Zasada hydrostatycznego smarowania, która polega na oddzieleniu współdziałających powierzchni samoistnie powstającym klinem smarnym, stosowana jest w

A. zaworach kulowych
B. hamulcach tarczowych
C. łożyskach kulkowych
D. łożyskach ślizgowych
Wybór hamulców klockowych, zaworów kulowych czy łożysk kulkowych jako odpowiedzi błędnej opiera się na ich zasadach działania, które nie są zgodne z koncepcją smarowania hydrostatycznego. Hamulce klockowe działają na zasadzie tarcia między klockiem a tarczą hamulcową, co nie wymaga smarowania w sposób, jaki ma miejsce w łożyskach ślizgowych. W przypadku hamulców, kluczową rolę odgrywa generowanie siły tarcia, a nie separacja części roboczych. Zawory kulowe wykorzystują kulkę do regulowania przepływu cieczy lub gazu, co również nie ma związku z tworzeniem klina smarnego, a ich działanie opiera się na mechanicznym zamykaniu lub otwieraniu przepływu. Łożyska kulkowe z kolei wykorzystują kulki do rozdzielenia powierzchni, co pozwala na ruch obrotowy, ale opierają się na mechanicznym tarciu oraz smarowaniu, które różni się od hydrostatycznego. Takie błędne wnioski mogą wynikać z niepełnego zrozumienia zasad działania tych mechanizmów. W praktyce smarowanie hydrostatyczne ma zastosowanie wyłącznie w specyficznych aplikacjach, gdzie kluczowe jest unikanie bezpośredniego kontaktu metal-metal oraz redukcja tarcia, co jest typowe dla łożysk ślizgowych. Zrozumienie tych różnic jest istotne dla prawidłowego doboru elementów w systemach mechanicznych.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotorezystorze
B. Fototranzystorze
C. Fotoogniwie
D. Fotodiodzie
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

W procesie TIG stosuje się technikę spawania

A. łukiem plazmowym
B. elektrodą wolframową w osłonie argonowej
C. strumieniem elektronów
D. elektrodą topliwą w osłonie dwutlenku węgla
Metoda TIG (Tungsten Inert Gas) to technika spawania, w której wykorzystuje się elektrodę wolframową, a osłona gazowa pochodzi z argonu. Wolfram charakteryzuje się wysoką temperaturą topnienia, co pozwala na uzyskanie stabilnego łuku elektrycznego, niezbędnego do spawania metali. Proces ten jest niezwykle precyzyjny i doskonały dla spawania cienkowarstwowego, co czyni go idealnym do zastosowania w branżach takich jak lotnictwo, motoryzacja czy medycyna, gdzie wymagana jest wysoka jakość i wytrzymałość spoin. Przykładem może być spawanie elementów konstrukcyjnych w lekkich pojazdach lub komponentów silników, gdzie każdy detal ma kluczowe znaczenie dla bezpieczeństwa oraz wydajności. Metoda TIG umożliwia również spawanie różnych materiałów, takich jak stal nierdzewna, aluminium czy tytan, co sprawia, że jest niezwykle wszechstronna. Dobre praktyki w tej metodzie obejmują odpowiednie przygotowanie powierzchni spawanych elementów oraz właściwe ustawienie parametrów spawania, co wpływa na jakość i trwałość spoiny.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaką metodę łączenia materiałów powinno się wybrać do skrzyżowania elementów ze stali nierdzewnej i mosiądzu?

