Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 20 kwietnia 2025 21:57
  • Data zakończenia: 20 kwietnia 2025 22:39

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Całkowity koszt materiałów potrzebnych do zrealizowania instalacji elektrycznej w mieszkaniu wynosi 2 000 zł brutto. Koszt realizacji instalacji odpowiada 100% wartości brutto materiałów. Jaką sumę trzeba będzie zapłacić za realizację instalacji, jeśli stawka VAT na usługi wynosi 8%?

A. 2 160 zł
B. 2 320 zł
C. 4 160 zł
D. 4 320 zł
Analiza błędów w obliczeniach kosztów wykonania instalacji elektrycznej w mieszkaniu może ujawnić szereg nieporozumień dotyczących podstawowych zasad naliczania podatków i kosztów. Często pojawiają się błędne założenia dotyczące tego, jak należy obliczać całkowity koszt inwestycji, co może prowadzić do nieprawidłowych oszacowań. W przypadku podanych odpowiedzi wiele osób może skupić się na prostym dodawaniu kosztów materiałów i robocizny, nie uwzględniając prawidłowych zasad naliczania VAT. Zrozumienie, że usługi instalacyjne wymagają obliczenia VAT na całościowy koszt robocizny i materiałów, jest kluczowe. Dodatkowo, niektórzy mogą mylnie przypisać VAT tylko do kosztów materiałów, co jest niezgodne z przepisami. Na przykład, przyjmując, że koszt robocizny jest oddzielny od kosztów materiałów, można błędnie obliczyć całkowity koszt na podstawie niepełnych danych. Istotnym aspektem jest również znajomość obowiązujących stawek VAT dla różnych usług budowlanych, które mogą się różnić w zależności od rodzaju wykonywanych prac. Błędne jest również pominięcie faktu, że całkowity koszt inwestycji powinien zawierać wszystkie wydatki, a nie tylko te związane z materiałami. Zrozumienie tych zasad jest niezbędne w celu właściwej kalkulacji kosztów budowlanych oraz przy zachowaniu przejrzystości finansowej w projektach inwestycyjnych.

Pytanie 2

Podczas serwisowania konkretnego urządzenia elektronicznego, technik zauważył, że można usunąć usterkę poprzez wymianę modułu (koszt zakupu nowego modułu - 230 zł, czas trwania naprawy - 0,5 godziny) lub poprzez naprawę uszkodzonego modułu (koszt zakupu uszkodzonych elementów - 57 zł, czas trwania naprawy - 3 godziny). Koszt jednej roboczogodziny wynosi 68 zł. Koszt dostarczenia naprawionego urządzenia do klienta to 50 zł. Technik zaproponował klientowi najtańsze rozwiązanie, polegające na

A. naprawie uszkodzonego modułu bez dostarczenia naprawionego urządzenia do klienta.
B. wymianie całego modułu z dowozem urządzenia do klienta.
C. naprawie uszkodzonego modułu z dowozem urządzenia do klienta.
D. wymianie całego modułu bez dostarczania naprawionego urządzenia do klienta.
Propozycje, które opierają się na wymianie modułu lub dostarczeniu naprawionego urządzenia, nie są korzystne ekonomicznie, co jest kluczowe w takich sytuacjach. Wymiana całego modułu wiąże się z większym wydatkiem, ponieważ koszt nowego modułu wynosi 230 zł, a dodatkowo trzeba doliczyć wydatki na roboczogodziny, co w sumie daje wyższy koszt niż naprawa. Alternatywne podejście, które uwzględnia dostarczenie urządzenia do klienta, również zwiększa całkowity koszt, wprowadzając dodatkowe 50 zł. To pokazuje, że nie wszystkie rozwiązania są optymalne, a kluczowe jest porównywanie zarówno kosztów materiałów, jak i robocizny. Typowym błędem myślowym jest skupienie się na aspekcie wymiany jako szybszym rozwiązaniu, przy jednoczesnym ignorowaniu kosztów długoterminowych. Sugerowanie dostarczenia naprawionego urządzenia może odzwierciedlać brak zrozumienia dla potrzeb budżetowych klienta oraz jego oczekiwań co do kosztów naprawy. W praktyce serwisowej ważne jest zrozumienie, że najtańsze rozwiązanie nie zawsze jest tożsame z najprostszym czy najszybszym, i należy podejmować decyzje na podstawie analizy kosztów oraz potrzeb klienta.

Pytanie 3

Jakie dane identyfikuje czytnik biometryczny?

