Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 sierpnia 2025 01:22
  • Data zakończenia: 24 sierpnia 2025 01:37

Egzamin niezdany

Wynik: 11/40 punktów (27,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

W sieci lokalnej, aby chronić urządzenia sieciowe przed przepięciami oraz różnicami napięć, które mogą wystąpić w trakcie burzy lub innych wyładowań atmosferycznych, należy zastosować

A. przełącznik
B. ruter
C. urządzenie typu NetProtector
D. sprzętową zaporę sieciową
Urządzenie typu NetProtector jest kluczowym elementem ochrony sieci LAN przed skutkami przepięć i różnic potencjałów, które mogą wystąpić w wyniku wyładowań atmosferycznych. Te urządzenia, znane również jako ograniczniki przepięć, są zaprojektowane do odprowadzania nadmiaru energii do ziemi, chroniąc w ten sposób wrażliwe sprzęty sieciowe, takie jak routery, przełączniki, serwery i inne urządzenia końcowe. Przykładowo, w przypadku burzy, kiedy może dojść do pojawienia się przepięć, NetProtektor działa jako pierwsza linia obrony, minimalizując ryzyko uszkodzeń. W praktyce, wdrażanie takich urządzeń jest rekomendowane przez organizacje zajmujące się standardami bezpieczeństwa, takie jak IEC (Międzynarodowa Komisja Elektrotechniczna) oraz NFPA (Krajowe Stowarzyszenie Ochrony Przeciwpożarowej). Dobrą praktyką jest zainstalowanie NetProtectora na każdym etapie sieci, a także regularne przeprowadzanie ich konserwacji i wymiany, aby zapewnić stałą ochronę.

Pytanie 2

Czym jest MFT w systemie plików NTFS?

A. główny plik indeksowy partycji
B. tablica partycji dysku twardego
C. plik zawierający dane o poszczególnych plikach i folderach na danym woluminie
D. główny rekord bootowania dysku
MFT, czyli Master File Table, jest kluczowym elementem systemu plików NTFS (New Technology File System). Pełni rolę centralnego pliku, który przechowuje wszystkie informacje dotyczące plików i folderów na danym woluminie, w tym ich atrybuty, lokalizację na dysku oraz inne istotne metadane. Dzięki MFT system operacyjny może szybko uzyskać dostęp do informacji o plikach, co znacząco poprawia wydajność operacji na plikach. Przykładem zastosowania MFT jest szybkie wyszukiwanie plików, co jest niezwykle istotne w środowiskach, gdzie użytkownicy często przeszukują duże ilości danych. W praktyce dobre zrozumienie działania MFT jest kluczowe dla administratorów systemów, którzy muszą zarządzać pamięcią masową oraz optymalizować wydajność systemu. Warto również zauważyć, że MFT jest częścią standardu NTFS, który zapewnia większą niezawodność i funkcjonalność w porównaniu do starszych systemów plików, takich jak FAT32.

Pytanie 3

Jak w systemie Windows zmienić port drukarki, która została zainstalowana?

A. Ostatnia znana dobra konfiguracja
B. Ustawienia drukowania
C. Właściwości drukarki
D. Menedżer zadań
Wybór opcji do zmiany portu drukarki w systemie Windows wymaga znajomości funkcji, które są rzeczywiście przeznaczone do zarządzania ustawieniami drukarek. Ostatnia znana dobra konfiguracja jest funkcją zapewniającą możliwość przywrócenia poprzednich ustawień systemowych w przypadku problemów z uruchomieniem systemu, a nie narzędziem do konfiguracji drukarki. Preferencje drukowania to miejsce, w którym użytkownik może zmieniać ustawienia związane z jakością druku, układem strony czy formatem papieru, lecz nie ma tam opcji związanej z portami. Menedżer zadań służy do monitorowania i zarządzania uruchomionymi procesami oraz aplikacjami, a nie do zarządzania ustawieniami sprzętowymi drukarek. Typowym błędem jest mylenie funkcji systemowych, co prowadzi do niepoprawnych decyzji przy konfiguracji sprzętu. Użytkownicy powinni zdawać sobie sprawę, że każdy element systemu operacyjnego ma swoje określone zastosowanie i funkcje. Aby skutecznie zarządzać drukarkami, kluczowe jest korzystanie z odpowiednich narzędzi dostępnych w systemie, takich jak Właściwości drukarki, które zapewniają pełną kontrolę nad ustawieniami sprzętu. Efektywne wykorzystywanie tych narzędzi pozwala uniknąć frustracji i błędów w codziennej pracy z drukarkami, co jest zgodne z najlepszymi praktykami w zarządzaniu infrastrukturą IT.

Pytanie 4

Jaką maksymalną prędkość transferu danych pozwala osiągnąć interfejs USB 3.0?

A. 4 GB/s
B. 400 Mb/s
C. 5 Gb/s
D. 120 MB/s
Wybór prędkości transferu z poniższych opcji nie prowadzi do prawidłowego wniosku o możliwościach interfejsu USB 3.0. Przykładowo, 120 MB/s jest znacznie poniżej specyfikacji USB 3.0 i odpowiada wydajności interfejsów z wcześniejszych wersji, takich jak USB 2.0. Tego rodzaju błędne wyobrażenia mogą wynikać z niewłaściwego porównania prędkości transferu, gdzie nie uwzględnia się konwersji jednostek – prędkości wyrażone w megabajtach na sekundę (MB/s) różnią się od megabitów na sekundę (Mb/s). Dla przykładu, 400 Mb/s to tylko około 50 MB/s, co również nie osiąga specyfikacji USB 3.0. W przypadku 4 GB/s, choć wydaje się to atrakcyjne, przekracza to możliwości USB 3.0, które maksymalizuje swoje transfery do 5 Gb/s, co oznacza, że nie jest to opcja realistyczna. Zrozumienie różnicy między jednostkami oraz rzeczywistymi możliwościami technologii USB jest kluczowe dla prawidłowego wykonania zastosowań w praktyce. Użytkownicy często mylą maksymalne wartości przesyłania danych z rzeczywistymi prędkościami, które mogą być ograniczone przez inne czynniki, takie jak jakość kabli, zastosowane urządzenia czy też warunki środowiskowe. Dlatego ważne jest, aby przed podjęciem decyzji o zakupie lub użyciu danego sprzętu z interfejsem USB, dokładnie zrozumieć jego specyfikację oraz możliwości.

Pytanie 5

Aby podłączyć kasę fiskalną z interfejsem DB-9M do komputera stacjonarnego, należy użyć przewodu

A. DB-9F/M
B. DB-9M/M
C. DB-9M/F
D. DB-9F/F
Wybór przewodu DB-9F/F jako odpowiedzi na to pytanie jest poprawny ze względu na specyfikę połączeń komunikacyjnych w systemach kas fiskalnych. Kasę fiskalną wyposażoną w złącze DB-9M (męskie) należy podłączyć do portu szeregowego komputera, który zazwyczaj ma złącze DB-9F (żeńskie). Użycie przewodu DB-9F/F, który ma dwa żeńskie złącza, pozwala na bezpośrednie połączenie dwóch gniazd o różnych typach, co jest zgodne z zasadami praktycznego podłączania urządzeń do komputerów. Przykładem zastosowania może być sytuacja w małym punkcie sprzedaży, gdzie kasa fiskalna jest podłączona do komputera w celu rejestrowania transakcji oraz raportowania ich do systemu. W branży elektronicznej oraz w zastosowaniach inżynieryjnych stosowanie odpowiednich przewodów zgodnych z rodzajem złącz jest kluczowe dla zapewnienia stabilności i niezawodności połączeń. Warto także pamiętać, że w przypadku innych urządzeń, takich jak drukarki czy skanery, odpowiedni dobór przewodów jest równie ważny dla prawidłowego funkcjonowania całego systemu.

Pytanie 6

Jak nazywa się zestaw usług internetowych dla systemów operacyjnych z rodziny Microsoft Windows, który umożliwia działanie jako serwer FTP oraz serwer WWW?