A. Lutowanie twarde
B. Sklejanie
C. Zgrzewanie
D. Lutowanie miękkie
Lutowanie twarde jest optymalną techniką łączenia stali nierdzewnej i mosiądzu ze względu na różnice w temperaturze topnienia tych materiałów oraz ich właściwościach mechanicznych. Lutowanie twarde polega na stosowaniu lutów o temperaturze topnienia powyżej 450 °C, co pozwala na skuteczne tworzenie połączeń o wysokiej wytrzymałości. W przypadku stali nierdzewnej i mosiądzu lutowanie twarde jest szczególnie ważne, ponieważ oba materiały różnią się nie tylko składem chemicznym, ale również współczynnikiem rozszerzalności cieplnej. Lutowanie twarde zapewnia dobre wypełnienie szczelin oraz pozwala na uzyskanie mocnych połączeń, które są odporne na korozję, co ma kluczowe znaczenie w zastosowaniach inżynieryjnych i przemysłowych. Przykłady zastosowania lutowania twardego to produkcja sprzętu medycznego, elementów hydraulicznych oraz instalacji przemysłowych, gdzie wymagana jest trwałość i odporność na wysokie temperatury. Zastosowanie tej techniki w zgodzie z odpowiednimi normami, takimi jak PN-EN 1045, zapewnia jakość oraz niezawodność wykonanych połączeń.

Pytanie 14

Przepisy dotyczące usuwania używanych urządzeń elektronicznych nakładają obowiązek

A. wyrzucić je do pojemnika na śmieci po wcześniejszym stłuczeniu szyjki kineskopu
B. przekazać je firmie zajmującej się odbiorem odpadów po wcześniejszym uzgodnieniu
C. wrzucić je do kosza na śmieci
D. pozostawić je obok kontenera na śmieci
Odpowiedź "przekazać je firmie wywożącej śmieci po uprzednim uzgodnieniu" jest prawidłowa, ponieważ zgodnie z przepisami dotyczącymi gospodarki odpadami, w tym szczególnie dotyczy to urządzeń elektronicznych, istnieją ściśle określone procedury ich utylizacji. Utylizacja tego typu odpadów wymaga, aby były one przekazywane do wyspecjalizowanych firm, które mają odpowiednie zezwolenia i zasoby do ich bezpiecznego przetwarzania. Tego rodzaju przedsiębiorstwa posiadają technologie pozwalające na recykling części elektronicznych oraz odpowiednie metody unieszkodliwiania niebezpiecznych substancji, takich jak rtęć czy ołów, które mogą występować w niektórych urządzeniach. Przykładowo, wiele z tych firm oferuje usługi odbioru z miejsca zamieszkania, co ułatwia użytkownikom przestrzeganie przepisów. Przekazanie urządzeń wykwalifikowanym specjalistom nie tylko zapewnia zgodność z prawem, ale również chroni środowisko i zdrowie ludzi, zmniejszając ryzyko zanieczyszczenia.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg
A. 400 V
B. 380V
C. 240 V
D. 230 V
Poprawna odpowiedź to 400 V, co jest zgodne z danymi podanymi na tabliczce znamionowej silnika asynchronicznego. Znamionowe napięcie międzyfazowe dla silników trójfazowych standardowo wynosi 400 V w układzie Δ (delta). To napięcie jest kluczowe przy projektowaniu i użytkowaniu instalacji elektrycznych, ponieważ określa, jakie napięcie będzie występować pomiędzy poszczególnymi fazami. Znajomość tych wartości jest niezbędna dla inżynierów i techników zajmujących się instalacjami oraz konserwacją urządzeń elektrycznych. W praktyce, przy podłączeniu silnika do zasilania, napięcie międzyfazowe musi być zgodne z jego znamionowym napięciem, aby zapewnić prawidłowe działanie i wydajność silnika. Ponadto, znajomość tego napięcia jest istotna przy dobieraniu odpowiednich zabezpieczeń oraz urządzeń kontrolnych, co wpływa na bezpieczeństwo i efektywność systemu.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Lampka sygnalizacyjna RUN w programowalnym sterowniku PLC wskazuje, że