A. linie papilarne
B. zapis magnetyczny
C. sygnał transpondera
D. kod kreskowy
Czytnik biometryczny to takie fajne urządzenie, które potrafi sprawdzić, kim jesteś, na podstawie cech, które masz tylko Ty, jak na przykład linie papilarne. Gdy chodzi o te linie, to czytniki korzystają z różnych technologii, jak skanowanie optyczne, elektrostatyczne czy ultradźwiękowe, żeby złapać ten unikalny wzór z palca. Są one mega popularne w bankach, na lotniskach czy w smartfonach, bo są naprawdę skuteczne i zwiększają bezpieczeństwo. Jak rejestrujesz swoje linie papilarne, to po prostu przykładujesz palec, a system zapisuje ten wzór cyfrowo, żeby później móc go łatwo zweryfikować. Zresztą, to wszystko musi być zgodne z międzynarodowymi standardami, no bo bezpieczeństwo danych jest bardzo istotne. Ogólnie, używanie technologii biometrycznej nie tylko podnosi bezpieczeństwo, ale i sprawia, że korzystanie z systemów jest wygodniejsze, bo nie musisz pamiętać haseł czy nosić kart.

Pytanie 4

Jakim kablem należy połączyć antenę z odbiornikiem, aby przesłać sygnał cyfrowej telewizji naziemnej?

A. Skrętki ekranowanej
B. Koncentrycznego
C. Symetrycznego
D. Skrętki nieekranowanej
Użycie kabla koncentrycznego do doprowadzenia sygnału cyfrowej telewizji naziemnej z anteny do odbiornika jest powszechnie uznawane za standard w branży telekomunikacyjnej. Kabel koncentryczny charakteryzuje się strukturą, która składa się z rdzenia, otoczonego dielektrykiem oraz ekranem, co sprawia, że jest on doskonałym przewodnikiem sygnałów wysokiej częstotliwości. Dzięki swoim właściwościom, takim jak niska tłumienność i odporność na zakłócenia elektromagnetyczne, kabel koncentryczny minimalizuje straty sygnału, co jest kluczowe dla jakości odbioru sygnałów telewizyjnych. W praktyce, stosuje się różne typy kabli koncentrycznych, takie jak RG-6 czy RG-59, które są używane w instalacjach domowych oraz przemysłowych. Kabli koncentrycznych używa się również w instalacjach satelitarnych, co podkreśla ich uniwersalność i niezawodność. Wybór kabla koncentrycznego zgodnego z normami, jak np. EN 50117, zapewnia wysoką jakość sygnału i zgodność z najlepszymi praktykami w zakresie instalacji telewizyjnych.

Pytanie 5

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 150 zł
B. 500 zł
C. 750 zł
D. 2 500 zł
W przypadku odpowiedzi, które nie wskazują poprawnego kosztu zakupu materiałów, istnieje kilka typowych błędów myślowych, które mogą mylić. Niektórzy mogą na przykład mylnie obliczyć ogólną liczbę radiatorów produkowanych dziennie, biorąc pod uwagę tylko część z pracowników lub błędnie interpretując dzienną produkcję jednego pracownika. Inni mogą popełnić błąd przy obliczaniu liczby potrzebnych kształtowników, co prowadzi do nieprawidłowego oszacowania kosztów. Kluczowe jest zrozumienie, że każdy kształtownik jest odpowiedzialny za produkcję określonej ilości produktów (w tym przypadku 10 radiatorów), a zatem dokładne podział zadań w zespole i znajomość wydajności są kluczowe. Również, błędna interpretacja kosztów jednostkowych kształtowników może prowadzić do nieprawidłowych obliczeń kosztów całkowitych. W praktyce, zdolność do precyzyjnego obliczania i analizowania tych kosztów jest niezbędna dla każdej firmy, aby zachować konkurencyjność na rynku i prawidłowo planować budżet produkcyjny.

Pytanie 6

Układy PLD to cyfrowe urządzenia logiczne, które tworzą kategorię układów

A. czasowych
B. pamięci dynamicznych
C. pamięci statycznych
D. programowalnych
Układy PLD, czyli programowalne układy logiczne, to coś, co daje nam spore możliwości. Można je konfigurować do różnych zadań, co jest super, bo dzięki temu mamy większą elastyczność w projektowaniu obwodów cyfrowych. Inżynierowie mogą dostosować te układy do konkretnych potrzeb, co w elektronice i automatyce ma duże znaczenie. PLD znajdują zastosowanie w różnych miejscach, jak na przykład w układach sterujących w systemach wbudowanych, w projektowaniu procesorów sygnałowych czy w interfejsach. To naprawdę przyspiesza cały proces prototypowania i testowania nowych rozwiązań. Programowanie takich układów w językach jak VHDL czy Verilog staje się coraz bardziej dostępne, co sprawia, że są popularniejsze w przemyśle elektronicznym. Dzięki PLD możemy szybciej wprowadzać nowe produkty na rynek i lepiej zarządzać ich efektywnością energetyczną, a co najważniejsze, możemy je łatwo modyfikować w trakcie użytkowania.

