Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 31 sierpnia 2025 21:30
  • Data zakończenia: 31 sierpnia 2025 21:40

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 80 Hz
B. 70 Hz
C. 20 Hz
D. 50 Hz
Odpowiedź 50 Hz jest prawidłowa, ponieważ w Polsce, jak i w większości krajów europejskich, standardowa częstotliwość napięcia w sieci elektroenergetycznej wynosi właśnie 50 Hz. Taka częstotliwość została przyjęta jako norma w celu zapewnienia stabilności i kompatybilności systemów energetycznych. Współpraca generatorów prądu z systemem energetycznym opiera się na synchronizacji ich częstotliwości z siecią. Przykładowo, elektrownie wodne, które korzystają z turbin wodnych, muszą dostarczać energię o odpowiedniej częstotliwości, aby mogły zostać włączone do krajowej sieci. Zastosowanie generatorów o mocy 100 kW w Polsce, które muszą pracować w harmonii z innymi źródłami energii, jak elektrownie wiatrowe czy słoneczne, również potwierdza konieczność utrzymania tej standardowej częstotliwości. Takie podejście zwiększa efektywność całego systemu elektroenergetycznego oraz minimalizuje ryzyko awarii związanych z zaburzeniem synchronizacji.

Pytanie 2

Jaki kolor izolacji powinien mieć przewód neutralny?

A. żółto - zielonego
B. niebieskiego
C. brązowego
D. czarnego lub czerwonego
Odpowiedź 'niebieskiego' jest poprawna, ponieważ według Polskich Norm (PN) oraz przepisów dotyczących instalacji elektrycznych, przewód neutralny musi być oznaczony kolorem niebieskim. Ta norma ma na celu zapewnienie jednoznaczności w identyfikacji przewodów elektrycznych, co jest niezbędne w celu bezpieczeństwa oraz prawidłowego funkcjonowania instalacji. Użycie koloru niebieskiego dla przewodów neutralnych jest standardem przyjętym w wielu krajach, co ułatwia współpracę i rozumienie projektów elektroutwardzonych na poziomie międzynarodowym. Przykładowo, w instalacjach domowych przewód neutralny prowadzi prąd z powrotem do źródła zasilania, a jego poprawne oznaczenie jest kluczowe, aby uniknąć pomyłek, które mogą prowadzić do niebezpiecznych wypadków elektrycznych. Przewody ochronne, oznaczane kolorem żółto-zielonym, mają zupełnie inną funkcję - mają na celu zabezpieczenie przed porażeniem elektrycznym, co podkreśla znaczenie znajomości tych standardów w praktyce.

Pytanie 3

Jakie są możliwości magazynowania biogazu?

A. zbiorniku wzbiorczym przepływowym
B. zbiorniku niskociśnieniowym
C. wymienniku ciepła
D. zbiorniku pod wysokim ciśnieniem
Zbiorniki niskociśnieniowe są odpowiednim miejscem do magazynowania biogazu, ponieważ są zaprojektowane do przechowywania gazów w warunkach niskiego ciśnienia, co zapewnia ich bezpieczeństwo i efektywność. Biogaz, składający się głównie z metanu i dwutlenku węgla, jest gazem, który podczas przechowywania pod niskim ciśnieniem nie stwarza ryzyka eksplozji, co jest istotne w kontekście bezpieczeństwa. Praktyczne zastosowanie tego typu zbiorników można zauważyć w biogazowniach, gdzie biogaz jest produkowany z odpadów organicznych i następnie gromadzony w zbiornikach niskociśnieniowych, aby mógł być wykorzystany do produkcji energii lub jako surowiec do dalszej obróbki. Ponadto, zgodnie z najlepszymi praktykami, zbiorniki te są często wyposażone w systemy pomiarowe, które umożliwiają monitorowanie ciśnienia i jakości gazu, co jest kluczowe dla efektywnego zarządzania procesami technologii biogazowej. W związku z tym, stosowanie zbiorników niskociśnieniowych w kontekście biogazu jest szeroko rekomendowane przez specjalistów branżowych oraz normy dotyczące magazynowania gazów.

Pytanie 4

Jakie jednostki należy wpisać do "Książki obmiaru" po zakończeniu prac związanych z instalacją sond wymiennika gruntowego?

A. m-g
B. m3
C. m2
D. m
Wybór jednostek takich jak m2, m-g czy m3 do opisu zakończonych prac związanych z ułożeniem sond wymiennika gruntowego jest nieprawidłowy z kilku kluczowych powodów. Przede wszystkim, m2 jest jednostką powierzchni, która nie odnosi się do długości sondy, a więc nie może być używana do opisu ich długości. Sondy gruntowe są instalowane w ziemi w formie cylindrycznych rur, a ich efektywność zależy w istotny sposób od długości, a nie powierzchni. Dodatkowo, jednostka m-g, choć może sugerować pomiar związany z gruntowymi wymiennikami ciepła, jest niejasna i nie znajduje zastosowania w standardowych praktykach budowlanych. Użycie m3, które odnosi się do objętości, również nie jest właściwe, ponieważ nie opisuje bezpośrednio długości sondy. W kontekście inżynierii, precyzyjne określenie jednostki miary jest kluczowe - wprowadzenie błędnych jednostek może prowadzić do znacznych pomyłek w obliczeniach, co w przypadku instalacji geotermalnych może skutkować nieefektywnym działaniem systemu grzewczego. Często spotykaną pomyłką jest mylenie długości i objętości, co może wynikać z braku zrozumienia, jak te parametry wpływają na wydajność energetyczną systemów grzewczych. Użycie jednostek niewłaściwych dla danej sytuacji jest typowym błędem, który może prowadzić do znacznych konsekwencji w praktyce inżynierskiej.

Pytanie 5

W systemie pompy ciepła typu powietrze-powietrze, króciec oznaczony jako "wypływ kondensatu" powinien być połączony z instalacją

A. odpływową
B. ciepłej wody
C. zimnej wody
D. wentylacyjną
W przypadku pompy ciepła powietrze-powietrze, króciec oznaczony "wypływ kondensatu" powinien być połączony z instalacją odpływową. Kondensat powstaje w wyniku procesu chłodzenia powietrza, co prowadzi do skraplania się pary wodnej zawartej w powietrzu. Odpowiednie odprowadzenie kondensatu jest kluczowe dla efektywności i trwałości systemu. Zgodnie z zasadami dobrych praktyk branżowych, kondensat powinien być odprowadzany w sposób zapewniający, że nie będzie on gromadził się w urządzeniu ani w jego okolicy, co mogłoby prowadzić do uszkodzenia podzespołów lub sprzyjać rozwojowi pleśni i grzybów. W praktyce, instalacja odpływowa powinna być wykonana z materiałów odpornych na korozję oraz mieć odpowiedni spadek, aby zapewnić swobodny przepływ kondensatu. Dodatkowo, warto zainstalować filtr w odpływie, aby zapobiec zatorom. Właściwe zarządzanie kondensatem jest istotne dla zachowania efektywności energetycznej urządzenia oraz komfortu użytkowników.