A. konieczna jest wymiana baterii zasilającej pamięć RAM sterownika
B. nastąpiła awaria wewnętrzna sterownika
C. program kontrolny znajduje się w pamięci RAM sterownika i może zostać uruchomiony
D. istnieje możliwość edytowania nowego programu kontrolnego przy użyciu komputera
Świecący element sygnalizacyjny RUN w sterowniku programowalnym PLC wskazuje, że program sterowniczy jest załadowany do pamięci RAM sterownika i jest gotowy do uruchomienia. Pamięć RAM jest kluczowym elementem w systemach PLC, ponieważ służy do przechowywania aktywnego programu oraz danych operacyjnych, co pozwala na dynamiczne sterowanie procesami przemysłowymi. W praktyce oznacza to, że operator może bez problemu uruchomić proces produkcyjny, a także wprowadzać zmiany w czasie rzeczywistym, co jest niezwykle istotne w kontekście elastyczności i efektywności systemów automatyki. W standardach branżowych, takich jak IEC 61131, wyróżnia się różne tryby pracy sterowników, a sygnalizacja RUN jest jednym z podstawowych wskaźników stanu, który informuje o poprawnym działaniu systemu. Prawidłowe działanie tego wskaźnika jest także istotne w kontekście diagnostyki, gdyż pozwala na szybką weryfikację, czy urządzenie jest gotowe do pracy.

Pytanie 20

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Generator fali stojącej oraz woltomierz
B. Generator i oscyloskop
C. Amperomierz i oscyloskop
D. Częstościomierz i miernik uniwersalny
Wybór narzędzi do analizy filtrów pasmowych jest ważny, bo czasem można się pomylić. Amperomierz i oscyloskop przydają się w pomiarze prądu i analizie sygnałów, ale nie wystarczą do określenia parametrów filtrów pasmowych. Amperomierz mierzy tylko prąd, więc nie mówi nic o tym, jak filtr działa w kontekście częstotliwości. Dlatego ważne jest, żeby znać relacje między napięciem a częstotliwością. Z drugiej strony, generator fali stojącej i woltomierz też nie będą dobrym wyborem, bo ten pierwszy nie obsługuje sygnałów o zmiennych częstotliwościach, a to jest kluczowe w analizie filtrów. Miernik uniwersalny, choć może być użyteczny w wielu sytuacjach, nie daje wystarczających informacji o charakterystyce częstotliwościowej. Przez wybór złych narzędzi można przeoczyć ważne aspekty analizy, na przykład pasmo przenoszenia i tłumienie, co może prowadzić do błędnych wniosków o działaniu filtrów. Wiedza o odpowiednich narzędziach jest kluczowa, jeśli chodzi o projektowanie i testowanie układów elektronicznych. Użycie generatora i oscyloskopu w tym kontekście to dobra praktyka.

Pytanie 21

W jaki sposób można aktywować samowzbudną, bocznikową prądnicę prądu stałego, która nie uruchamia się z powodu braku magnetyzmu szczątkowego?

A. Odwrócić kierunek prędkości obrotowej na przeciwny
B. Zwiększyć opór w obwodzie wzbudzenia
C. Zmienić sposób podłączenia w obwodzie wzbudzenia
D. Podłączyć prądnicę na krótko do pracy silnikowej
Aby uruchomić samowzbudną, bocznikową prądnicę prądu stałego, która nie wzbudza się z powodu utraty magnetyzmu szczątkowego, właściwym rozwiązaniem jest podłączenie prądnicy na chwilę do pracy silnikowej. Ta metoda pozwala na przywrócenie magnetyzmu szczątkowego dzięki zastosowaniu zewnętrznego źródła energii, które na krótko napędza prądnicę, generując prąd wzbudzenia. W praktyce, gdy prądnica jest zasilana z zewnętrznego źródła mocy, wirnik zaczyna się obracać, co prowadzi do wzbudzenia pola magnetycznego poprzez wzajemne oddziaływanie między wirnikiem a stojanem. Warto zauważyć, że takie podejście jest często stosowane w praktyce, zwłaszcza w sytuacjach, gdy prądnice są dłużej nieużywane. Dobrą praktyką jest również regularne wykonywanie testów sprawnościowych prądnic, aby upewnić się, że nie utraciły magnetyzmu. Zrozumienie tego procesu jest kluczowe dla operatorów oraz inżynierów, którzy zajmują się eksploatacją i konserwacją maszyn elektrycznych.