Pytanie 7

Który z poniższych programów jest przeznaczony do symulacji działania układów elektronicznych?

A. Word
B. Power Point
C. PSpice
D. Paint
PSpice to zaawansowane oprogramowanie służące do symulacji i analizy układów elektronicznych. Jest szczególnie popularne wśród inżynierów elektroniki oraz studentów kierunków technicznych, ponieważ umożliwia modelowanie różnych układów i analizowanie ich zachowania bez potrzeby budowy fizycznego prototypu. Dzięki PSpice użytkownicy mogą symulować zarówno układy analogowe, jak i cyfrowe, co pozwala na szybkie sprawdzenie teorii i założeń projektowych. Przykładem zastosowania PSpice może być analiza układów wzmacniaczy, gdzie można zbadać ich odpowiedź częstotliwościową lub badanie układów zasilania, aby ocenić stabilność i wydajność. Program jest zgodny z wieloma standardami branżowymi, co sprawia, że jego wiedza i umiejętności są cennym atutem na rynku pracy. PSpice dostarcza również narzędzi do analizy wrażliwości oraz umożliwia przeprowadzanie symulacji Monte Carlo, co znacznie zwiększa precyzję i wiarygodność wyników.

Pytanie 8

Który amperomierz powinien być użyty do zmierzenia natężenia prądu 0,5 A przepływającego przez czujnik o rezystancji wyjściowej w przybliżeniu 100 Ω, aby pomiar był jak najbardziej precyzyjny?

A. Cyfrowy na zakresie I = 10 A i RWE = 5 Ω
B. Analogowy na zakresie I = 10 A i RWE = 50 Ω
C. Analogowy na zakresie I = 1 A i RWE = 50 Ω
D. Cyfrowy na zakresie I = 1 A i RWE = 5 Ω
Wybór cyfrowego amperomierza na zakresie 1 A z wewnętrznym oporem 5 Ω to naprawdę dobry ruch, jeśli chodzi o pomiar natężenia prądu 0,5 A. Osobiście uważam, że cyfrowe amperomierze są znacznie lepsze niż analogowe, bo dają bardziej rzetelne wyniki i mniejsze błędy pomiarowe. Gdy mierzysz 0,5 A, użycie zakresu 1 A to strzał w dziesiątkę – na pewno dostaniesz bardziej dokładne odczyty niż z większym zakresem. Niski opór wewnętrzny, czyli te 5 Ω, jest ważne, bo dzięki temu amperomierz nie wpływa za bardzo na mierzony obwód. To ma znaczenie, gdy masz czujnik o rezystancji 100 Ω, bo wtedy każdy mały wpływ mógłby zniekształcić wyniki. Jak dla mnie, to kluczowe w pomiarach, zwłaszcza w sytuacjach, gdzie liczą się drobne zmiany, jak w czujnikach temperatury czy ciśnienia. Z tego, co pamiętam, standardy jak IEC 61010 mówią, że warto wybierać dobre narzędzia pomiarowe, żeby minimalizować błędy i zapewnić bezpieczeństwo.

Pytanie 9

Jakie urządzenie powinno być użyte wraz z konwerterem satelitarnym typu Quattro do rozprowadzania sygnałów telewizji satelitarnej z jednej anteny do wielu odbiorników TV-SAT?

A. Tuner
B. Wzmacniacz
C. Modulator
D. Multiswitch
Multiswitch jest urządzeniem, które umożliwia dystrybucję sygnału telewizyjnego satelitarnego z jednej anteny do wielu odbiorników telewizyjnych. W przypadku konwerterów typu Quattro, które dostarczają sygnały w czterech pasmach (V/H i Częstotliwości Niskie/Wysokie), multiswitch rozdziela sygnały z konwertera na wiele wyjść, co umożliwia podłączenie kilku tunerów satelitarnych. Umożliwia to jednoczesne oglądanie różnych programów telewizyjnych przez różne odbiorniki. Przykładem zastosowania jest instalacja w budynku wielorodzinnym, gdzie jeden zestaw antenowy i multiswitch pozwalają na obsługę kilku mieszkań. Zgodnie z normami instalacji telewizyjnych, multiswitch powinien być wybierany zgodnie z liczbą odbiorników oraz typem konwertera, co zapewnia optymalne parametry jakości sygnału.