A. WINS
B. APACHE
C. IIS
D. PROFTPD
APACHE to oprogramowanie serwera WWW, które jest szeroko stosowane w środowisku Linux, ale nie jest rozwiązaniem stworzonym dla systemów Windows, co czyni go nietrafionym wyborem w kontekście pytania. WINS, czyli Windows Internet Name Service, jest protokołem służącym do przekształcania nazw NetBIOS na adresy IP, a nie serwerem WWW ani FTP, co dowodzi, że ta odpowiedź nie koreluje z wymaganiami pytania. PROFTPD to z kolei serwer FTP, który również nie jest rozwiązaniem przeznaczonym dla systemów Windows, choć jest popularny w środowisku Linux. Błędem myślowym, który prowadzi do wyboru tych odpowiedzi, jest mylenie różnych funkcji i protokołów z pełnym zestawem usług serwera internetowego. IIS wyróżnia się nie tylko swoją funkcjonalnością, ale również integracją z innymi usługami Microsoft, co jest kluczowe dla efektywnego zarządzania serwerem. Wybierając odpowiedzi, należy zwrócić szczególną uwagę na specyfikę i przeznaczenie oprogramowania, co pozwoli uniknąć nieporozumień i błędnych wniosków. Zrozumienie różnic między tymi technologiami oraz ich właściwym zastosowaniem jest niezwykle ważne dla każdego specjalisty IT, dlatego zawsze warto analizować kontekst pytania przed podjęciem decyzji.

Pytanie 7

Która z poniższych form zapisu liczby 77(8) jest nieprawidłowa?

A. 3F(16)
B. 111111(2)
C. 11010(ZM)
D. 63(10)
Przyjrzyjmy się teraz niepoprawnym odpowiedziom. Odpowiedź 63(10) jest poprawna w kontekście konwersji liczby ósemkowej 77(8) na system dziesiętny, gdyż 77(8) równa się 63(10). W związku z tym, nie jest to odpowiedź błędna, ale prawidłowa. Kolejna odpowiedź, 3F(16), oznacza liczbę 63 w systemie szesnastkowym, co również jest zgodne z wartością liczby 77(8). Z kolei odpowiedź 111111(2) to liczba 63 w systemie binarnym, co także nie jest błędnym zapisem liczby 77(8), ponieważ 111111(2) to 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0 = 32 + 16 + 8 + 4 + 2 + 1 = 63. Tak więc, koncepcja błędnych odpowiedzi jest niewłaściwa, ponieważ obie liczby 63(10) i 111111(2) są poprawnymi reprezentacjami liczby 77(8). Błędne podejście polega na niepoprawnym zrozumieniu konwersji między systemami liczbowymi oraz mylącym się w ocenie zapisów liczbowych w różnych systemach. Przy konwersji między systemami liczbowymi istotne jest, aby posiadać solidne podstawy matematyczne i rozumieć, jakie operacje należy wykonać, aby uzyskać poprawne wyniki.

Pytanie 8

Jakie składniki systemu komputerowego muszą być usuwane w wyspecjalizowanych zakładach przetwarzania ze względu na obecność niebezpiecznych substancji lub chemicznych pierwiastków?

A. Tonery
B. Obudowy komputerów
C. Chłodnice
D. Kable
Przewody, radiatory i obudowy komputerów uznawane są za mniej niebezpieczne w kontekście utylizacji z powodu ich prostszej budowy i zastosowanych materiałów, które rzadziej zawierają szkodliwe substancje. Przewody zazwyczaj składają się z miedzi lub aluminium, które są materiałami łatwymi do recyklingu, a ich utylizacja odbywa się zgodnie z normami ekologicznymi, które regulują proces odzyskiwania metali szlachetnych. Radiatory, choć mogą zawierać niewielkie ilości substancji chemicznych, są głównie wykonane z materiałów takich jak aluminium lub miedź, które również nadają się do recyklingu i nie są klasyfikowane jako niebezpieczne odpady. Obudowy komputerów są najczęściej zrobione z plastiku lub metalu, co również nie kwalifikuje ich do kategorii substancji niebezpiecznych. Mylenie tych elementów z tonerami wynika z niewłaściwego zrozumienia ich składu chemicznego oraz wpływu na zdrowie i środowisko. Przykładem powszechnego błędu myślowego jest założenie, że wszystkie komponenty elektroniczne niosą takie samo ryzyko, co moze prowadzić do niewłaściwej utylizacji i zwiększenia zagrożenia dla zdrowia publicznego. Warto pamiętać, że każdy rodzaj odpadu elektronicznego powinien być oceniany indywidualnie, aby zastosować odpowiednie metody recyklingu i przetwarzania, w zgodzie z przepisami prawnymi oraz najlepszymi praktykami w dziedzinie gospodarki odpadami.

Pytanie 9

Gdy w przeglądarce internetowej wpiszemy adres HTTP, pojawia się błąd "403 Forbidden", co oznacza, że

A. brak pliku docelowego na serwerze.
B. użytkownik nie dysponuje uprawnieniami do żądanego zasobu.
C. adres IP karty sieciowej jest niewłaściwie przypisany.
D. wielkość wysyłanych danych przez klienta została ograniczona.
Błąd 403 Forbidden nie jest związany z brakiem pliku docelowego na serwerze, co skutkowałoby błędem 404 Not Found. Gdy serwer nie może znaleźć żądanego zasobu, zwraca właśnie ten kod błędu, informując, że zasób nie istnieje. Ograniczenia dotyczące wielkości wysyłanych danych przez klienta są natomiast związane z błędami typu 413 Payload Too Large, które występują, gdy przesyłane dane przekraczają dozwolony rozmiar ustalony przez serwer. Wreszcie, błąd związany z niewłaściwym adresem IP karty sieciowej ma charakter związany z problemami w konfiguracji sieci, a nie z uprawnieniami dostępu do zasobów na serwerze. Typowe błędy myślowe w tym przypadku mogą wynikać z braku zrozumienia różnicy pomiędzy różnymi kodami błędów HTTP oraz ich znaczeniem. Ważne jest, aby użytkownicy i programiści byli świadomi, że każdy kod błędu HTTP ma swoje specyficzne znaczenie i zastosowanie, co jest kluczowe w procesie diagnozowania problemów z dostępem do zasobów w internecie. Zrozumienie tych różnic jest niezbędne do skutecznego zarządzania aplikacjami webowymi oraz do zapewnienia, że użytkownicy otrzymują odpowiednie komunikaty w przypadku wystąpienia problemów.

Pytanie 10

Jaki protokół jest stosowany przez WWW?

A. SMTP
B. FTP
C. IPSec
D. HTTP
Protokół HTTP (HyperText Transfer Protocol) jest kluczowym elementem komunikacji w sieci WWW, umożliwiającym przesyłanie danych pomiędzy serwerami a klientami (przeglądarkami internetowymi). Jest to protokół aplikacyjny, który działa na warstwie aplikacji modelu OSI. HTTP definiuje zasady, jakimi posługują się klienci i serwery do wymiany informacji. W praktyce oznacza to, że gdy użytkownik wpisuje adres URL w przeglądarkę, przeglądarka wysyła zapytanie HTTP do serwera, który następnie odpowiada przesyłając żądane zasoby, takie jak strony HTML, obrazy czy pliki CSS. Protokół ten obsługuje różne metody, takie jak GET, POST, PUT, DELETE, co pozwala na różne sposoby interakcji z zasobami. Warto również zwrócić uwagę na rozwinięcie tego protokołu w postaci HTTPS (HTTP Secure), który dodaje warstwę szyfrowania dzięki zastosowaniu protokołu TLS/SSL, zwiększając bezpieczeństwo przesyłanych danych. Znajomość HTTP jest kluczowa dla każdego, kto zajmuje się tworzeniem aplikacji internetowych oraz zarządzaniem treścią w sieci, ponieważ umożliwia efektywne projektowanie interfejsów oraz lepsze zrozumienie działania serwisów internetowych.