Pytanie 6

Jak należy przechowywać kolektory słoneczne?

A. w zamkniętych pomieszczeniach, umieszczone szybą w dół
B. pod wiatą, umieszczone szybą do góry
C. w zamkniętych pomieszczeniach, umieszczone szybą do góry
D. pod wiatą, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 7

Wskaż, w oparciu o przedstawiony fragment instrukcji, na jakiej minimum głębokości poniżej lokalnej granicy przemarzania gruntu, należy montować kolektory gruntowe.

W przypadku gruntów o niskim stopniu wilgotności (grunt suchy, piaszczysty) układy spiralne mogą powodować znaczne wychłodzenie gruntu i zamarzanie parownika w pompie ciepła, wobec czego zdecydowanie bardziej bezpieczne jest stosowanie układów płaskich lub kolektorów pionowych. Kolektory poziome, w postaci pętli rur o jednakowej długości, układa się w odległości minimum 0,5÷1,0 m od siebie, na głębokości 30÷40 cm poniżej granicy przemarzania gruntu, co w Polsce stanowi w zależności od rejonu 0,8÷1,4 m.
A. 30 cm
B. 50 cm
C. 20 cm
D. 10 cm
Poprawna odpowiedź to 30 cm, co wynika z zaleceń zawartych w instrukcji dotyczącej montażu kolektorów gruntowych. Kolektory te powinny być umieszczone na głębokości od 30 do 40 cm poniżej lokalnej granicy przemarzania gruntu, aby zapewnić ich prawidłowe funkcjonowanie. W Polsce granica ta wynosi od 0,8 do 1,4 m, co oznacza, że minimalna głębokość montażu kolektorów powinna wynosić 30 cm poniżej tej granicy, co zapewnia odpowiednią ochronę przed wpływem mrozu. W praktyce oznacza to, że montując kolektory, należy zwrócić uwagę na lokalne warunki geologiczne i klimatyczne, aby dostosować głębokość ich ułożenia do specyfikacji technicznych. Przykład zastosowania to instalacje systemów ogrzewania geotermalnego, gdzie odpowiednia głębokość montażu kolektorów jest kluczowa dla efektywności energetycznej budynku. Zgodnie z najlepszymi praktykami, warto również zwrócić uwagę na rozmieszczenie kolektorów, które powinno wynosić od 0,5 do 1,0 m między poszczególnymi pętlami, aby zapewnić optymalne warunki pracy systemu.

Pytanie 8

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Zamiennego
B. Inwestorskiego
C. Ofertowego
D. Powykonawczego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 9

W trakcie lutowania rur i złączek miedzianych wykorzystywane jest zjawisko

A. kawitacji
B. kapilarne
C. kohezji
D. grawitacji
Lutowanie złączek i rur miedzianych to całkiem ciekawa sprawa! Używamy tutaj zjawiska kapilarnego, co oznacza, że ciecz potrafi wciągać się w wąskie szczeliny między elementami. Kiedy lutujemy, topnik i stop lutowniczy wypełniają te przerwy, dzięki czemu wszystko mocno się trzyma. To naprawdę ważne, bo dobrze wykonane lutowanie ma wpływ na jakość połączeń i ich wytrzymałość. Przykładem może być sytuacja, gdy zakładamy system wodociągowy – jeżeli lutowanie jest zrobione porządnie, to unikniemy nieprzyjemnych wycieków. Warto pamiętać, żeby starannie przygotować wszystkie powierzchnie, używać odpowiednich topników i dbać o właściwą temperaturę. Takie szczegóły pokazują, jak ważne jest to zjawisko kapilarne w praktyce. W naszej branży, zwłaszcza w budownictwie, standardy jak ISO 9001 podkreślają, jak istotna jest jakość lutowania dla bezpieczeństwa i niezawodności systemów.

Pytanie 10

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 30°C
B. 15°C
C. 25°C
D. 20°C
Temperatura 20°C, wskazana w jednej z odpowiedzi, jest często mylona z warunkami STC, ale w rzeczywistości nie jest to poprawna wartość do oceny wydajności paneli fotowoltaicznych. Podobnie, zarówno 30°C, jak i 15°C nie są standardowymi temperaturami dla testów. Użytkownicy mogą nie zdawać sobie sprawy, że standardowe testy dla paneli PV są zawsze przeprowadzane w 25°C, co stanowi punkt odniesienia dla efektywności. W praktyce, różnice w temperaturze mogą wprowadzać znaczne odchylenia w wynikach i porównaniach. Wysoka temperatura, jak 30°C, może prowadzić do obniżenia wydajności ogniw, podczas gdy temperatura 15°C może sprawić, że panele będą działały bardziej efektywnie, ale nie oddaje to rzeczywistych warunków pracy w terenie. Często błędem myślowym jest zakładanie, że jakiekolwiek różnice w temperaturze nie mają znaczenia. Dlatego kluczowe jest, aby dobrze zrozumieć standardy i ich wpływ na ocenę paneli PV, co z kolei pozwala na lepsze prognozowanie efektywności instalacji w różnych warunkach atmosferycznych.

Pytanie 11

Gdzie oraz w jaki sposób należy zainstalować jednostkę zewnętrzną powietrznej pompy ciepła?

A. W odległości co najmniej 0,3 m od ściany budynku, z wyrzutem powietrza skierowanym w stronę ściany
B. W odległości co najmniej 0,3 m od ściany budynku, z czerpnią powietrza skierowaną w stronę ściany
C. Bezpośrednio przy zewnętrznej ścianie budynku, z czerpnią powietrza skierowaną w stronę ściany
D. Bezpośrednio przy zewnętrznej ścianie budynku, z wyrzutem powietrza skierowanym w stronę ściany
Jednostka zewnętrzna powietrznej pompy ciepła powinna być zamontowana w odpowiedniej odległości od ściany budynku, co ma kluczowe znaczenie dla efektywności jej pracy. Umiejscowienie urządzenia w odległości co najmniej 0,3 m od ściany zapewnia odpowiednią cyrkulację powietrza, co jest niezbędne do prawidłowego poboru i wydajności pracy pompy. Takie umiejscowienie minimalizuje również hałas i wibracje, które mogą przenikać do struktury budynku, co jest szczególnie istotne w przypadku budynków mieszkalnych. Skierowanie czerpni powietrza w stronę ściany chroni ją przed bezpośrednim działaniem wiatru i opadów, co pomaga w stabilizowaniu warunków pracy pompy, zwiększając jej wydajność i żywotność. Dodatkowo, przestrzeń pomiędzy jednostką a ścianą ułatwia odprowadzanie skroplin, co zapobiega ich zamarzaniu na elewacji budynku. Takie wytyczne są zgodne z zaleceniami producentów oraz normami branżowymi, co potwierdza ich zasadność.