Pytanie 10

Aby stworzyć niewidoczną dla ludzkiego oka barierę świetlną, należy zastosować

A. zestaw składający się z diody LED emitującej światło podczerwone oraz fotodiody
B. transoptor
C. zestaw składający się z diody LED emitującej światło widzialne oraz fotodiody
D. fototranzystor
Zestaw złożony z diody LED emitującej światło podczerwone i fotodiody jest idealnym rozwiązaniem do tworzenia niewidocznych dla oka ludzkiego barier świetlnych. Dioda LED podczerwonego emituje fale świetlne, które są niewidoczne dla ludzkiego oka, co pozwala na instalowanie systemów detekcji bez zauważalnych elementów. Fotodioda działa jako detektor, rejestrując światło podczerwone tylko wtedy, gdy obiekt zakłóca ten wiązkę. Takie rozwiązania są szeroko stosowane w systemach alarmowych, automatyce domowej oraz w przemyśle do wykrywania obecności ludzi lub przedmiotów. Zastosowanie podczerwieni zwiększa niezawodność systemu, minimalizując ryzyko fałszywych alarmów wywołanych przez światło dzienne. Dodatkowo, standardy dotyczące bezpieczeństwa i efektywności energetycznej wymagają użycia takich technologii w nowoczesnych instalacjach, co czyni tę metodę zgodną z dobrymi praktykami branżowymi.

Pytanie 11

W jakich systemach wykorzystywany jest sterownik PLC?

A. w transmisji światłowodowej
B. w sieciach komputerowych
C. w telewizji dozorowej
D. w automatyce przemysłowej
Sterownik PLC to naprawdę ważna rzecz w automatyce przemysłowej. Umożliwia kontrolę i monitorowanie produkcji, co jest super istotne w fabrykach. Dzięki temu można dostosować systemy do potrzeb konkretnej produkcji. Na przykład w liniach montażowych, PLC potrafi świetnie koordynować pracę maszyn, tak żeby wszystko działało sprawnie i bezpiecznie. Tak samo, w budynkach, gdzie zarządza się oświetleniem czy wentylacją, PLC pomaga zaoszczędzić energię. Jest też sporo standardów, jak IEC 61131, które mówią, jak projektować te systemy. To wszystko pokazuje, jak ważne są PLC w nowoczesnym przemyśle.

Pytanie 12

Stabilizator o symbolu LM7812 charakteryzuje się

A. nieregulowanym ujemnym napięciem na wyjściu
B. regulowanym dodatnim napięciem na wyjściu
C. regulowanym ujemnym napięciem na wyjściu
D. nieregulowanym dodatnim napięciem na wyjściu
Wybór odpowiedzi dotyczącej regulowanego napięcia wyjściowego wskazuje na nieporozumienie w zrozumieniu funkcji stabilizatorów. Stabilizatory, takie jak LM7812, zostały zaprojektowane z myślą o dostarczaniu stałego napięcia, a nie regulowanego, co oznacza, że nie są przeznaczone do zmiany napięcia wyjściowego w zależności od potrzeb użytkownika. Typowe błędy myślowe prowadzące do takich wniosków mogą wynikać z pomylenia stabilizatora napięcia z regulatorem, który może dostosować wyjście do zmieniających się warunków obciążenia. Odpowiedź o nieregulowanym ujemnym napięciu jest również błędna, ponieważ LM7812 dostarcza napięcia dodatniego. Stabilizatory ujemne, takie jak LM7912, mają zastosowanie w sytuacjach wymagających zasilania ujemnego, jednak LM7812 nie jest ich odpowiednikiem. Niezrozumienie różnic między stabilizatorami dodatnimi i ujemnymi oraz ich regulowalnymi i nieregulowalnymi wersjami może prowadzić do nieprawidłowego doboru komponentów w projektach elektronicznych, co z kolei wpływa na nieprawidłowe działanie całego układu. Dlatego tak ważne jest, aby rozumieć specyfikacje i zastosowania poszczególnych stabilizatorów, co z pewnością przyczyni się do efektywniejszego projektowania i realizacji systemów elektronicznych.

Pytanie 13

Na początku prac konserwacyjnych dotyczących instalacji alarmowej przewodowej, co powinno być zrobione jako pierwsze?