Pytanie 11

W przypadku adresacji IPv6, zastosowanie podwójnego dwukropka służy do

A. jednorazowego zamienienia jednego bloku jedynek
B. wielokrotnego zastąpienia różnych bloków jedynek
C. jednorazowego zamienienia jednego lub kolejno położonych bloków wyłącznie z zer
D. wielokrotnego zastąpienia różnych bloków zer oddzielonych blokiem jedynek
Wiele osób może mylnie interpretować zastosowanie podwójnego dwukropka w adresacji IPv6, co prowadzi do nieporozumień. Istotnym błędem jest przekonanie, że podwójny dwukropek może zastępować bloki jedynek. W rzeczywistości, podwójny dwukropek jest zarezerwowany wyłącznie dla bloków zerowych, co oznacza, że ​​wszystkie propozycje dotyczące zastępowania bloków jedynek są nieprawidłowe. Warto zauważyć, że w typowym adresie IPv6, po zredukowaniu zer, pozostałe bloki mogą zawierać wartości różne od zera, a ich zapis pozostaje niezmieniony. Prowadzi to do nieporozumień związanych z interpretacją adresów, gdzie użytkownicy mogą zdezorientować się, myśląc, że podwójny dwukropek ma szersze zastosowanie. Należy również pamiętać, że podwójny dwukropek może być użyty tylko raz w adresie, co jest istotnym ograniczeniem, jednakże niektóre odpowiedzi sugerują, że można go używać wielokrotnie, co jest niezgodne z ustaleniami standardów RFC. Takie błędne rozumienie może prowadzić do problemów w praktycznym zastosowaniu adresacji IPv6, a także w dokumentacji technicznej, która powinna być zgodna z obowiązującymi normami branżowymi.

Pytanie 12

Lokalny komputer posiada adres 192.168.0.5. Po otwarciu strony internetowej z tego urządzenia, która rozpoznaje adresy w sieci, wyświetla się informacja, że jego adres to 195.182.130.24. Co to oznacza?

A. adres został przetłumaczony przez translację NAT.
B. inny komputer podszył się pod adres lokalnego komputera.
C. serwer WWW dostrzega inny komputer w sieci.
D. serwer DHCP zmienił adres podczas przesyłania żądania.
W przypadku, gdy serwer WWW widzi inny adres IP, nie oznacza to, że inny komputer w sieci został zidentyfikowany. W rzeczywistości adres 195.182.130.24 jest wynikiem działania translacji NAT, a nie identyfikacji innego komputera. Obserwacja adresu IP na stronie internetowej odnosi się do zewnętrznego adresu, który router przypisuje dla ruchu internetowego. Można mylnie sądzić, że serwer DHCP mógł zmienić adres IP w trakcie przesyłania żądania, jednak DHCP działa na poziomie przydzielania lokalnych adresów IP w sieci lokalnej, a nie na modyfikowaniu ruchu internetowego. Kolejnym błędnym podejściem jest założenie, że inny komputer podszył się pod lokalny adres. To podejście pomija fakt, że NAT jest standardowym procesem, który przekształca lokalne adresy na zewnętrzne dla celów komunikacji z Internetem. Tego typu nieporozumienia mogą prowadzić do mylnych interpretacji danych sieciowych, dlatego ważne jest zrozumienie mechanizmów działania NAT oraz roli routera w komunikacji między lokalnymi a publicznymi adresami IP. W praktyce, należy zawsze uwzględniać te mechanizmy, aby poprawnie diagnozować problemy sieciowe oraz efektywnie zarządzać adresacją IP.

Pytanie 13

Narzędzie pokazane na ilustracji jest używane do weryfikacji

Ilustracja do pytania
A. karty sieciowej
B. okablowania LAN
C. zasilacza
D. płyty głównej
Pokazane na rysunku urządzenie to tester okablowania LAN, które jest kluczowym narzędziem w pracy techników sieciowych. Tester ten, często wyposażony w dwie jednostki – główną i zdalną, pozwala na sprawdzenie integralności przewodów sieciowych takich jak kable Ethernet. Działa na zasadzie wysyłania sygnału elektrycznego przez poszczególne przewody w kablu i weryfikacji ich poprawnego ułożenia oraz ciągłości. Dzięki temu można zdiagnozować potencjalne przerwy lub błędne połączenia w przewodach. Stosowanie testerów okablowania LAN jest zgodne ze standardami branżowymi, takimi jak TIA/EIA-568, które określają zasady projektowania i instalacji sieci strukturalnych. W środowisku biznesowym regularne testowanie okablowania sieciowego zapewnia stabilne i wydajne działanie sieci komputerowych, co jest niezbędne dla utrzymania ciągłości operacyjnej. Dodatkowo, tester można wykorzystać do sprawdzania zgodności z określonymi standardami, co jest kluczowe przy zakładaniu nowych instalacji lub modernizacji istniejącej infrastruktury. Regularna kontrola i certyfikacja okablowania przy użyciu takich urządzeń minimalizuje ryzyko awarii i problemów z przepustowością sieci.

Pytanie 14

Jakie urządzenie jest używane do łączenia lokalnej sieci bezprzewodowej z siecią kablową?

A. hub
B. access point
C. switch
D. modem
Koncentrator, przełącznik i modem to urządzenia, które pełnią różne funkcje w infrastrukturze sieciowej, ale nie są odpowiednie do bezpośredniego połączenia lokalnej sieci bezprzewodowej z siecią przewodową. Koncentratory to urządzenia, które działają na warstwie fizycznej modelu OSI i mają za zadanie rozdzielanie sygnałów z jednego portu na wiele, co prowadzi do kolizji i zmniejsza efektywność sieci. Z kolei przełączniki operują na warstwie drugiej, czyli warstwie łącza danych, i służą do kierowania ruchu w lokalnych sieciach przewodowych, ale nie zapewniają funkcji bezprzewodowej. Modem, w kontekście połączeń internetowych, konwertuje sygnały cyfrowe na analogowe i vice versa, umożliwiając dostęp do internetu, ale również nie jest odpowiedni do łączenia sieci bezprzewodowej z przewodową. Typowe błędy myślowe, które prowadzą do mylenia tych urządzeń, to niedostateczne zrozumienie ich funkcji oraz pomijanie różnic w sposobie, w jaki komunikują się z siecią. Istotne jest, aby przy projektowaniu sieci zrozumieć, jakie urządzenia są odpowiednie do określonych zadań, aby zapewnić optymalną wydajność i bezpieczeństwo sieci.

Pytanie 15

Który z podanych adresów należy do kategorii publicznych?

A. 192.168.255.1
B. 10.0.0.1
C. 11.0.0.1
D. 172.31.0.1
Adresy jak 10.0.0.1, 172.31.0.1 i 192.168.255.1 to przykłady adresów prywatnych. Zdefiniowane w standardzie RFC 1918, używa się ich głównie w lokalnych sieciach i nie są dostępne w Internecie. Na przykład 10.0.0.1 to część bloku 10.0.0.0/8, który jest sporym zasięgiem adresów wykorzystywanym często w różnych firmach. Z kolei 172.31.0.1 należy do zakresu 172.16.0.0/12 i też jest przeznaczony do użycia wewnętrznego. Natomiast adres 192.168.255.1 to część bardzo popularnego zakresu 192.168.0.0/16, który znajdziemy w domowych routerach. Wiele osób myli te adresy z publicznymi, bo wyglądają jak każdy inny adres IP. Typowe jest myślenie, że jak adres wygląda jak IP, to można go używać w Internecie. Tylko, żeby to działało, potrzebna jest technika NAT, która tłumaczy te prywatne adresy na publiczny adres, co umożliwia im komunikację z Internetem. Warto też pamiętać, że używanie adresów prywatnych jest ważne dla efektywnego zarządzania przestrzenią adresową IP, co staje się coraz bardziej kluczowe w dzisiejszych czasach, biorąc pod uwagę rosnącą liczbę urządzeń w sieci.