Pytanie 12

Jeśli kolektor słoneczny o powierzchni 2 m2 przy nasłonecznieniu wynoszącym 1 000 W/m2 oddał do systemu 1 400 W energii cieplnej, to jaka jest sprawność urządzenia?

A. 50%
B. 80%
C. 60%
D. 70%
Aby obliczyć sprawność kolektora fototermicznego, należy zastosować wzór: sprawność = (przekazane ciepło / moc napromieniowania) x 100%. W tym przypadku moc napromieniowania wynosi 1 000 W/m2, a powierzchnia kolektora to 2 m2, co daje łączną moc napromieniowania równą 2 000 W (1 000 W/m2 * 2 m2). Kolektor przekazał do instalacji 1 400 W ciepła, więc sprawność wynosi: (1 400 W / 2 000 W) x 100% = 70%. Taka efektywność jest istotna w kontekście projektowania systemów solarnych, ponieważ wyższa sprawność oznacza lepsze wykorzystanie energii słonecznej i niższe koszty eksploatacji. W praktyce, projektanci instalacji solarnych dążą do osiągnięcia jak najwyższej sprawności, aby zminimalizować powierzchnię potrzebną do uzyskania wymaganej ilości energii. Przykładem może być zastosowanie różnych rodzajów powłok absorbujących oraz systemów optymalizacji kątów nachylenia kolektorów, co pozwala na lepsze zbieranie promieniowania słonecznego.

Pytanie 13

Kto tworzy plan budowy domu pasywnego?

A. Przedsiębiorca
B. Kierownik budowy
C. Inspektor z działu budownictwa
D. Instalator systemów solarnych
Kierownik budowy to naprawdę kluczowa figura przy budowie domu pasywnego. Jego rolą jest nie tylko nadzorowanie wykonawców, ale też organizacja prac tak, żeby wszystko poszło zgodnie z planem. Harmonogram budowy to coś, co pomaga efektywnie zarządzać czasem i zasobami. Dzięki swojemu doświadczeniu, kierownik ustala, kiedy mają zacząć i skończyć poszczególne prace. To szczególnie ważne przy domach pasywnych, gdzie każdy szczegół ma znaczenie. Na przykład, izolacja musi być wykonana zgodnie z harmonogramem, inaczej mogą pojawić się problemy z wilgocią czy stratami ciepła. Poza tym, kierownik dba, żeby wszystkie działania były zgodne z normami budowlanymi i zasadami zrównoważonego rozwoju, co jest kluczowe dla efektywności energetycznej budynku. Umiejętności w zarządzaniu czasem i zasobami są więc niezbędne, żeby projekt budowlany zakończył się sukcesem.

Pytanie 14

Jaką objętość może uzupełnić solarna stacja napełniająca, działająca z efektywnością 3 dm3/s, w ciągu dwóch godzin?

A. 21,60 m3
B. 10,80 m3
C. 32,40 m3
D. 6,00 m3
Poprawna odpowiedź to 21,60 m³, co można obliczyć w sposób następujący: stacja napełniająca ma wydajność 3 dm³/s. Aby obliczyć, ile wody stacja może napełnić w ciągu dwóch godzin, najpierw przeliczamy czas na sekundy. Dwa godziny to 2 × 60 minut × 60 sekund = 7200 sekund. Następnie obliczamy całkowitą objętość wody, mnożąc wydajność przez czas: 3 dm³/s × 7200 s = 21600 dm³. Przy przeliczeniu jednostek z dm³ na m³ (1 m³ = 1000 dm³) otrzymujemy 21,60 m³. W praktyce taki kalkulator objętości jest niezwykle przydatny przy projektowaniu systemów nawadniających, instalacji wodociągowych czy też w kontekście zarządzania zasobami wodnymi, gdzie precyzyjne obliczenia mają kluczowe znaczenie dla efektywności i oszczędności. Wiedza o wydajności systemów napełniających jest również istotna w regulacjach dotyczących ochrony środowiska oraz zasobów wodnych.

Pytanie 15

Jak często należy przeprowadzać kontrolę stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji?

A. co 3 lata
B. co 5 lat
C. co 2 lata
D. co 7 lat
Kontrola stanu technicznego instalacji elektrycznych w zakresie rezystancji izolacji jest kluczowym elementem zapewnienia bezpieczeństwa oraz niezawodności systemów elektroenergetycznych. Zgodnie z obowiązującymi normami, takimi jak PN-IEC 60364 oraz wytycznymi z zakresu utrzymania urządzeń elektrycznych, przegląd tej rezystancji powinien być przeprowadzany co najmniej co 5 lat. Taki okres umożliwia wczesne wykrywanie potencjalnych uszkodzeń izolacji, które mogą prowadzić do poważnych awarii, pożarów czy porażenia prądem. Przykładem zastosowania tej wiedzy jest regularne przeprowadzanie testów rezystancji izolacji w obiektach przemysłowych, gdzie instalacje elektryczne są szczególnie narażone na działanie czynników zewnętrznych, takich jak wilgoć czy substancje chemiczne, które mogą wpływać na degradację materiałów. Systematyczne wykonywanie tego rodzaju kontroli wspiera utrzymanie wysokich standardów bezpieczeństwa oraz zgodności z przepisami prawa.

Pytanie 16

Aby pompy ciepła funkcjonujące w systemie ogrzewania mogły przez cały okres eksploatacji skutecznie pełnić swoje zadania, konieczne jest zapewnienie regularnych przeglądów technicznych, które powinny być realizowane przynajmniej raz

A. na pięć lat przed rozpoczęciem sezonu grzewczego
B. na pięć lat po zakończeniu sezonu grzewczego
C. w roku przed rozpoczęciem sezonu grzewczego
D. w roku po zakończeniu sezonu grzewczego
Odpowiedź „w roku przed sezonem grzewczym” jest prawidłowa, ponieważ regularne przeglądy techniczne pomp ciepła są kluczowe dla ich niezawodności i efektywności. Przeglądy powinny być przeprowadzane przed rozpoczęciem sezonu grzewczego, aby zidentyfikować ewentualne usterki i zapewnić optymalne działanie urządzenia. Dobrym przykładem zastosowania tej praktyki jest wykonanie przeglądu całego systemu, w tym sprawdzenie stanu wymiennika ciepła, układu chłodniczego oraz poziomu czynnika chłodniczego. Ponadto, zgodnie z normą PN-EN 14511, producent pomp ciepła zaleca regularne przeglądy w celu oceny efektywności energetycznej oraz zmniejszenia ryzyka awarii. Przegląd można również połączyć z konserwacją, co pozwala na przedłużenie żywotności urządzenia oraz redukcję kosztów eksploatacyjnych. Regularne działania serwisowe przed sezonem grzewczym pozwalają na wczesne wykrycie problemów, co jest niezbędne do zapewnienia komfortu cieplnego w budynku.

Pytanie 17

Kiedy odbywa się odbiór instalacji solarnej?