A. wprowadzić centralę w tryb serwisowy
B. odłączyć wszystkie urządzenia sygnalizacyjne
C. zabrać alarm z zasilania oraz akumulatora
D. ustawić alarm w tryb czuwania
Wybór odłączenia alarmu od zasilania i akumulatora jest rozwiązaniem, które może wydawać się logiczne, jednak nie jest to właściwe podejście w kontekście konserwacji systemu alarmowego. Odłączenie zasilania wyłącza cały system, co może prowadzić do utraty cennych danych diagnostycznych oraz uniemożliwia pracownikom monitorowanie stanu poszczególnych komponentów. Dodatkowo, takie działania mogą powodować, że system nie będzie w stanie reagować na rzeczywiste zagrożenia w czasie, gdy jest odłączony. Wprowadzenie alarmu w stan czuwania również nie jest odpowiednie, gdyż w tym trybie system pozostaje aktywny i może reagować na zdarzenia, co zwiększa ryzyko fałszywych alarmów. Odłączenie wszystkich sygnalizatorów przerywa komunikację z systemem, co może prowadzić do problemów z identyfikacją źródła usterek. Takie podejście nie tylko komplikuje proces konserwacji, ale także wprowadza niepotrzebny chaos w działaniu systemu. W praktyce, nieprzemyślane decyzje mogą prowadzić do typowych błędów, takich jak niezauważenie istotnych usterek, co w dłuższej perspektywie może skutkować poważnymi konsekwencjami dla bezpieczeństwa obiektu. Dlatego kluczowe jest stosowanie się do zalecanych procedur, takich jak wprowadzenie systemu w tryb serwisowy, co zapewnia bezpieczną i efektywną konserwację.

Pytanie 14

W przypadku łączenia urządzeń audio na dużą odległość, jakie kable powinny być wykorzystane?

A. sygnalizacyjne YKSY
B. symetryczne (balanced)
C. niesymetryczne (unbalanced)
D. sygnalizacyjne YKSwXs
Kable symetryczne, znane również jako kable zbalansowane, są kluczowym elementem w połączeniach urządzeń akustycznych na większe odległości. Główna zaleta tych kabli polega na ich zdolności do redukcji zakłóceń elektromagnetycznych, co jest szczególnie ważne w kontekście długich tras sygnałowych. Dzięki zastosowaniu dwóch przewodów sygnałowych, które przesyłają sygnał w przeciwnych fazach, kable symetryczne eliminują wpływ zakłóceń zewnętrznych, co zapewnia czystość dźwięku i stabilność sygnału. Przykładem zastosowania mogą być instalacje nagłośnieniowe na koncertach, gdzie kable symetryczne są powszechnie używane do łączenia mikrofonów z mikserami audio, zwłaszcza w przypadku dużych odległości. W branży audio stosuje się standardy takie jak AES/EBU i XLR, które są typowymi złączami dla kabli symetrycznych. W praktyce, wybór kabli symetrycznych jest zgodny z najlepszymi praktykami, które zalecają ich stosowanie wszędzie tam, gdzie jakość sygnału i odporność na zakłócenia są kluczowe dla sukcesu technicznego występu lub nagrania.

Pytanie 15

Skrót CCTV odnosi się do telewizji

A. satelitarnej
B. przemysłowej
C. naziemnej
D. kablowej
CCTV, czyli Closed-Circuit Television, odnosi się do systemu telewizji przemysłowej, który wykorzystuje kamery do nadzoru i monitorowania określonych obszarów. Systemy te działają w zamkniętej sieci, co oznacza, że przesyłane obrazy nie są dostępne publicznie, co zwiększa poziom bezpieczeństwa. Telewizja przemysłowa znajduje zastosowanie w różnych miejscach, takich jak sklepy, biura, parkingi czy obiekty przemysłowe, gdzie monitoring wzmacnia ochronę przed kradzieżą, wandalizmem czy innymi przestępstwami. Przykłady zastosowania to instalacja kamer monitorujących w strefach o podwyższonym ryzyku, takich jak wejścia do budynków użyteczności publicznej, co pozwala na szybszą reakcję służb porządkowych w razie incydentu. W kontekście standardów branżowych, wiele systemów CCTV jest zgodnych z normami ISO/IEC, co zapewnia ich wysoką jakość i niezawodność. Dobrze zaprojektowany system CCTV powinien również uwzględniać aspekty takie jak oświetlenie, kąt widzenia kamer oraz przechowywanie nagrań, co jest kluczowe dla skutecznego monitoringu.

Pytanie 16

Technologia umożliwiająca bezprzewodową komunikację na krótkim zasięgu pomiędzy różnymi urządzeniami elektronicznymi to

A. GPRS
B. WiMAX
C. FIREWIRE
D. BLUETOOTH
Bluetooth to technologia bezprzewodowa, która umożliwia komunikację na krótkie odległości pomiędzy różnymi urządzeniami elektronicznymi, takimi jak telefony, głośniki, słuchawki, a także komputery i urządzenia IoT. Działa w paśmie częstotliwości 2.4 GHz i jest skonstruowana w taki sposób, aby minimalizować zakłócenia z innych urządzeń. Standard Bluetooth został zaprojektowany z myślą o energooszczędności, co pozwala na długotrwałe użytkowanie urządzeń przenośnych. Przykłady zastosowania Bluetooth obejmują bezprzewodowe przesyłanie danych, podłączanie zestawów słuchawkowych do telefonów, a także synchronizację urządzeń, takich jak smartfony z komputerami. Warto również zaznaczyć, że Bluetooth implementuje mechanizmy zabezpieczeń, takie jak szyfrowanie, co czyni go bezpiecznym rozwiązaniem do przesyłania poufnych informacji. Standard Bluetooth przeszedł wiele ewolucji, a jego najnowsze wersje oferują większą przepustowość oraz zasięg, co czyni go jeszcze bardziej wszechstronnym rozwiązaniem w dziedzinie komunikacji bezprzewodowej.