Pytanie 16

Jak określana jest transmisja w obie strony w sieci Ethernet?

A. Half duplex
B. Duosimplex
C. Simplex
D. Full duplex
Analizując inne odpowiedzi, warto zwrócić uwagę na pojęcie simplex, które oznacza transmisję jednostronną. W tej konfiguracji dane mogą być przesyłane tylko w jednym kierunku, co ogranicza efektywność komunikacji, zwłaszcza w nowoczesnych zastosowaniach, gdzie interaktywność jest kluczowa. Duosimplex to termin, który nie jest powszechnie używany w kontekście sieci Ethernet i nie posiada uznania w standardach branżowych. Termin ten może wprowadzać w błąd, sugerując, że istnieje forma transmisji, która umożliwia dwukierunkową komunikację, ale w sposób ograniczony. Half duplex to kolejny termin, który odnosi się do transmisji dwukierunkowej, lecz tylko na przemian; urządzenie może wysyłać lub odbierać dane, lecz nie równocześnie. Takie rozwiązanie, choć czasami stosowane w starszych technologiach, nie jest zgodne z wymaganiami nowoczesnych aplikacji, które wymagają pełnej komunikacji w czasie rzeczywistym. Użycie half duplex prowadzi do opóźnień i może być źródłem kolizji w sieci. Rozumienie różnic między tymi pojęciami jest kluczowe dla efektywnego projektowania i implementacji sieci komputerowych, zwłaszcza w kontekście rosnących wymagań na przepustowość i jakość usług.

Pytanie 17

Znak handlowy dla produktów certyfikowanych według standardów IEEE 802.11 to

A. GSM
B. Wi-Fi
C. DSL
D. LTE
Odpowiedzi takie jak LTE, GSM czy DSL są niepoprawne, ponieważ odnoszą się do zupełnie innych technologii i standardów komunikacyjnych. LTE (Long Term Evolution) to technologia komórkowa używana w sieciach telefonii mobilnej, która zapewnia szybki dostęp do danych, ale nie jest związana z lokalnymi sieciami bezprzewodowymi, jak Wi-Fi. GSM (Global System for Mobile Communications) to kolejny standard telefonii komórkowej, który również nie ma zastosowania w kontekście lokalnych sieci bezprzewodowych opartej na standardach IEEE 802.11. DSL (Digital Subscriber Line) to technologia szerokopasmowego dostępu do Internetu, która wykorzystuje istniejące linie telefoniczne do przesyłania danych, co jest całkowicie odmiennym podejściem od bezprzewodowej transmisji danych. Te błędne odpowiedzi mogą wynikać z nieporozumienia dotyczącego różnicy między technologiami mobilnymi a lokalnymi sieciami bezprzewodowymi. Użytkownicy często mylą te pojęcia, co prowadzi do nieprawidłowych wyborów w kontekście technologii komunikacyjnych. Zrozumienie, że Wi-Fi jest standardem specyficznym dla sieci lokalnych, podczas gdy wymienione odpowiedzi dotyczą innych obszarów telekomunikacji, jest kluczowe dla poprawnego zrozumienia zagadnień związanych z komunikacją bezprzewodową.

Pytanie 18

Na ilustracji złącze monitora, które zostało zaznaczone czerwoną ramką, będzie współdziałać z płytą główną posiadającą interfejs

Ilustracja do pytania
A. HDMI
B. D-SUB
C. DisplayPort
D. DVI
D-SUB, czyli VGA, to starszy analogowy interfejs do przesyłania sygnałów wideo. Kiedyś był popularny, ale teraz nie spełnia oczekiwań, jeśli chodzi o jakość cyfrowych wyświetlaczy, bo ma ograniczenia w rozdzielczości i jakości obrazu. HDMI jest bardziej znane w domowych urządzeniach, jak telewizory czy odtwarzacze multimedialne. Choć obsługuje sygnały wideo i audio, to różni się od DisplayPort i jest mniej używane w profesjonalnych rozwiązaniach. DVI to stary cyfrowy interfejs, który daje lepszy obraz niż D-SUB, ale też nie ma nowoczesnych opcji jak przesyłanie sygnału audio czy wsparcie dla wyższych rozdzielczości. Wybierając niepoprawne interfejsy, można się kierować ich popularnością, ale w profesjonalnym świecie DisplayPort jest na pewno lepszym rozwiązaniem, bo ma więcej funkcji, które ułatwiają pracę oraz zapewniają lepszą jakość obrazu. Te błędne odpowiedzi pokazują, jak ważne jest, żeby rozróżniać interfejsy według ich zastosowania i wymagań technicznych, aby odpowiednio dobrać sprzęt do potrzeb użytkownika.

Pytanie 19

Jakie materiały eksploatacyjne wykorzystuje się w rzutniku multimedialnym?

A. lampa projekcyjna
B. filament
C. fuser
D. bęben światłoczuły
Lampa projekcyjna jest kluczowym elementem rzutników multimedialnych, odpowiedzialnym za generowanie obrazu, który następnie jest wyświetlany na ekranie. To właśnie lampa, najczęściej typu DLP lub LCD, emituje światło, które przechodzi przez soczewki i filtry, tworząc wyraźny obraz. W praktyce, lampa projekcyjna umożliwia wyświetlanie prezentacji, filmów i innych treści wizualnych w różnych warunkach oświetleniowych. Standardy branżowe wymagają, aby lampy miały określoną jasność (mierzoną w lumenach) oraz długi czas życia, co sprawia, że ich wybór ma ogromne znaczenie dla jakości projekcji. Przykładowo, w salach konferencyjnych i edukacyjnych stosuje się rzutniki z lampami o wysokiej wydajności, co pozwala na użycie ich w jasnych pomieszczeniach, minimalizując wpływ otoczenia na widoczność wyświetlanego obrazu. Warto również zaznaczyć, że odpowiednia konserwacja i wymiana lampy, zgodnie z zaleceniami producenta, zapewnia optymalną jakość obrazu oraz wydłuża żywotność urządzenia.

Pytanie 20

Aby zabezpieczyć system przed atakami z sieci nazywanymi phishingiem, nie powinno się

A. posługiwać się stronami WWW korzystającymi z protokołu HTTPS
B. wykorzystywać bankowości internetowej
C. aktualizować oprogramowania do obsługi poczty elektronicznej
D. stosować przestarzałych przeglądarek internetowych
Starsze przeglądarki to tak naprawdę zły wybór, jeśli chodzi o chronienie się przed atakami phishingowymi. Wiesz, te starsze wersje nie mają wszystkich nowinek, które są potrzebne do wykrywania niebezpiecznych stron. Na przykład przeglądarki, takie jak Chrome, Firefox czy Edge, regularnie dostają aktualizacje, które pomagają walczyć z nowymi zagrożeniami, w tym phishingiem. Nowoczesne przeglądarki ostrzegają nas o podejrzanych witrynach, a czasem nawet same blokują te niebezpieczne treści. Wiadomo, że jeśli korzystasz z bankowości elektronicznej, musisz mieć pewność, że robisz to w bezpiecznym środowisku. Dlatego tak ważne jest, żeby mieć zaktualizowaną przeglądarkę. Regularne aktualizowanie oprogramowania, w tym przeglądarek, to kluczowy krok, żeby ograniczyć ryzyko. No i nie zapominaj o serwisach HTTPS – to daje dodatkową pewność, że twoje dane są szyfrowane i bezpieczne.