A. przed pierwszym uruchomieniem systemu.
B. po pierwszym uruchomieniu systemu.
C. po napełnieniu zbiornika i przed ustawieniem mocy pompy.
D. po wykonaniu próby ciśnieniowej i przed ustawieniem regulatora.
Odbiór instalacji solarnej po pierwszym uruchomieniu jest kluczowym etapem w zapewnieniu, że system działa zgodnie z wymaganiami projektowymi oraz spełnia normy bezpieczeństwa. Po pierwszym uruchomieniu można ocenić, jak instalacja reaguje na różne warunki operacyjne, takie jak wydajność paneli słonecznych, efektywność wymiany ciepła oraz ogólne zachowanie systemu. Warto zwrócić uwagę na monitorowanie parametrów, takich jak ciśnienie i temperatura, które powinny mieścić się w przyjętych normach. Przykładem zastosowania tego procesu może być sprawdzenie, czy pompa obiegowa działa z odpowiednią mocą, co ma kluczowe znaczenie dla efektywności całej instalacji. Praktyki te są zgodne z wytycznymi branżowymi, takimi jak normy ISO oraz lokalne regulacje dotyczące odnawialnych źródeł energii, które podkreślają znaczenie starannego odbioru technicznego w celu zapewnienia długotrwałej i niezawodnej pracy systemu.

Pytanie 18

Ośmiu paneli fotowoltaicznych o maksymalnej mocy P=250 Wp i napięciu U=12 V zostało połączonych równolegle. Instalacja ta cechuje się następującymi parametrami

A. P=2 000 Wp, U=96 V
B. P=2 000 Wp, U=12 V
C. P=250 Wp, U=12 V
D. P=250 Wp, U=96 V
Odpowiedź P=2 000 Wp, U=12 V jest poprawna, ponieważ w układzie równoległym moc paneli fotowoltaicznych sumuje się, natomiast napięcie pozostaje stałe. W przypadku ośmiu paneli o mocy 250 Wp każdy, całkowita moc instalacji wynosi 8 x 250 Wp = 2000 Wp, co jest zgodne z pierwszą odpowiedzią. Napięcie w układzie równoległym pozostaje na poziomie 12 V, co również potwierdza prawidłowość tej odpowiedzi. Takie połączenie jest powszechnie stosowane w systemach fotowoltaicznych, gdzie stabilne napięcie jest kluczowe dla zasilania urządzeń o różnych wymaganiach energetycznych. W praktyce, takie układy są wykorzystywane w instalacjach domowych, gdzie zapewniają odpowiednią moc przy zachowaniu niskiego napięcia, co zwiększa bezpieczeństwo użytkowania. Zgodnie z normami IEC 61215 i IEC 61730, instalacje fotowoltaiczne powinny być projektowane tak, aby zapewnić maksymalną efektywność energetyczną oraz bezpieczeństwo, co również znajduje potwierdzenie w tej odpowiedzi.

Pytanie 19

W jakiej technologii łączy się kolektor słoneczny z wymiennikiem ciepła?

A. Zgrzewanie
B. Lutowanie miękkie
C. Klejenie
D. Lutowanie twarde
Lutowanie twarde jest techniką, która jest powszechnie stosowana do łączenia elementów w systemach grzewczych, w tym kolektorów słonecznych z wymiennikami ciepła. Proces lutowania twardego polega na użyciu stopu metalu o wysokiej temperaturze topnienia, co zapewnia mocne i trwałe połączenie. Dzięki temu, że lutowanie twarde tworzy spoiny odporne na wysoką temperaturę oraz ciśnienie, jest idealne do zastosowań w układach, w których występują ekstremalne warunki operacyjne, takie jak w instalacjach solarnych. Przykładem może być połączenie miedzi w instalacjach solarnych, gdzie zastosowanie lutowania twardego jest zgodne z normą PN-EN 12792:2007, która określa wymagania dla systemów solarnych. Dodatkowo, lutowanie twarde pozwala na osiągnięcie wysokiej wydajności wymiany ciepła, co zwiększa efektywność całego systemu. W praktyce, lutowanie twarde może być stosowane do łączenia elementów o różnych grubościach, co czyni tę metodę bardzo wszechstronną w inżynierii cieplnej.

Pytanie 20

Dobierając rozmiar kolektora oraz zbiornika do systemu podgrzewania wody użytkowej w budynku jednorodzinnym, przy założeniu pokrycia rocznego na poziomie 65% oraz dziennego zużycia w granicach 80-100 l/osobę, monter powinien brać pod uwagę wskaźnik

A. 1:2,5 m2 powierzchni absorbera / osobę
B. 1:2,0 m2 powierzchni absorbera / osobę
C. 1:1,5 m2 powierzchni absorbera / osobę
D. 1:3,0 m2 powierzchni absorbera / osobę
Wybór powierzchni absorbera w odpowiedzi 1:2,0 m2, 1:3,0 m2 oraz 1:2,5 m2 na osobę oparty jest na błędnym założeniu, że większa powierzchnia kolektora zawsze zapewni lepsze wyniki pod względem pokrycia potrzeb cieplnych. Tego rodzaju rozumowanie prowadzi do marnotrawstwa zasobów oraz nieefektywnego wykorzystania dostępnych technologii. W przypadku zastosowania wskaźnika 1:2,0 m2, oznacza to, że na jedną osobę przypada zbyt duża powierzchnia kolektora, co może prowadzić do nadprodukcji energii w miesiącach letnich, a w zimie do niewystarczającej ilości ciepła. Dodatkowo, wskaźnik 1:3,0 m2 lub 1:2,5 m2 nie uwzględnia optymalizacji powierzchni kolektora w kontekście regionalnych warunków klimatycznych i rzeczywistego zużycia wody. W praktyce, każdy metr kwadratowy kolektora wiąże się z kosztami instalacji oraz eksploatacji, dlatego kluczowe jest dostosowanie jego powierzchni do rzeczywistych potrzeb użytkowników. Typowym błędem jest zakładanie, że wzrost powierzchni kolektora automatycznie zwiększy efektywność systemu, podczas gdy rzeczywistość jest znacznie bardziej złożona. Należy także pamiętać o lawinowym wzroście kosztów zakupu, montażu oraz późniejszej konserwacji. Właściwe dobranie parametrów instalacji, w tym powierzchni kolektora, bazujące na analizie zużycia wody oraz lokalnych warunków, jest kluczowe dla zapewnienia zrównoważonego i efektywnego systemu grzewczego.

Pytanie 21

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. czerpalny
B. spustowy
C. zwrotny
D. bezpieczeństwa
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.

Pytanie 22

Określ przyczynę zmniejszenia ciśnienia w instalacji solarnej?