Pytanie 17

Gdy w wzmacniaczu użyjemy ujemnego sprzężenia zwrotnego równoległego o charakterze napięciowym, to wzmocnienie

A. napięciowe wzrośnie
B. prądowe pozostanie na tym samym poziomie
C. napięciowe zmniejszy się
D. napięciowe zostanie niezmienne
Rozważając inne odpowiedzi, należy zwrócić uwagę na koncepcje związane z działaniem sprzężenia zwrotnego. Przykładowo, stwierdzenie, że wzmocnienie prądowe będzie stałe, jest mylnym podejściem, ponieważ ujemne sprzężenie zwrotne wpływa przede wszystkim na wzmocnienie napięciowe, a nie prądowe. Wzmocnienie prądowe może się zmieniać w zależności od obciążenia i warunków pracy wzmacniacza. Z kolei wskazanie, że napięciowe wzrośnie, jest błędne, ponieważ zastosowanie ujemnego sprzężenia zwrotnego ma na celu redukcję wzmocnienia, a nie jego zwiększenie. Stabilizacja wzmocnienia wiąże się z efektem ograniczenia wzmocnienia do wartości określającej funkcjonalność wzmacniacza, co z kolei zapobiega nieliniowości w jego działaniu. Odpowiedzi sugerujące, że napięciowe może zmaleć, także są nieprawidłowe, gdyż wzmocnienie napięciowe nie maleje w wyniku wprowadzenia sprzężenia zwrotnego, ale stabilizuje się na określonym poziomie. Błędne przekonania w tej kwestii często wynikają z braku zrozumienia mechanizmów działania sprzężenia zwrotnego oraz ich wpływu na parametry wzmacniacza. Wzmacniacze, w których zastosowano odpowiednią konfigurację sprzężenia zwrotnego ujemnego, są projektowane zgodnie z najlepszymi praktykami inżynieryjnymi, co pozwala na uzyskanie wysokiej jakości sygnału przy jednoczesnym unikaniu zniekształceń.

Pytanie 18

Jednym z technicznych parametrów charakteryzujących wzmacniacze o niskiej częstotliwości jest

A. współczynnik zawartości harmonicznych
B. zmiana częstotliwości
C. napięcie detektora
D. typ modulacji
Wybór innych parametrów jako charakterystyki wzmacniaczy małej częstotliwości może prowadzić do nieporozumień co do kluczowych aspektów ich działania. Napięcie detektora odnosi się do zastosowań detekcji sygnału w systemach radiowych i nie jest bezpośrednio związane z właściwościami wzmacniaczy. Przemiana częstotliwości dotyczy procesów modulacji sygnału i jest stosowana głównie w komunikacji, a nie w ocenie wydajności wzmacniaczy audio. Z kolei rodzaj modulacji, choć istotny w kontekście transmisji sygnału, nie jest parametrem technicznym, który bezpośrednio opisuje charakterystyki wzmacniaczy małej częstotliwości. Takie pomyłki mogą wynikać z braku zrozumienia podstawowych zasad działania wzmacniaczy i ich zastosowania w różnych dziedzinach elektroniki. Kluczowe jest, aby zrozumieć, że każdy z wymienionych parametrów ma swoje miejsce w inżynierii, ale nie jest specyficzny dla wzmacniaczy małej częstotliwości, co może zniekształcać zrozumienie ich funkcji i zastosowania. Rzeczywiste podejście do analizy wzmacniaczy wymaga znajomości specyfikacji technicznych oraz umiejętności odróżnienia pomiędzy różnymi kategoriami parametrów, co jest niezbędne dla uzyskania optymalnych wyników w praktyce inżynieryjnej.

Pytanie 19

Napięcie spadające pomiędzy zasilaczem a urządzeniem zasilanym nieznacznie przekracza maksymalnie dozwoloną wartość. Jakie działania może podjąć instalator w takiej sytuacji?