Pytanie 21

Najlepszym sposobem na zabezpieczenie domowej sieci Wi-Fi jest

A. stosowanie szyfrowania WEP
B. zmiana adresu MAC routera
C. stosowanie szyfrowania WPA-PSK
D. zmiana nazwy SSID
Stosowanie szyfrowania WPA-PSK (Wi-Fi Protected Access Pre-Shared Key) jest najskuteczniejszą metodą zabezpieczenia domowej sieci Wi-Fi, ponieważ oferuje znacząco lepszy poziom ochrony w porównaniu do starszych standardów, takich jak WEP (Wired Equivalent Privacy). WPA-PSK wykorzystuje silne algorytmy szyfrujące, co znacznie utrudnia potencjalnym intruzom przechwycenie i odszyfrowanie przesyłanych danych. W praktyce, aby wdrożyć WPA-PSK, użytkownik musi ustawić mocne hasło, które jest kluczem do szyfrowania. Im dłuższe i bardziej skomplikowane jest hasło, tym trudniej jest złamać zabezpieczenia. Warto także pamiętać, że WPA2, które jest nowszą wersją, wprowadza dodatkowe ulepszenia, takie jak lepsze mechanizmy autoryzacji i szyfrowania, co czyni sieć jeszcze bardziej odporną na ataki. Stosowanie WPA-PSK jest zgodne z aktualnymi standardami branżowymi, a także jest zalecane przez ekspertów ds. bezpieczeństwa sieci.

Pytanie 22

Według normy JEDEC, standardowe napięcie zasilające dla modułów pamięci RAM DDR3L o niskim napięciu wynosi

A. 1.35 V
B. 1.65 V
C. 1.20 V
D. 1.50 V
Wybór 1.20 V, 1.50 V oraz 1.65 V nie jest zgodny z rzeczywistością specyfikacji JEDEC dotyczącej pamięci DDR3L. Napięcie 1.20 V jest charakterystyczne dla pamięci DDR4, która została zaprojektowana z myślą o jeszcze niższym zużyciu energii oraz wyższej wydajności w porównaniu do DDR3L. Zastosowanie DDR4 umożliwia osiąganie większych prędkości przesyłu danych, ale wymaga także nowszych płyt głównych oraz układów scalonych. Z kolei napięcie 1.50 V jest standardem dla pamięci DDR3, która jest starszą technologią i nie jest zoptymalizowana pod kątem niskiego poboru mocy. Użycie tego napięcia w kontekście DDR3L jest błędne, ponieważ prowadziłoby do nieefektywnego działania modułów oraz zwiększonego zużycia energii, co w przypadku urządzeń mobilnych może być krytyczne. Natomiast 1.65 V to maksymalne napięcie, które może być stosowane w niektórych modułach pamięci DDR3, ale nie w kontekście DDR3L, gdzie kluczowym celem było obniżenie napięcia dla lepszego zarządzania energią. Niezrozumienie różnic między tymi specyfikacjami może prowadzić do nieodpowiedniego doboru pamięci do systemów, co z kolei może wpływać na stabilność i wydajność całej platformy komputerowej.

Pytanie 23

Poprzez użycie opisanego urządzenia możliwe jest wykonanie diagnostyki działania

Ilustracja do pytania
A. pamięci RAM
B. interfejsu SATA
C. modułu DAC karty graficznej
D. zasilacza ATX
Choć pamięć RAM jest kluczowym elementem każdego komputera multimetr nie jest odpowiednim narzędziem do jej diagnostyki. Pamięć RAM wymaga specjalistycznego oprogramowania do testowania które sprawdza jej działanie wydajność oraz obecność ewentualnych błędów w danych. Interfejs SATA z kolei odnosi się do standardu połączeń dla dysków twardych i napędów optycznych co również nie jest obszarem w którym multimetr miałby zastosowanie. Dla diagnostyki SATA używa się narzędzi programowych które mogą testować prędkości transferu oraz integralność danych. Moduł DAC karty graficznej odpowiedzialny jest za konwersję sygnałów cyfrowych na analogowe co jest istotne w kontekście wyjść wideo. Jednakże sprawdzanie poprawności jego działania wymaga analizy sygnałów wideo a nie parametrów elektrycznych co czyni multimetr nieodpowiednim narzędziem. Typowe błędy myślowe w tym kontekście mogą wynikać z błędnego przypisania funkcji narzędzi do procesów które wymagają zupełnie innego podejścia diagnostycznego. Multimetr jest niezastąpiony w pomiarach elektrycznych a nie w testach funkcjonalnych złożonych komponentów komputerowych.

Pytanie 24

Możliwą przyczyną usterki drukarki igłowej może być awaria

A. termorezystora
B. elektrody ładującej
C. dyszy
D. elektromagnesu
Wybór termorezystora jako przyczyny awarii drukarki igłowej opiera się na nieporozumieniu dotyczącym funkcji tego komponentu. Termorezystor, który jest używany do pomiaru temperatury, nie ma bezpośredniego wpływu na mechanikę działania drukarki igłowej. Zwykle jego rola ogranicza się do monitorowania temperatury w systemach, gdzie wypływ atramentu może być zależny od ciepłoty, co jest bardziej typowe dla drukarek atramentowych. Przypisanie usterki termorezystora do problemu z drukowaniem w kontekście drukarek igłowych jest błędne i prowadzi do mylnych diagnoz. Dysza, choć istotna w procesie druku, nie jest kluczowym elementem w przypadku drukarek igłowych, które opierają się na mechanizmie igieł. Przyczyną problemu w tym przypadku nie jest również elektroda ładująca, która jest częściej związana z drukiem elektrostatycznym, a nie z technologią igłową. Zrozumienie różnicy pomiędzy technologiami druku, jak również roli poszczególnych elementów, jest kluczowe dla poprawnej diagnozy usterek. Błędne przypisanie winy różnym komponentom może prowadzić do nieefektywnego rozwiązywania problemów oraz niepotrzebnych kosztów związanych z naprawą urządzenia. Warto zawsze bazować na wiedzy technicznej i standardowych procedurach diagnostycznych, aby skutecznie identyfikować źródła problemów.

Pytanie 25

Jaką rolę pełni serwer plików w sieciach komputerowych LAN?

A. zarządzanie danymi na komputerach w obrębie sieci lokalnej
B. nadzorowanie działania przełączników i ruterów
C. przeprowadzanie obliczeń na lokalnych komputerach
D. współdzielenie tych samych zasobów
Zrozumienie roli serwera plików w sieciach LAN to podstawa, żeby dobrze zarządzać danymi. Wybrane odpowiedzi wskazują na różne mylne pojęcia o tym, do czego serwer plików jest potrzebny. Na przykład, jedna z odpowiedzi sugeruje, że serwer plików robi obliczenia na komputerach lokalnych. To nieprawda, bo serwer plików zajmuje się tylko przechowywaniem i udostępnianiem plików. Obliczenia odbywają się na komputerach użytkowników. Inna odpowiedź mówi o zarządzaniu danymi lokalnie, a to też pomyłka. Serwer plików udostępnia pliki w sieci, a nie zarządza nimi lokalnie. Mówienie o switchach i routerach w kontekście zarządzania danymi też jest nietrafione. Te urządzenia dbają o ruch sieciowy, a nie o przechowywanie plików. Ważne jest, żeby rozumieć te różnice, bo pomyłki w myśleniu mogą prowadzić do złego projektowania infrastruktury IT. Pamiętaj, serwer plików ma za zadanie udostępniać zasoby, a nie zarządzać obliczeniami czy lokalnymi danymi.

Pytanie 26

Aby zrealizować wymianę informacji między dwoma odmiennymi sieciami, konieczne jest użycie

A. routera
B. mostu
C. przełącznika
D. koncentratora
Most, przełącznik i koncentrator to urządzenia, które pełnią odpowiednie funkcje w sieciach, jednak nie są przeznaczone do komunikacji pomiędzy różnymi sieciami. Most (bridge) działa na warstwie drugiej modelu OSI – warstwie łącza, a jego głównym zadaniem jest łączenie dwóch segmentów tej samej sieci lokalnej (LAN), co oznacza, że nie potrafi efektywnie zarządzać różnymi adresami IP. Przełącznik (switch) również działa na warstwie łącza i jest używany do łączenia urządzeń w sieci lokalnej, ale nie ma zdolności do trasowania ruchu między różnymi sieciami, podobnie jak most. Koncentrator (hub) to urządzenie, które nie wykonuje żadnej inteligentnej analizy ruchu; po prostu przesyła dane do wszystkich portów, co czyni go nieefektywnym w większych sieciach. Podstawowym błędem, który prowadzi do wyboru jednego z tych urządzeń, jest mylenie ich funkcji z rolą routera w sieciach. Routery są zaprojektowane specjalnie do zarządzania ruchem między różnymi sieciami, co jest kluczowe w kontekście Internetu, podczas gdy pozostałe urządzenia są ograniczone do pracy w obrębie jednej sieci lokalnej.