A. Uszkodzony czujnik temperatury lub problemy z jego zasilaniem
B. Osiągnięta lub przekroczona maksymalna temperatura zbiornika ustawiona na regulatorze
C. Przecieki na złączach, wymienniku ciepła, zaworze bezpieczeństwa lub w miejscach lutowania
D. Czujnik temperatury niewłaściwie umiejscowiony po stronie gorącej absorbera
Przecieki w systemie solarnym mogą prowadzić do znacznego spadku ciśnienia, co wpływa na efektywność całej instalacji. W przypadku nieszczelności w miejscach takich jak śrubunki, wymiennik ciepła czy zawór bezpieczeństwa, woda może wydostawać się z systemu, co prowadzi do obniżenia ciśnienia roboczego. Zgodnie z normami branżowymi, takie jak EN 12976, które dotyczą systemów solarnych, zabezpieczenie przed przeciekami jest kluczowe dla zapewnienia ich efektywności i bezpieczeństwa. W praktyce, regularne przeglądy i konserwacja systemów solarowych powinny obejmować kontrolę tych elementów, aby nie dopuścić do poważniejszych uszkodzeń. Przykładowo, w przypadku stwierdzenia nieszczelności, konieczne może być wymienienie uszczelek lub dokonanie napraw w miejscach lutowania, co przywróci optymalne ciśnienie w systemie i zapewni jego prawidłowe funkcjonowanie. Dobrą praktyką jest również stosowanie materiałów wysokiej jakości oraz odpowiednich technik montażu, co minimalizuje ryzyko powstawania przecieków.

Pytanie 23

Największe ryzyko stłuczenia podczas transportu elementów systemu solarnego mają

A. karbowane rury do łączenia kolektora z grupą pompową
B. pompy obiegowe
C. rury próżniowe
D. czujniki temperatury
Rury próżniowe są elementem systemu solarnego, który odgrywa kluczową rolę w efektywności energetycznej instalacji. Ich delikatna konstrukcja, oparta na szkle, pozwala na utrzymanie próżni wewnętrznej, co znacząco zwiększa ich zdolność do absorpcji energii słonecznej. W praktyce, podczas transportu, rury te wymagają szczególnej ostrożności ze względu na ich kruchość. W standardach transportu i przechowywania elementów systemów solarnych zaleca się używanie specjalnych opakowań ochronnych oraz unikanie uderzeń i upadków, które mogłyby skutkować stłuczeniem. Dobre praktyki wskazują również na konieczność oznaczania miejsc, gdzie rury są transportowane, aby zmniejszyć ryzyko uszkodzeń. Podczas montażu systemów solarnych, ważne jest, aby technicy byli świadomi wrażliwości tych elementów i zachowywali odpowiednie środki ostrożności, co nie tylko zwiększa trwałość instalacji, ale również zapewnia jej efektywność w dłuższym okresie czasu.

Pytanie 24

Najlepiej poprowadzić przewody łączące płaski kolektor, usytuowany na dachu, z zasobnikiem ciepła znajdującym się w piwnicy

A. po zewnętrznej elewacji budynku
B. po wewnętrznej elewacji budynku
C. w kanale wentylacyjnym komina
D. w kanale spalinowym komina
Wybór innych opcji w kontekście prowadzenia przewodów łączących kolektor płaski z zasobnikiem ciepła często wynika z niepełnego zrozumienia zasad efektywności transportu ciepła oraz bezpieczeństwa systemów grzewczych. Prowadzenie przewodów po zewnętrznej ścianie budynku może prowadzić do znacznych strat ciepła, szczególnie w okresach chłodniejszych, co jest sprzeczne z podstawowymi zasadami efektywności energetycznej. Zewnętrzne umiejscowienie przewodów naraża je również na działanie niekorzystnych warunków atmosferycznych, co może prowadzić do uszkodzeń oraz obniżonej wydajności. Z kolei umieszczanie przewodów w kanale wentylacyjnym komina nie jest zalecane, ponieważ kanały wentylacyjne są projektowane z myślą o cyrkulacji powietrza, a nie transportowaniu ciepła. Takie podejście nie tylko może prowadzić do problemów z kondensacją, ale również do zanieczyszczenia jakości powietrza wewnątrz budynku. Ponadto, nieodpowiednie umiejscowienie przewodów może stanowić zagrożenie dla bezpieczeństwa, w szczególności w kontekście ewentualnych pożarów. Zrozumienie tych zasad jest kluczowe do prawidłowego projektowania i instalacji systemów grzewczych, co ma bezpośredni wpływ na ich wydajność oraz żywotność.

Pytanie 25

Inspekcję techniczną systemu solarnego należy wykonywać co

A. jeden rok
B. trzy lata
C. dwa lata
D. pół roku
Przegląd techniczny instalacji solarnej powinien być przeprowadzany co najmniej raz w roku, co jest zgodne z zaleceniami wielu organizacji zajmujących się energią odnawialną oraz regulacjami prawnymi w wielu krajach. Regularne przeglądy pozwalają na wczesne wykrywanie usterek, co może znacznie zwiększyć efektywność systemu oraz wydłużyć jego żywotność. Przykładowo, w przypadku systemów fotowoltaicznych, przegląd obejmuje nie tylko inspekcję fizyczną paneli, ale także sprawdzenie stanu inwertera oraz monitorowanie wydajności systemu. W ciągu roku, na podstawie wyników przeglądów, można podjąć działania naprawcze, które mogą obejmować czyszczenie paneli, wymianę uszkodzonych elementów czy aktualizację oprogramowania inwertera. Taki cykl przeglądów jest zgodny z najlepszymi praktykami branżowymi, które sugerują, że systemy energii odnawialnej powinny być regularnie konserwowane w celu zapewnienia ich optymalnej wydajności oraz zgodności z normami bezpieczeństwa.

Pytanie 26

Kluczową wartością niezbędną do przygotowania przedmiaru robót instalacji solarnej jest średnie zapotrzebowanie na wodę użytkową w trakcie

A. doby
B. tygodnia
C. roku
D. miesiąca
Średnie zapotrzebowanie na wodę użytkową w ciągu doby jest kluczową wielkością przy projektowaniu instalacji solarnych, ponieważ pozwala na określenie wymagań dotyczących pojemności zbiorników oraz mocy systemu kolektorów słonecznych. Ustalając średnią dobową konsumpcję, inżynierowie mogą precyzyjnie oszacować, ile energii będzie potrzebne do podgrzania wody, co przekłada się na efektywność systemu. Przykładowo, rodzina czteroosobowa może zużywać około 200 litrów wody na dobę. Taki parametr pozwala na dobór odpowiedniej wielkości kolektora słonecznego, który zaspokoi te potrzeby. W standardach projektowania instalacji solarnych, takich jak PN-EN 12976, podkreślana jest konieczność analizy dobowego zapotrzebowania, co wpływa na optymalizację kosztów oraz wydajności systemu. Praktycznie, dobranie odpowiednich parametrów do obliczeń może znacząco zmniejszyć koszty eksploatacyjne oraz zwiększyć komfort użytkowników, co jest niezwykle istotne w kontekście inwestycji w odnawialne źródła energii.