A. Zrezygnować z realizacji połączenia
B. Użyć przewodu o mniejszym przekroju
C. Wykorzystać przewód aluminiowy o identycznym przekroju
D. Połączyć dwie żyły (lub więcej) równolegle
Rezygnacja z połączenia, kiedy spadek napięcia jest za duży, to nie najlepszy pomysł. Takie podejście może tylko unikać problemów, zamiast je rozwiązywać. Możliwe, że stracisz energię, a to wpłynie na sprzęt, który jest zasilany. Użycie mniejszego przewodu to również zły krok, bo to zwiększa opór, a problem z napięciem tylko się pogłębia. Wydaje się, że wybór przewodu aluminiowego za niższą cenę jest dobry, ale pamiętaj, że aluminium jest znacznie gorsze w przewodnictwie niż miedź, co prowadzi do większego oporu i spadku napięcia. Kiedy projektujesz instalacje, musisz naprawdę zrozumieć, jak kluczowe jest dobre dobranie przewodów i ich przekrojów, żeby wszystko działało bezpiecznie i efektywnie. Ignorowanie tych zasad może prowadzić do poważnych awarii, a nawet grozić pożarem, co czyni takie podejścia ryzykownymi. Dlatego lepiej trzymać się standardów branżowych, jak PN-IEC 60364, bo to podstawa dobrego projektowania i budowy instalacji elektrycznych.

Pytanie 20

Który z poniższych elementów elektronicznych jest najbardziej podatny na uszkodzenia w trakcie wymiany, jeśli osoba wymieniająca nie użyje opaski uziemiającej?

A. Tranzystor bipolarny
B. Dioda prostownicza
C. Tranzystor z izolowaną bramką
D. Rezystor mocy
Tranzystor z izolowaną bramką (IGBT) jest szczególnie wrażliwy na uszkodzenia statyczne, gdyż ma wewnętrzne struktury, które mogą być uszkodzone przez wyładowania elektrostatyczne (ESD). W przypadku braku uziemienia, ładunki elektryczne mogą gromadzić się na ciele wymieniającego, co prowadzi do niekontrolowanego przepływu prądu. Dla bezpiecznej wymiany komponentów elektronicznych, szczególnie tych o wysokiej czułości, zaleca się korzystanie z opasek uziemiających oraz mat antystatycznych, aby minimalizować ryzyko ESD. IGBT są szeroko stosowane w aplikacjach, takich jak zasilacze impulsowe i napędy silników, gdzie ich niezawodność jest kluczowa. W przypadku uszkodzenia IGBT, konieczna jest wymiana komponentu, co wiąże się z dodatkowymi kosztami i czasem przestoju. Zrozumienie tej kwestii jest kluczowe dla osób zajmujących się elektroniką i pozwala na bezpieczniejszą oraz bardziej efektywną pracę.

Pytanie 21

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 6
B. kategorii 5e
C. kategorii 3
D. kategorii 7
Wybór innych kategorii niż 5e dla całej instalacji sieciowej jest błędny z kilku powodów. Nie można zdefiniować kategorii sieci jedynie na podstawie komponentu o najwyższej klasie, jak w przypadku panelu krosowego kategorii 7. Kluczowym aspektem przy ustalaniu klasy instalacji jest najniższa kategoria komponentów, które są w niej użyte. Na przykład, mimo że przewód S/FTP kategorii 6 i panel krosowy kategorii 7 mogą teoretycznie obsługiwać wyższe prędkości, instalacja z gniazdami abonenckimi kategorii 5e ogranicza maksymalną osiągalną prędkość do 1 Gb/s. Zatem, jeżeli w sieci znajdą się elementy o niższej kategorii, cała instalacja zostanie zredukowana do tej najniższej standardu. Możliwość mieszania różnych kategorii w instalacji wymaga przemyślanej strategii, aby nie obniżać ogólnej wydajności. Często popełnianym błędem jest założenie, że wyższa kategoria automatycznie podnosi jakość całego systemu, co nie jest zgodne z rzeczywistością branżową. Właściwe planowanie i zgodność z normami są kluczowe w projektowaniu efektywnych i przyszłościowych sieci komputerowych.