Pytanie 27

Adres projektowanej sieci należy do klasy C. Sieć została podzielona na 4 podsieci, z 62 urządzeniami w każdej z nich. Która z poniżej wymienionych masek jest adekwatna do tego zadania?

A. 255.255.255.192
B. 255.255.255.240
C. 255.255.255.128
D. 255.255.255.224
Wybór maski 255.255.255.240 to nie jest najlepszy pomysł, ponieważ wykorzystuje za dużo bitów do identyfikacji hostów, co potem ogranicza liczbę dostępnych adresów IP w każdej podsieci. Ta maska oferuje tylko 16 adresów, ale tak naprawdę tylko 14 z nich można wykorzystać – bo jeden jest dla adresu sieci, a drugi dla rozgłoszenia. Z tego powodu nie da się spełnić wymogu 62 urządzeń w każdej podsieci. Maska 255.255.255.128 również odpada, bo chociaż ma 126 hostów, dzieli adresy tylko na dwie podsieci, a więc ani nie uzyskamy czterech podsieci, ani 62 urządzeń w każdej. Z kolei maska 255.255.255.224 pozwala utworzyć pięć podsieci, ale zaledwie 30 dostępnych adresów hostów w każdej, więc też nie spełnia wymagań. Takie nieporozumienia wynikają najczęściej z braku zrozumienia, jak działa maska podsieci i co to znaczy dla dostępnych adresów IP. W praktyce kluczowe jest, żeby wiedzieć ile podsieci i hostów naprawdę potrzebujemy, zanim przystąpimy do podziału sieci, a dopiero potem dobieramy maskę, żeby jak najlepiej wykorzystać dostępne zasoby adresowe i uniknąć problemów z brakującymi adresami IP.

Pytanie 28

Która z wymienionych technologii pamięci RAM wykorzystuje oba zbocza sygnału zegarowego do przesyłania danych?

A. SDR
B. SIPP
C. DDR
D. SIMM
Odpowiedzi, które nie wskazują na pamięć DDR, bazują na zrozumieniu standardów pamięci RAM, ale nie uwzględniają kluczowej różnicy w sposobie przesyłania danych. SIMM (Single In-line Memory Module) i SIPP (Single In-line Pin Package) są starszymi technologiami, które nie obsługują podwójnej wydajności przesyłu danych. SIMM wykorzystuje pojedyncze zbocze sygnału zegarowego, co ogranicza jego efektywność w porównaniu do nowszych rozwiązań. Z kolei SIPP to technologia, która w praktyce nie jest już stosowana w nowoczesnych systemach komputerowych, ponieważ została zastąpiona przez bardziej wydajne rozwiązania jak DIMM. SDR (Single Data Rate) również nie wykorzystuje podwójnego przesyłania danych, co czyni ją mniej efektywną od DDR. SDR przesyła dane tylko na wznoszących zboczu sygnału zegarowego, co ogranicza jego przepustowość. To błędne założenie, że wszystkie standardy pamięci RAM mogą oferować podobne osiągi, prowadzi do nieefektywnego doboru komponentów w systemach komputerowych. Dlatego w kontekście wydajności i przyszłości zastosowań technologii pamięci, DDR stanowi zdecydowanie lepszy wybór.

Pytanie 29

Wskaż technologię stosowaną do zapewnienia dostępu do Internetu w połączeniu z usługą telewizji kablowej, w której światłowód oraz kabel koncentryczny pełnią rolę medium transmisyjnego

A. HFC
B. xDSL
C. PLC
D. GPRS
Odpowiedzi PLC, xDSL i GPRS nie są zgodne z opisanym kontekstem technologicznym. PLC (Power Line Communication) wykorzystuje istniejącą infrastrukturę elektryczną do przesyłania sygnału, co ogranicza jego zastosowanie do obszarów, w których nie ma dostępu do sieci kablowych czy światłowodowych. Technologia ta ma ograniczenia związane z jakością sygnału oraz zakłóceniami, dlatego nie jest odpowiednia do łączenia usług telewizyjnych z Internetem na dużą skalę. Z kolei xDSL (Digital Subscriber Line) to technologia oparta na tradycyjnych liniach telefonicznych, która również nie korzysta z światłowodów ani kabli koncentrycznych, a jej prędkości transmisji są znacznie niższe w porównaniu do HFC. xDSL jest często stosowane w miejscach, gdzie nie ma możliwości podłączenia do sieci światłowodowej, co ogranicza jego zasięg i niezawodność. GPRS (General Packet Radio Service) to technologia stosowana głównie w sieciach komórkowych, która pozwala na przesyłanie danych w trybie pakietowym, jednak jej prędkości są znacznie niższe w porównaniu z rozwiązaniami kablowymi. Istnieje tu wiele typowych błędów myślowych, takich jak mylenie różnych technologii transmisyjnych oraz niewłaściwe łączenie ich z wymaganiami dotyczącymi jakości i prędkości sygnału. W związku z tym, wybór odpowiedniej technologii do dostarczania Internetu i telewizji powinien być oparty na analizie specyficznych potrzeb użytkowników oraz możliwości infrastrukturalnych.

Pytanie 30

Jakie urządzenie powinno być wykorzystane do pomiaru mapy połączeń w okablowaniu strukturalnym sieci lokalnej?

A. Analizator sieci LAN
B. Przyrząd do monitorowania sieci
C. Analizator protokołów
D. Reflektometr OTDR
Analizator sieci LAN to urządzenie, które jest kluczowe dla pomiarów i monitorowania okablowania strukturalnego sieci lokalnej. Jego głównym zadaniem jest analiza ruchu w sieci, co pozwala na identyfikację problemów związanych z wydajnością, takich jak zatory, opóźnienia czy konflikty adresów IP. Dzięki zastosowaniu analizatora sieci LAN, administratorzy mogą uzyskać szczegółowe informacje o przepustowości łącza, typach ruchu oraz wykrywać ewentualne błędy w konfiguracji sieci. Przykładowo, jeżeli w sieci występują problemy z opóźnieniami, analizator może wskazać konkretne urządzenia lub segmenty sieci, które są odpowiedzialne za te problemy. W praktyce, korzystanie z analizatora LAN jest zgodne z najlepszymi praktykami w zakresie zarządzania siecią, ponieważ umożliwia proaktywną diagnostykę i optymalizację zasobów. Standardy takie jak IEEE 802.3 definiują wymagania dotyczące sieci Ethernet, co sprawia, że posiadanie odpowiednich narzędzi do monitorowania tych parametrów jest niezbędne dla zapewnienia ciągłości działania usług sieciowych.

Pytanie 31

Program WinRAR pokazał okno informacyjne widoczne na ilustracji. Jakiego rodzaju licencją posługiwał się do tej pory użytkownik?