Pytanie 27

Wydostawanie się płynu solarnego przez zawór bezpieczeństwa w sytuacji wysokiej temperatury kolektora słonecznego wskazuje na

A. niewłaściwą ilość płynu solarnego w systemie
B. nieprawidłowe ustawienia zaworu bezpieczeństwa
C. zbyt ograniczoną pojemność naczynia przeponowego
D. zbyt małą powierzchnię wężownicy w wymienniku ciepła
Jak dla mnie, problem z za małą pojemnością naczynia przeponowego w układzie cieplnym kolektora słonecznego to poważna sprawa. Kiedy pojemność jest za mała, ciśnienie w systemie może wystrzelić w górę, co często kończy się wyciekiem płynu solarnego przez zawór bezpieczeństwa. Takie naczynie ma ważne zadanie – kompensuje zmiany objętości płynu, które wynikają z jego nagrzewania. Jak płyn się grzeje, jego objętość rośnie, a jeśli naczynie nie ma wystarczającej pojemności, ciśnienie może osiągnąć niebezpieczny poziom. Zawór bezpieczeństwa uruchamia się wtedy, żeby chronić system przed uszkodzeniem. Z mojego doświadczenia, w większych systemach solarnych warto, żeby naczynie miało pojemność przynajmniej 10% z całego obiegu. Dzięki temu można lepiej reagować na zmiany temperatury. Normy, takie jak EN 12976, naprawdę podkreślają, jak ważne jest właściwe dobieranie komponentów, żeby uniknąć problemów z układem. Dlatego, odpowiedni wybór pojemności naczynia przeponowego jest kluczowy dla długotrwałego działania instalacji oraz dla bezpieczeństwa wszystkich użytkowników.

Pytanie 28

Jakie jest optymalne nachylenie kolektora słonecznego zamontowanego na fasadzie budynku na konsoli ściennej?

A. 65°
B. 70°
C. 30°
D. 45°
Kąt nachylenia kolektora słonecznego ma kluczowe znaczenie dla efektywności jego działania. W przypadku montażu na fasadzie budynku, zalecany kąt wynoszący 45° sprzyja optymalnemu wykorzystaniu promieniowania słonecznego przez większość roku. Taki kąt pozwala na maksymalne naświetlenie kolektora zarówno w okresie letnim, kiedy słońce jest wysoko na niebie, jak i w zimie, gdy jego kąt padania jest niższy. Dodatkowo, kąt 45° ułatwia również odprowadzanie śniegu i wody deszczowej, co zmniejsza ryzyko uszkodzeń systemu. Dobrą praktyką jest także uwzględnienie lokalnych warunków klimatycznych oraz orientacji budynku, co może wpłynąć na ostateczny wybór kąta nachylenia. W kontekście standardów, zaleca się konsultację z fachowcami, którzy mogą przeprowadzić symulacje lub analizy, aby dostosować kąt do specyficznych warunków konkretnego miejsca. Wiedza ta jest niezbędna dla osób zajmujących się projektowaniem i instalacją systemów fotowoltaicznych oraz solarnych.

Pytanie 29

Jaka jest najwyższa dopuszczalna wysokość składowania kręgów rur polietylenowych przeznaczonych do budowy kolektora gruntowego?

A. 2,2 m
B. 1,5 m
C. 2,0 m
D. 1,8 m
Maksymalna wysokość składowania kręgów rur polietylenowych do budowy kolektora gruntowego wynosi 1,5 m, co jest zgodne z zaleceniami producentów oraz obowiązującymi normami bezpieczeństwa. Utrzymywanie tej wysokości jest kluczowe, aby zapobiec deformacji materiału oraz zagwarantować stabilność składowanych kręgów. W praktyce, składowanie rur w nadmiarze może prowadzić do ich uszkodzeń, a także zwiększa ryzyko wypadków związanych z ich przewracaniem. Warto również zauważyć, że odpowiednie składowanie rur polietylenowych powinno obejmować stosowanie podkładek lub palet, które pomogą w równomiernym rozłożeniu ciężaru. Dodatkowo, przestrzeganie tej normy jest istotne dla zapewnienia efektywności operacyjnej podczas transportu i montażu systemu kolektorów gruntowych, co z kolei wpływa na jakość całej instalacji. Przestrzeganie maksymalnej wysokości składowania jest także zgodne z dobrymi praktykami branżowymi, co potwierdzają liczne dokumenty normatywne.

Pytanie 30

Rura łącząca kocioł c.o. na drewno kawałkowe z otwartym naczyniem wzbiorczym ma charakterystykę

A. odpowietrzająca
B. bezpieczeństwa
C. przelewowa
D. sygnalizacyjna
Wybór odpowiedzi, które nie dotyczą funkcji rury bezpieczeństwa, wynika z nieporozumienia dotyczącego roli poszczególnych elementów instalacji grzewczej. Rura przelewowa, choć również istotna, ma za zadanie odprowadzenie nadmiaru wody z naczynia wzbiorczego, jednak nie pełni funkcji zabezpieczającej w kontekście ciśnienia w systemie. Pojęcie sygnalizacyjne odnosi się zazwyczaj do elementów, które monitorują parametry pracy systemu, ale nie mają one wpływu na bezpieczeństwo jego użytkowania. Odpowiedź dotycząca rury odpowietrzającej jest kolejnym błędnym podejściem, gdyż jej funkcja sprowadza się do umożliwienia wyrównania ciśnienia w obiegu, zwłaszcza w momentach, gdy system napełnia się wodą lub podczas jego pracy. Ważne jest zrozumienie, że wszystkie wymienione funkcje mają swoje miejsce w instalacji, jednak tylko rura bezpieczeństwa jest bezpośrednio odpowiedzialna za ochranianie systemu przed nadmiernym ciśnieniem, co czyni ją kluczowym elementem w kontekście bezpieczeństwa. W praktyce, pominięcie rury bezpieczeństwa może prowadzić do niebezpiecznych sytuacji, w tym eksplozji kotła, co ilustruje, jak istotne jest właściwe zrozumienie funkcji i przeznaczenia każdego z komponentów w instalacji centralnego ogrzewania, zgodnie z normami i dobrymi praktykami branżowymi.

Pytanie 31

Aby uniknąć wydostawania się wody z zasobnika podczas wymiany zużytej anody, która znajduje się w górnej części zasobnika, należy zakręcić zawór na

A. wlocie oraz na wylocie zasobnika i opróżnić zasobnik
B. wlocie oraz na wylocie zasobnika i wypuścić około 4 l wody z zasobnika
C. wlocie zasobnika i wypuścić około 4 l wody z zasobnika
D. wylocie zasobnika i opróżnić zasobnik
Zamknięcie zaworów na wlocie i wylocie zasobnika jest kluczowym krokiem w procesie wymiany anody, aby zapobiec wypływowi wody. Woda w zasobniku często znajduje się pod ciśnieniem, a otwarcie zasobnika po wymianie anody bez uprzedniego zamknięcia zaworów może prowadzić do niekontrolowanego wycieku. Wypuszczenie około 4 litrów wody z zasobnika przed rozpoczęciem wymiany anody jest również istotne, ponieważ zmniejsza ciśnienie wewnętrzne oraz poziom wody w zasobniku, co dodatkowo zabezpiecza przed przypadkowym zalaniem. Przykładowo, w instalacjach przemysłowych, przestrzeganie tej procedury stanowi standardową praktykę i jest zgodne z zasadami BHP, co minimalizuje ryzyko uszkodzeń oraz wypadków. Dodatkowo, regularne kontrole stanu anody i jej wymiana w odpowiednich odstępach czasowych, zgodnie z zaleceniami producenta, zapewniają dłuższą żywotność zasobnika oraz jego efektywność. Warto również pamiętać o odpowiednim uszczelnieniu nowej anody, aby uniknąć dalszych problemów z wyciekami w przyszłości.