Pytanie 22

Aby zdemontować sterownik PLC z szyny DIN (TS-35), potrzebne jest

A. klucza płaskiego
B. wkrętaka krzyżowego
C. klucza imbusowego
D. wkrętaka płaskiego
Wkrętak płaski to najlepsze narzędzie do demontowania sterowników PLC z szyny DIN. Dlaczego? Bo te sterowniki mają często specjalne zatrzaski, które można łatwo zwolnić właśnie tym wkrętakiem. Jak to robić? Wystarczy delikatnie wsunąć końcówkę wkrętaka w szczelinę zatrzasku i lekko pchnąć, żeby go odczepić. To naprawdę działa. Używanie wkrętaka płaskiego jest też zgodne z zasadami bezpieczeństwa, bo pozwala na dokładne działanie bez ryzyka uszkodzenia zarówno sterownika, jak i szyny. W automatyce przemysłowej, jak wiadomo, odpowiednie narzędzia to podstawa, żeby urządzenia działały długo i aby nie wydawać kasy na naprawy. No i nie zapominajmy, że wkrętaki płaskie są mega uniwersalne. Można je stosować nie tylko do demontażu, ale też do instalacji i konserwacji różnych sprzętów elektrycznych. Naprawdę warto mieć je w swoim warsztacie, bo ułatwiają pracę.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Na obudowie urządzenia wystąpiło niebezpieczne napięcie dotykowe. Który wyłącznik zredukowałby zasilanie urządzenia, gdy ktoś dotknie jego obudowy?

A. Nadprądowy
B. Różnicowoprądowy
C. Silnikowy
D. Termiczny
Wyłącznik termiczny, silnikowy oraz nadprądowy nie są odpowiednimi rozwiązaniami w sytuacji, gdy na obudowie urządzenia pojawia się niebezpieczne napięcie dotykowe. Wyłącznik termiczny jest przeznaczony głównie do ochrony przed przegrzaniem obwodów, co wiąże się z nadmiernym wydzielaniem ciepła, a nie bezpośrednio z zagrożeniem porażeniem prądem. Działa on na zasadzie odcinania zasilania w sytuacji, gdy prąd przekracza określoną wartość przez określony czas, co może nie zadziałać w przypadku nagłego upływu prądu do ziemi. Wyłącznik silnikowy, z drugiej strony, jest zaprojektowany do ochrony silników elektrycznych przed przeciążeniem oraz zwarciami, a nie do reagowania na niebezpieczne napięcie dotykowe. Jego funkcjonalność jest ograniczona do konkretnego zastosowania w silnikach, co sprawia, że nie nadaje się do ochrony osób przed porażeniem. Wyłącznik nadprądowy, choć jest istotnym elementem zabezpieczeń elektrycznych, również działa na zasadzie detekcji nadmiernego prądu i nie jest w stanie wykryć niewielkich upływów prądowych, które mogą wystąpić w przypadku kontaktu z obudową urządzenia. Tego typu podejście do zabezpieczeń często prowadzi do błędnych wniosków, gdzie myli się, że jakiekolwiek odcięcie zasilania w przypadku przeciążeń jest wystarczające dla ochrony przed porażeniem, co jest nieprawdziwe. Właściwe zabezpieczenie przed porażeniem prądem wymaga zastosowania odpowiednich technologii, takich jak RCD, które są zaprojektowane do szybkiej reakcji na sytuacje zagrażające zdrowiu użytkowników.

Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. napawania
B. spawania
C. polerowania
D. lutowania
Napawanie, lutowanie i spawanie to procesy, które łączą lub przywracają materiały poprzez dodanie nowego materiału, co nie jest odpowiednie dla usuwania niewielkich rys na tłoczysku. Napawanie polega na dodawaniu materiału spawalniczego w celu przywrócenia kształtu lub wytrzymałości, co może skutkować niejednorodnością oraz nadmiernym zwiększeniem grubości warstwy, co w przypadku tłoczysk hydraulicznych jest niewskazane. Lutowanie z kolei, które polega na łączeniu metali przy użyciu stopu o niższej temperaturze topnienia, nie jest zalecane w przypadku elementów, które muszą wykazywać wysoką wytrzymałość mechaniczną i odporność na wysokie ciśnienie. Spawanie, które łączy dwa elementy poprzez ich stopienie i połączenie w jedną całość, również nie jest odpowiednie, gdyż może prowadzić do deformacji oraz osłabienia struktury materiału, co w przypadku tłoczysk hydraulicznych, które muszą pracować w dużych obciążeniach, jest nie akceptowalne. Te metody są bardziej skomplikowane i czasochłonne, a ich zastosowanie w kontekście usuwania drobnych rys mogłoby prowadzić do większych problemów, takich jak niestabilność operacyjna. Dlatego polerowanie, jako metoda eliminująca defekty powierzchniowe bez dodawania materiału, stanowi najlepsze rozwiązanie dla tego typu zadań.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. technicznym mostkiem Thomsona
B. omomierzem
C. megaomomierzem
D. laboratoryjnym mostkiem Thomsona
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 30

Stal niskostopowa zawierająca składniki takie jak krzem, mangan, chrom oraz wanad, cechująca się podwyższoną ilością krzemu, znajduje zastosowanie w produkcji

A. resorów, sprężyn i drążków skrętnych
B. śrub, nakrętek, podkładek
C. narzędzi do obróbki skrawaniem
D. łożysk tocznych
Stal niskostopowa z dodatkami krzemu, manganu, chromu i wanadu charakteryzuje się korzystnymi właściwościami mechanicznymi, które sprawiają, że jest idealnym materiałem do produkcji resorów, sprężyn i drążków skrętnych. Dodatki te poprawiają wytrzymałość oraz odporność na zmęczenie materiału, co jest kluczowe w zastosowaniach, gdzie elementy te muszą wytrzymywać wielokrotne obciążenia dynamiczne. Na przykład, w przemyśle motoryzacyjnym resory i sprężyny używane w systemach zawieszenia pojazdów muszą nie tylko absorbować drgania, ale także bezpiecznie przenosić duże obciążenia. Stal niskostopowa, dzięki swoim właściwościom, może być poddawana różnym procesom obróbczo-wytwórczym, takim jak hartowanie czy odpuszczanie, co dodatkowo zwiększa jej trwałość. Zgodnie z normami ISO i DIN, komponenty wykonane z tej stali powinny spełniać określone wymagania dotyczące wytrzymałości i twardości, co czyni je niezawodnymi w krytycznych zastosowaniach. Przykłady zastosowań obejmują nie tylko przemysł motoryzacyjny, ale także maszyny budowlane i przemysł ciężki, gdzie elementy te są niezbędne do zapewnienia odpowiedniej wydajności i bezpieczeństwa.

Pytanie 31

Jakie materiały wykorzystuje się do wytwarzania rdzeni magnetycznych w transformatorach?

A. antyferromagnetyki
B. diamagnetyki
C. ferromagnetyki
D. paramagnetyki
Ferromagnetyki są materiałami, które wykazują silne właściwości magnetyczne, co czyni je idealnymi do zastosowania w produkcji rdzeni magnetycznych transformatorów. W szczególności, ferromagnetyki, jak żelazo, nikiel czy kobalt, mają zdolność do silnego namagnesowania oraz do zatrzymywania magnetyzmu po usunięciu zewnętrznego pola magnetycznego. Dzięki tym właściwościom, rdzenie ferromagnetyczne minimalizują straty energetyczne i zwiększają efektywność transformatorów. W praktyce, zastosowanie ferromagnetyków w transformatorach pozwala na zmniejszenie rozmiaru urządzenia oraz zwiększenie jego mocy, co jest szczególnie ważne w urządzeniach elektrycznych o dużej mocy, takich jak transformatory w stacjach elektroenergetycznych. Dobre praktyki w branży zalecają również stosowanie materiałów o wysokiej permeabilności i niskich stratach histerezowych, co przyczynia się do jeszcze lepszej wydajności energetycznej transformatorów.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Jakiego klucza należy użyć, aby odkręcić śrubę z walcowym łbem i sześciokątnym gniazdem?