Ilustracja do pytania
A. Program typu Shareware
B. Program typu Freeware
C. Program z Public domain
D. Program typu Adware
Adware to model licencyjny, w którym oprogramowanie jest udostępniane użytkownikom bezpłatnie, ale z wyświetlanymi reklamami, które generują dochód dla twórców. W tym modelu użytkownik nie jest zazwyczaj zobowiązany do zakupu licencji po okresie prób, a celem jest finansowanie rozwoju aplikacji poprzez reklamy. Przykłady adware to darmowe aplikacje na urządzenia mobilne, które pokazują reklamy podczas korzystania z nich. Freeware oznacza oprogramowanie dostępne za darmo bez ograniczeń czasowych i bez konieczności zakupu licencji. Twórcy freeware mogą liczyć na dobrowolne datki lub finansowanie poprzez dodatkowe płatne funkcje, ale podstawowa wersja oprogramowania jest zawsze darmowa. Programy takie często są używane w edukacji czy w małych firmach, gdzie budżet na oprogramowanie jest ograniczony. Public domain to oprogramowanie, które nie jest objęte prawami autorskimi i może być używane, zmieniane i rozpowszechniane przez każdego bez ograniczeń. Takie programy są rzadkością, ponieważ twórcy zazwyczaj chcą kontrolować sposób używania swojego oprogramowania lub przynajmniej być uznawani za jego autorów. WinRAR nie pasuje do żadnego z tych modeli, ponieważ wymaga zakupu licencji po okresie próbnym, co jest charakterystyczne dla shareware. Błędne przypisanie do innych modeli wynika często z mylnego postrzegania darmowości oprogramowania, która w przypadku shareware ma charakter wyłącznie próbny. Często użytkownicy myślą, że jeżeli mogą korzystać z programu przez pewien czas bez opłat, to jest on darmowy, co nie jest prawdą w przypadku shareware, gdzie darmowość ma na celu jedynie zachęcenie do zakupu pełnej wersji.

Pytanie 32

Router Wi-Fi działający w technologii 802.11n umożliwia osiągnięcie maksymalnej prędkości przesyłu danych

A. 1000 Mb/s
B. 11 Mb/s
C. 54 Mb/s
D. 600 Mb/s
Odpowiedzi 11 Mb/s, 54 Mb/s oraz 1000 Mb/s są nieprawidłowe w kontekście maksymalnej prędkości transmisji dostępnej dla standardu 802.11n. Standard 802.11b, który działa na prędkości 11 Mb/s, był jednym z pierwszych standardów Wi-Fi, a jego ograniczenia w zakresie prędkości są znane i zrozumiałe w kontekście starszych technologii. Z kolei standard 802.11g, który osiąga maksymalnie 54 Mb/s, zapewnia lepszą wydajność od 802.11b, ale nadal nie dorównuje możliwościom 802.11n. Zrozumienie tych wartości jest kluczowe, aby uniknąć mylnych wniosków o wydajności sieci. Ponadto, odpowiedź wskazująca na 1000 Mb/s jest myląca, ponieważ odnosi się do standardów, które nie są jeszcze powszechnie implementowane w użytkowanych routerach. W rzeczywistości maksymalna prędkość 1000 Mb/s odnosi się do standardu 802.11ac, który wprowadza jeszcze bardziej zaawansowane technologie, takie jak MU-MIMO oraz lepsze wykorzystanie pasma 5 GHz. Typowym błędem jest postrzeganie routerów Wi-Fi jako jedynie komponentów sprzętowych, bez zrozumienia ich pełnych możliwości oraz ograniczeń wynikających z zastosowanych technologii. Użytkownicy powinni być świadomi, że różne standardy mają różne zastosowania i mogą wpływać na to, jak wpływają na codzienne korzystanie z internetu. Dobrze jest również regularnie monitorować wydajność swojego routera oraz dostosowywać jego ustawienia, aby zapewnić optymalną prędkość i niezawodność połączenia.

Pytanie 33

Jaki system operacyjny funkcjonuje w trybie tekstowym i umożliwia uruchomienie środowiska graficznego KDE?

A. DOS
B. Windows XP
C. Windows 95
D. Linux
Systemy Windows, jak Windows 95 czy XP, to zamknięte systemy operacyjne, które głównie działają w trybie graficznym i nie mają takiego trybu tekstowego jak Linux. Oczywiście, oba systemy mogą uruchamiać różne aplikacje, ale ich architektura i to, jak są zbudowane, są zupełnie inne niż w przypadku Linuxa. Windows 95, wydany w 1995, był jednym z pierwszych, który wprowadził graficzny interfejs użytkownika, ale nie dawał takiej swobody w obsłudze różnych środowisk graficznych, jak Linux. Windows XP to już bardziej rozwinięta wersja, ale i tak nie obsługuje trybu tekstowego tak, jakbyśmy chcieli. Trzeba też wspomnieć o DOSie, który działa w trybie tekstowym, ale nie ma opcji graficznych jak KDE. Czasami można się pomylić, myląc funkcje graficznego interfejsu z elastycznością systemu. Ważne jest, żeby zrozumieć, że Linux łączy możliwość pracy w trybie tekstowym z elastycznością w doborze środowiska graficznego, dzięki czemu jest naprawdę unikalnym narzędziem dla użytkowników oraz programistów.

Pytanie 34

Router przypisany do interfejsu LAN dysponuje adresem IP 192.168.50.1. Został on skonfigurowany w taki sposób, aby przydzielać komputerom wszystkie dostępne adresy IP w sieci 192.168.50.0 z maską 255.255.255.0. Jaką maksymalną liczbę komputerów można podłączyć w tej sieci?

A. 255
B. 254
C. 256
D. 253
Wybierając odpowiedź 256, można mylnie sądzić, że jest to maksymalna liczba adresów IP dostępnych w sieci. Rzeczywistość jest jednak inna; w przypadku sieci z maską 255.255.255.0 co prawda mamy do czynienia z 256 adresami, ale nie wszystkie z nich mogą być przypisane do urządzeń. Pierwszy adres w puli (192.168.50.0) jest adresem identyfikującym sieć i nie może być używany jako adres dla hosta, a ostatni adres (192.168.50.255) to adres rozgłoszeniowy, który również nie może być przypisany do konkretnego urządzenia. Ta zasada dotyczy wszystkich sieci, w których mamy do czynienia z maską podsieci, gdzie dwa adresy są zawsze zarezerwowane. W odpowiedzi 255 również występuje podobne nieporozumienie; nie uwzględnia ona drugiego zarezerwowanego adresu. Natomiast odpowiedzi 254 i 253 są o tyle bliskie, że 254 odnosi się do liczby adresów, które mogą być przypisane, ale nie bierze pod uwagę adresu routera, co w praktyce ogranicza liczbę dostępnych adresów do 253. Kluczowe jest zrozumienie tych zasad podczas projektowania sieci, aby nie tylko prawidłowo przydzielać adresy IP, ale także zapewnić, że każdy z hostów ma unikalny adres w sieci, co jest niezbędne do jej prawidłowego funkcjonowania.

Pytanie 35

Jakie urządzenie powinno się zastosować do przeprowadzenia testu POST dla komponentów płyty głównej?

Ilustracja do pytania
A. Rys. D
B. Rys. A
C. Rys. B
D. Rys. C
Rys. A przedstawia odsysacz do cyny, który jest używany w procesie lutowania i rozlutowywania, a nie do diagnozowania problemów z płytą główną. Podczas gdy odsysacz do cyny jest narzędziem niezbędnym dla elektroników do usuwania nadmiaru cyny z połączeń lutowanych, nie ma zastosowania w testach POST. Karta diagnostyczna POST, jak ta przedstawiona na Rys. B, jest bardziej zaawansowanym narzędziem do diagnozowania problemów hardware'owych i jest specjalnie zaprojektowana do pracy z BIOS-em płyty głównej. Rys. C pokazuje tester zasilacza komputerowego, służący do sprawdzania napięć wyjściowych zasilacza ATX. Choć tester zasilacza jest przydatny do weryfikacji poprawności działania zasilacza komputerowego, nie ma zdolności do przeprowadzania testów POST ani diagnozowania płyty głównej. Rys. D ilustruje stację lutowniczą, która jest wykorzystywana do lutowania komponentów na płytach PCB, co jest istotne w naprawach lub modyfikacjach sprzętu, ale nie służy do diagnozowania problemów z płytą główną poprzez testy POST. Wybór narzędzia do testów POST jest kluczowy, ponieważ pozwala na szybkie identyfikowanie problemów systemowych już w początkowej fazie uruchamiania komputera, co nie jest możliwe z innymi narzędziami, które nie oferują interpretacji kodów POST ani nie są zaprojektowane do pracy z BIOS-em płyty głównej.