Pytanie 32

Kotły biomasowe o mocy większej niż 2 MW powinny być montowane w obiekcie

A. mieszkalnym, w pomieszczeniach, które nie są przeznaczone na cele mieszkalne
B. wolnostojącym, które jest przeznaczone wyłącznie na kotłownię
C. mieszkalnym, w wydzielonych pomieszczeniach technicznych na poziomie podziemnym
D. mieszkalnym, w wydzielonych pomieszczeniach technicznych na parterze
Wybór wolnostojącego budynku przeznaczonego wyłącznie na kotłownię dla kotłów na biopaliwo o mocy powyżej 2 MW jest zgodny z najlepszymi praktykami branżowymi oraz wymogami bezpieczeństwa. Tego typu instalacje powinny znajdować się w odizolowanych pomieszczeniach, aby zminimalizować ryzyko pożarowe i zapewnić odpowiednią wentylację. Ponadto, wolnostojące budynki pozwalają na łatwiejsze spełnienie norm dotyczących emisji spalin oraz zapewniają dostęp do odpowiednich systemów chłodzenia i odprowadzania spalin. Przykładowo, w przypadku dużych instalacji, takich jak kotły na biomasę, konieczne jest przestrzeganie przepisów technicznych, takich jak PN-EN 303-5, które określają wymagania dotyczące konstrukcji i eksploatacji takich obiektów, co znacząco podnosi poziom bezpieczeństwa eksploatacyjnego oraz efektywności energetycznej systemu grzewczego.

Pytanie 33

Aby osiągnąć maksymalną wydajność przez cały rok w instalacji solarnej do podgrzewania wody użytkowej w Polsce, konieczne jest ustawienie kolektorów w odpowiednim kierunku pod kątem w stosunku do poziomu:

A. 70°
B. 45°
C. 20°
D. 90°
Ustawienie kolektorów słonecznych pod kątem 45° jest kluczowe dla maksymalnej efektywności systemu podgrzewania wody w Polsce. Taki kąt nachylenia jest optymalny ze względu na średnią szerokość geograficzną kraju, która wynosi 52°N. Zgodnie z praktykami branżowymi, kąt ten powinien być o 10-15 stopni mniejszy od szerokości geograficznej, co sprawia, że 45° to idealny wybór. Przy takim nachyleniu, kolektory mogą efektywnie zbierać promieniowanie słoneczne przez cały rok, co jest szczególnie istotne w kontekście sezonowych zmian nasłonecznienia. Przykładowo, zimą, gdy słońce znajduje się nisko nad horyzontem, kąt 45° pozwala na maksymalizację absorpcji promieni słonecznych, co przekłada się na lepsze wyniki w konwersji energii słonecznej na ciepło w systemie grzewczym. Warto także pamiętać, że powiązane z tego standardy, takie jak PN-EN 12975, określają wymagania dotyczące wydajności kolektorów słonecznych, które wzmacniają praktykę ustawienia ich pod odpowiednim kątem. Takie podejście nie tylko zwiększa efektywność energetyczną, ale również przyczynia się do obniżenia kosztów eksploatacyjnych systemu.

Pytanie 34

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. obudowa pompy ciepła
B. parownik
C. filtr w układzie wodnym
D. tacka skroplin
Czynności konserwacyjne w pompach ciepła typu split są kluczowe dla zapewnienia ich efektywności oraz długowieczności. Filtr w układzie wodnym jest jednym z podstawowych elementów, który wymaga regularnej konserwacji, aby zapobiec zatykania układu i stratą wydajności. Zanieczyszczony filtr może prowadzić do zwiększonego zużycia energii, a także do uszkodzenia pompy, co w dłuższej perspektywie generuje dodatkowe koszty. Tacka skroplin, jako integralna część systemu, również wymaga regularnej kontroli, aby zapobiec gromadzeniu się wody, co może prowadzić do wycieków oraz rozwoju pleśni. Parownik, z kolei, jest kluczowym elementem odpowiedzialnym za wymianę ciepła, dlatego jego konserwacja jest niezbędna, by zapewnić optymalne działanie systemu. Zaniedbanie tego elementu może prowadzić do spadku wydajności i zwiększonego zużycia energii. Wiele osób błędnie zakłada, że obudowa nie wymaga uwagi, jednak to nieprawda, gdyż należy kontrolować, czy nie występują ślady korozji czy uszkodzenia mechaniczne, które mogą wpłynąć na działanie pompy. Dlatego też, nieprawidłowe podejście do konserwacji tych komponentów może prowadzić do poważnych problemów eksploatacyjnych oraz kosztów związanych z naprawami.

Pytanie 35

Jakie rodzaje diod chronią przed termicznym uszkodzeniem paneli fotowoltaicznych podłączonych szeregowo?

A. Blokujące
B. Tunelowe
C. Impulsowe
D. Bocznikujące
Diody bocznikujące, znane także jako diody bypass, są kluczowym elementem w systemach fotowoltaicznych, które zapobiegają termicznemu zniszczeniu paneli słonecznych połączonych szeregowo. W przypadku, gdy jeden z paneli jest zacieniony lub uszkodzony, może to prowadzić do efektu hot-spot, gdzie uszkodzony panel generuje ciepło, które może prowadzić do jego degradacji lub całkowitego zniszczenia. Diody bocznikujące działają poprzez 'bypasowanie' prądu wokół uszkodzonego panelu, co pozwala pozostałym panelom na kontynuowanie pracy i generowanie energii. Przykładowo, w typowych instalacjach, diody te są umieszczane równolegle do ogniw w module fotowoltaicznym, co pozwala na efektywne zarządzanie problemami związanymi z różnymi poziomami wydajności ogniw. Zgodnie z najlepszymi praktykami branżowymi, stosowanie diod bocznikujących zwiększa niezawodność systemów PV oraz ich ogólną wydajność, minimalizując ryzyko uszkodzeń termicznych i finansowych strat związanych z koniecznością wymiany uszkodzonych paneli.

Pytanie 36

Przy jakim ciśnieniu powinien zadziałać zawór bezpieczeństwa w systemie solarnym?