A. Imbusowego
B. Dynamometrycznego
C. Nasadowego
D. Płaskiego
Odpowiedź 'imbusowy' jest poprawna, ponieważ śruby z łbem walcowym i gniazdem sześciokątnym są zaprojektowane do współpracy z kluczami imbusowymi. Klucz imbusowy, znany również jako klucz sześciokątny, ma kształt, który idealnie pasuje do gniazda w takiej śrubie. Umożliwia to łatwe i efektywne wykręcanie i wkręcanie śrub, a także zapewnia mocny chwyt, co jest szczególnie ważne w zastosowaniach wymagających dużego momentu obrotowego. Przykładowo, wiele rowerów, mebli flat-pack i urządzeń mechanicznych wykorzystuje tego rodzaju śruby, co sprawia, że klucz imbusowy jest niezbędnym narzędziem w narzędziowni. Standardy DIN 911 określają wymiary kluczy imbusowych, co gwarantuje ich uniwersalność i dostępność w różnych rozmiarach, co jest kluczowe w pracy z różnymi typami śrub. W związku z tym, używając klucza imbusowego, możemy zapewnić właściwe dopasowanie oraz uniknąć uszkodzenia śruby lub narzędzia.

Pytanie 37

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. ochrony ramienia robota przed kolizjami z operatorem
B. chronienia ramienia robota przed przeciążeniem
C. chwytania obiektu z odpowiednią siłą
D. przemieszczania obiektu w przestrzeni
Wybór innych opcji, takich jak zabezpieczanie ramienia robota przed kolizją z operatorem, przemieszczanie elementu w przestrzeni czy zabezpieczanie ramienia robota przed przeciążeniem, wskazuje na niepełne zrozumienie roli efektora w systemie robotycznym. Zabezpieczanie ramienia przed kolizją z operatorem jest ważnym aspektem bezpieczeństwa, jednak nie jest to funkcjonalność efektora, lecz systemów zabezpieczeń, takich jak czujniki obecności czy osłony, które chronią ludzi w otoczeniu robotów. Przemieszczanie elementów w przestrzeni jest efektem działania robota, ale to nie efektor jest odpowiedzialny za tę funkcję – to ramię robota wykonuje ruchy, natomiast efektor ma jedynie za zadanie uchwycić obiekt. Z kolei zabezpieczanie ramienia przed przeciążeniem to aspekt konstrukcyjny, związany z systemami monitorowania obciążenia i nie jest typową funkcją efektora. Typowym błędem myślowym jest mylenie zadań, jakie pełni efektor z innymi funkcjami robota, co prowadzi do niezrozumienia jego głównej roli, jaką jest chwytanie obiektów, co z kolei jest kluczowe dla efektywności procesów automatyzacji.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Aby zobrazować funkcjonowanie systemu mechatronicznego na panelu HMI, należy zainstalować oprogramowanie typu

A. CAM
B. CAE
C. SCADA
D. CAD
Odpowiedź SCADA (Supervisory Control and Data Acquisition) jest poprawna, ponieważ oprogramowanie to jest kluczowe dla wizualizacji i monitorowania systemów mechatronicznych w czasie rzeczywistym. SCADA umożliwia integrację różnych urządzeń i czujników, co pozwala na efektywne zbieranie danych oraz ich analizę. Dzięki graficznym interfejsom użytkownika (HMI), operatorzy mogą w prosty sposób przeglądać dane, reagować na alarmy oraz zarządzać procesami. Przykładem zastosowania SCADA może być kontrola procesów produkcyjnych w fabrykach, gdzie system zbiera informacje o stanie maszyn i automatycznie podejmuje działania w celu utrzymania wydajności produkcji. W branży przemysłowej SCADA jest standardem, który wspiera automatyzację oraz poprawia efektywność operacyjną, wpisując się w najlepsze praktyki zarządzania procesami. Dodatkowo, wiele systemów SCADA jest zgodnych z międzynarodowymi standardami, co zapewnia ich interoperacyjność i umożliwia integrację z innymi systemami zarządzania.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.