Pytanie 36

Na podstawie oznaczenia pamięci DDR3 PC3-16000 można określić, że ta pamięć

A. pracuje z częstotliwością 16000 MHz
B. ma przepustowość 16 GB/s
C. pracuje z częstotliwością 160 MHz
D. ma przepustowość 160 GB/s
Oznaczenie pamięci DDR3 PC3-16000 wskazuje na jej przepustowość, która wynosi 16 GB/s. Wartość 16000 w tym kontekście odnosi się do efektywnej przepustowości pamięci, co jest wyrażone w megabajtach na sekundę (MB/s). Aby to przeliczyć na gigabajty, dzielimy przez 1000, co daje nam 16 GB/s. Taka przepustowość jest kluczowa w zastosowaniach wymagających dużych prędkości przesyłu danych, jak w przypadku gier komputerowych, obróbki wideo czy pracy w środowiskach wirtualnych. Zastosowanie pamięci DDR3 PC3-16000 optymalizuje wydajność systemów, w których wiele procesów zachodzi jednocześnie, co jest standardem w nowoczesnych komputerach. Warto również zauważyć, że DDR3 jest standardem pamięci, który był powszechnie stosowany w komputerach od około 2007 roku, a jego rozwój doprowadził do znacznych popraw w wydajności w porównaniu do wcześniejszych generacji, co czyni go preferowanym wyborem w wielu zastosowaniach do dzisiaj.

Pytanie 37

Na ilustracji widoczny jest symbol graficzny

Ilustracja do pytania
A. koncentratora
B. mostu
C. rutera
D. regeneratora
Koncentrator jest urządzeniem działającym na warstwie pierwszej modelu OSI i służy głównie jako punkt centralny w sieciach typu gwiazda. Przesyła on sygnały do wszystkich portów jednocześnie, bez względu na celową lokalizację danych, co prowadzi do nieefektywności i zwiększonego ryzyka kolizji danych. Z drugiej strony most działa na warstwie drugiej, czyli warstwie łącza danych, i jest bardziej złożonym urządzeniem niż koncentrator. Mosty są używane do łączenia dwóch segmentów sieci w celu zwiększenia zasięgu sieci LAN i zmniejszenia ruchu poprzez filtrowanie ramek. Niemniej jednak, most nie obsługuje adresowania na poziomie IP co czyni go nieodpowiednim wyborem w kontekście trasowania pakietów między różnymi sieciami. Regenerator zaś odnawia sygnały cyfrowe, umożliwiając ich przesyłanie na dalsze odległości, ale nie posiada funkcji kierowania ani adresowania danych, które są kluczowe dla działania rutera. Typowym błędem jest myślenie, że każde urządzenie sieciowe o podobnym kształcie służy do tej samej funkcji, podczas gdy każde z nich pełni unikalne role w zależności od poziomu modelu OSI, na którym operuje. Ruter, w odróżnieniu od wymienionych urządzeń, aktywnie uczestniczy w procesie trasowania, co czyni go niezastąpionym w bardziej złożonych sieciach IP.

Pytanie 38

W systemie Windows, po dezaktywacji domyślnego konta administratora i ponownym uruchomieniu komputera

A. jest niedostępne, gdy system włączy się w trybie awaryjnym
B. pozwala na uruchamianie niektórych usług z tego konta
C. nie umożliwia zmiany hasła do konta
D. jest dostępne po starcie systemu w trybie awaryjnym
Domyślne konto administratora w systemie Windows, nawet po jego dezaktywacji, pozostaje dostępne w trybie awaryjnym. Tryb ten jest przeznaczony do rozwiązywania problemów, co oznacza, że system ładuje minimalną ilość sterowników i usług. W tym kontekście konto administratora staje się dostępne, co umożliwia użytkownikowi przeprowadzenie diagnozowania i naprawy systemu. Przykładowo, jeśli pojawią się problemy z systemem operacyjnym, użytkownik może uruchomić komputer w trybie awaryjnym i uzyskać dostęp do konta administratora, co pozwala na usunięcie złośliwego oprogramowania czy naprawę uszkodzonych plików systemowych. Dobrą praktyką jest, aby administratorzy byli świadomi, że konto to jest dostępne w trybie awaryjnym, a tym samym powinni podejmować odpowiednie środki bezpieczeństwa, takie jak silne hasła czy zabezpieczenia fizyczne komputera. Warto również zauważyć, że w niektórych konfiguracjach systemowych konto administratora może być widoczne nawet wtedy, gdy zostało wyłączone w normalnym trybie pracy. Dlatego dbanie o bezpieczeństwo konta administratora jest kluczowe w zarządzaniu systemami Windows.

Pytanie 39

Gdzie w dokumencie tekstowym Word umieszczony jest nagłówek oraz stopka?

A. Nagłówek jest umieszczony na dolnym marginesie, a stopka na górnym marginesie
B. Na stronach parzystych dokumentu
C. Nagłówek występuje na początku dokumentu, a stopka na końcu dokumentu
D. Nagłówek znajduje się na górnym marginesie, a stopka na dolnym marginesie
Umiejscowienie nagłówka i stopki w dokumencie Word jest kluczowe dla poprawnego formatowania i struktury dokumentu. Wiele osób może błędnie myśleć, że nagłówek znajduje się na dolnym marginesie, a stopka na górnym, co jest niezgodne z rzeczywistością. Tego rodzaju błędne zrozumienie może prowadzić do nieefektywnego układu dokumentu, gdzie kluczowe informacje są trudne do zlokalizowania. Nagłówek powinien być używany do umieszczania istotnych danych, takich jak tytuł lub informacje o autorze, co ułatwia odbiorcy zrozumienie kontekstu dokumentu. Z kolei stopka jest przeznaczona do dodatkowych informacji, takich jak numery stron czy daty, co jest szczególnie ważne w dłuższych publikacjach. Błędne wskazanie lokalizacji tych elementów może wynikać z braku zrozumienia ich funkcji. W praktyce występuje tendencja do umieszczania informacji w niewłaściwych sekcjach, co negatywnie wpływa na odbiór dokumentu. Dlatego fundamentalne jest, aby znać standardy i zasady dotyczące formatu dokumentów, które zapewniają ich przejrzystość i profesjonalizm. Aby uniknąć takich pomyłek, warto zaznajomić się z narzędziami Worda, które umożliwiają łatwe edytowanie i formatowanie nagłówków oraz stopek, co wpływa na estetykę i funkcjonalność całego dokumentu.

Pytanie 40

W systemie Linux do bieżącego śledzenia działających procesów wykorzystuje się polecenie:

A. ps
B. sed
C. proc
D. sysinfo
Wybór polecenia 'proc' jako narzędzia do monitorowania procesów w systemie Linux jest nieprawidłowy, ponieważ 'proc' odnosi się do systemu plików, a nie polecenia. System plików '/proc' jest virtualnym systemem plików, który dostarcza informacji o bieżących procesach i stanie jądra, ale nie jest bezpośrednim narzędziem do monitorowania procesów. Użytkownicy mogą uzyskać wiele przydatnych informacji, przeglądając zawartość katalogu '/proc', jednak wymaga to znajomości ostrożnych komend do odczytu danych z tego systemu. Z kolei 'sysinfo' to nieistniejąca komenda w standardowym zestawie poleceń Linux; chociaż istnieją narzędzia, które dostarczają informacje o systemie, nie mają one bezpośredniego odpowiednika. Na koniec, 'sed' to edytor strumieniowy, który służy do przetwarzania i manipulacji tekstem, a nie do monitorowania procesów. Pomieszanie tych narzędzi pokazuje typowy błąd myślowy, polegający na myleniu funkcji różnych poleceń. Kluczem do skutecznego zarządzania systemem jest umiejętność rozróżnienia narzędzi i ich właściwego zastosowania. Właściwe polecenia, takie jak 'ps', stanowią podstawę efektywnej administracji systemami Linux, a ich zrozumienie jest kluczowe dla każdej osoby zajmującej się zarządzaniem systemami.