A. 2 barów
B. 8 barów
C. 6 barów
D. 4 barów
Zawór bezpieczeństwa w instalacji solarnej jest kluczowym elementem zapewniającym bezpieczeństwo systemu. Ustalenie odpowiedniego ciśnienia, przy którym zawór powinien zadziałać, jest niezwykle istotne. W przypadku instalacji solarnych, wartość 6 barów jest uznawana za standardową granicę, przy której zawór bezpieczeństwa powinien otworzyć się, aby zapobiec nadmiernemu wzrostowi ciśnienia. Praktyczne zastosowanie tego rozwiązania można zaobserwować w sytuacjach, gdy ciśnienie w układzie, na przykład w wyniku niskiej temperatury lub awarii, zbliża się do tej wartości. W rzeczywistości, zawory te są projektowane zgodnie z normą PN-EN 12828, która odnosi się do projektowania i wykonania systemów grzewczych, w tym instalacji solarnych. Zastosowanie zaworu przy ciśnieniu 6 barów zapobiega ryzyku pęknięcia rur oraz uszkodzenia kolektorów słonecznych, co z kolei przekłada się na długowieczność całego systemu oraz zwiększa bezpieczeństwo użytkowania.

Pytanie 37

Kto nie należy do uczestników procesu budowlanego?

A. kominiarz
B. inwestor
C. kierownik budowy
D. projektant
Wybór kominiarza jako osoby, która nie uczestniczy w procesie budowlanym, jest jak najbardziej trafny. W procesie budowlanym uczestniczą kluczowe role takie jak inwestor, projektant i kierownik budowy, którzy są bezpośrednio zaangażowani w projektowanie, nadzór i realizację budowy. Inwestor odpowiada za finansowanie projektu oraz podejmowanie kluczowych decyzji. Projektant zajmuje się tworzeniem i opracowaniem projektu budowlanego, w tym jego zgodności z obowiązującymi normami i przepisami. Kierownik budowy jest odpowiedzialny za organizację i koordynację prac na placu budowy, zapewniając jednocześnie, że realizacja przebiega zgodnie z projektem oraz z wymaganiami prawa budowlanego. Kominiarz, choć odgrywa istotną rolę w zakresie bezpieczeństwa i użytkowania obiektów budowlanych, nie jest bezpośrednim uczestnikiem procesu budowlanego, co sprawia, że nie jest zaangażowany w jego kluczowe etapy. Wiedza na temat ról w procesie budowlanym jest niezbędna, aby skutecznie zarządzać projektami budowlanymi oraz zapewnić ich prawidłową realizację.

Pytanie 38

Hurtownia zajmująca się instalacjami nabywa pompy obiegowe od producenta w cenie 100,00 zł za sztukę, a następnie sprzedaje je, dodając do ceny marżę w wysokości 10% oraz podatek VAT (według stawki 23%). Jaka będzie cena sprzedaży jednej pompy obiegowej?

A. 110,00 zł
B. 110,33 zł
C. 135,30 zł
D. 123,00 zł
Odpowiedź, którą zaznaczyłeś, to 135,30 zł. Hurtownia kupuje pompy obiegowe za 100 zł za sztukę i potem sprzedaje je z dodatkową marżą 10%. Jak to liczymy? Mnożymy cenę zakupu przez 10%, co daje nam 10 zł. Jak dodamy to do 100 zł, to wychodzi 110 zł jako cena sprzedaży netto. Potem musimy dodać VAT, który w naszym kraju wynosi 23%. Z tego wynika, że VAT na 110 zł to 25,30 zł. Gdy dodamy ten podatek, dostaniemy cenę brutto równą 135,30 zł. Widzisz, to jest ważne, żeby dobrze liczyć ceny w handlu. Gdy nie uwzględnimy marży i VAT-u, możemy mieć spore problemy z cenami i rentownością. Ważne, żeby wszystkie te elementy uwzględniać w obliczeniach.

Pytanie 39

System hydrauliczny instalacji solarnej został zmontowany, jednak odbiorniki ciepła z kolektorów nadal nie są podłączone. W tej sytuacji instalator powinien

A. napełnić system i włączyć grupę solarną.
B. zwiększyć objętość naczynia wzbiorczego oraz napełnić system.
C. napełnić system i uruchomić pompę cyrkulacyjną.
D. pozostawić system bez napełniania czynnikiem grzewczym.
Pozostawienie instalacji bez napełniania czynnikiem grzewczym jest odpowiednim działaniem w przypadku, gdy odbiorniki ciepła z kolektorów nie są jeszcze podłączone. W takim stanie, napełnienie instalacji czynnikiem grzewczym mogłoby prowadzić do niepotrzebnych strat ciepła oraz ewentualnych uszkodzeń systemu, szczególnie jeśli wystąpiłyby usterki w układzie. Zgodnie z zasadami projektowania instalacji solarnych, kluczowe jest, aby wszystkie komponenty systemu były właściwie podłączone i gotowe do pracy przed wprowadzeniem czynnika grzewczego. Przykładem zastosowania tej zasady może być sytuacja, w której nowo instalowany system solarny wymaga przetestowania szczelności rurociągów przed napełnieniem cieczą. W praktyce, instalatorzy często przeprowadzają testy na sucho, aby upewnić się, że wszystkie połączenia i armatura są w porządku. Dodatkowo, w przypadku napełniania instalacji, ważne jest, aby używać odpowiednich mediów, które są zgodne z wytycznymi producenta oraz normami branżowymi, aby zapewnić długowieczność i efektywność systemu.

Pytanie 40

Ile wynosi sprawność kolektora słonecznego o podanych w ramce parametrach technicznych, jeżeli przy nasłonecznieniu 1 000 W/m2 jego moc cieplna jest równa 1 400 W?

Rodzaj kolektora: płaski
Długość: 1050 mm
Szerokość: 67 mm
Wysokość: 2095 mm
Powierzchnia brutto kolektora: 2,20 m²
Powierzchnia absorbera: 2,1 m²
Powierzchnia apertury: 2,0 m²
Pojemność cieczowa: 0,8 l
Waga: 30 kg
A. 70%
B. 64%
C. 67%
D. 71%
Sprawność kolektora słonecznego wynosząca 70% oznacza, że przekształca on 70% energii słonecznej padającej na jego powierzchnię na energię cieplną. To kluczowy parametr w projektowaniu systemów solarnych, ponieważ pozwala ocenić efektywność kolektora. W praktyce, znać sprawność kolektora to nie tylko umiejętność obliczenia jego wydajności, ale również umiejętność doboru odpowiednich komponentów w systemie solarnym. W przypadku kolektorów płaskich, sprawność w okolicach 70% jest uznawana za bardzo dobrą, zgodnie z normami branżowymi, takimi jak EN 12975, które definiują sposób testowania i oceny kolektorów słonecznych. Wysoka sprawność kolektora wpływa na rentowność inwestycji w energię odnawialną oraz na redukcję emisji CO2, co jest zgodne z globalnymi trendami w dziedzinie ochrony środowiska i zrównoważonego rozwoju.