Pytanie 22

W dziedzinie mikroprocesorowej termin stos odnosi się do

A. licznika wewnętrznych impulsów zegarowych mikroprocesora
B. obszaru pamięci użytkowej mikroprocesora, który jest używany na przykład podczas obsługi przerwania
C. sekwencji ostatnio realizowanych rozkazów przez mikroprocesor
D. słowa sterującego, na przykład układem czasowo-licznikowym
Wybór innych odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji i zastosowania różnych komponentów systemu mikroprocesorowego. Pierwsza z propozycji mówiąca o 'słowie sterującym' sugeruje, że stos jest powiązany z zarządzaniem sygnałami w mikroprocesorze, co jest błędne. Słowo sterujące to fragment instrukcji, który nie odnosi się do obszaru pamięci, a raczej do operacji jakie mikroprocesor ma wykonać. Odwołując się do drugiej odpowiedzi, lista ostatnio wykonanych rozkazów mikroprocesora jest bardziej związana z rejestrem stanów lub buforami, a nie ze stosami. Stos nie przechowuje rozkazów, ale dane tymczasowe i adresy powrotu. Ponadto, licznik wewnętrznych impulsów zegarowych mikroprocesora to element odpowiedzialny za synchronizację operacji, a nie za przechowywanie danych, co również może prowadzić do mylnych wniosków. Kluczowe jest zrozumienie, że stos pełni zupełnie inną rolę w architekturze komputerowej. Właściwe zarządzanie pamięcią i zrozumienie struktur danych to podstawowe umiejętności w programowaniu niskopoziomowym. Ignorowanie tych aspektów może prowadzić do nieefektywnego kodu oraz problemów z wydajnością i stabilnością oprogramowania.

Pytanie 23

Jak nazywa się układ elektroniczny określany jako wtórnik emiterowy?

A. Wzmacniacz z tranzystorem bipolarnym w układzie OB
B. Wzmacniacz z tranzystorem bipolarnym w układzie OC
C. Źródło prądowe oparte na tranzystorze bipolarnym
D. Ogranicznik prądowy zrealizowany w technologii bipolarnej
Wzmacniacz na tranzystorze bipolarnym w konfiguracji OB (otwarty kolektor) to odpowiedź, która nie odzwierciedla natury wtórnika emiterowego. W konfiguracji OB sygnał wyjściowy jest zazwyczaj bezpośrednio podłączony do kolektora tranzystora, co ogranicza możliwości wzmacniania sygnału. Dodatkowo, ta konfiguracja charakteryzuje się niską impedancją wejściową, co czyni ją nieefektywną w zastosowaniach wymagających wysokiej impedancji. Z kolei źródło prądowe zbudowane na tranzystorze bipolarnym nie ma nic wspólnego z charakterystyką wtórnika emiterowego, ponieważ służy do utrzymywania stałego poziomu prądu niezależnie od obciążenia, co jest zupełnie innym zastosowaniem. Ogranicznik prądowy wykonany w technice bipolarnej również nie jest odpowiedni, gdyż koncentruje się na ograniczeniu prądu, a nie na wzmacnianiu sygnału. Typowe błędy, które prowadzą do takich nieprawidłowych odpowiedzi, to niepełne zrozumienie konfiguracji tranzystorów oraz ich funkcji w różnych układach. Zrozumienie różnicy między tymi różnymi konfiguracjami jest kluczowe dla poprawnego doboru komponentów w projektach elektronicznych. Wiedza ta jest fundamentalna dla inżynierów elektroniki oraz osób zajmujących się projektowaniem układów elektronicznych.

Pytanie 24

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. war.
C. woltoamper.
D. wat.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 25

W przypadku połączeń znacznie oddalonych urządzeń akustycznych, jakie kable powinny być używane?

A. sygnalizacyjne YKSwXs
B. sygnalizacyjne YKSY
C. niesymetryczne (unbalanced)
D. symetryczne (balanced)
Kable niesymetryczne (unbalanced) nie są odpowiednie dla połączeń na dużych odległościach, ponieważ charakteryzują się większą podatnością na zakłócenia zewnętrzne. W sytuacji, gdy sygnał jest przesyłany jednym przewodem z dodatkowym przewodem masy, każdy wpływ elektromagnetyczny może zniekształcić jakość dźwięku, co może prowadzić do szumów oraz innych problemów. Kable sygnalizacyjne YKSwXs oraz YKSY są specyficznymi typami kabli, które również mogą być stosowane w różnych aplikacjach, ale nie zapewniają tej samej ochrony przed zakłóceniami jak kable symetryczne. W przypadku YKSY, jest to kabel stosowany w instalacjach, ale nie jest on zoptymalizowany do długodystansowego przesyłania sygnału audio. Warto zauważyć, że wiele pomyłek w wyborze odpowiednich kabli wynika z niepełnej wiedzy na temat ich właściwości oraz zastosowań. Często myli się zjawisko tłumienia sygnału i zakłóceń, co prowadzi do błędnych decyzji w zakresie doboru sprzętu. Dobre praktyki branżowe podkreślają konieczność stosowania kabli symetrycznych w profesjonalnych aplikacjach audio, zwłaszcza w miejscach, gdzie wymagana jest wysoka jakość dźwięku i minimalizacja zakłóceń.

Pytanie 26

Jaką rolę odgrywa konwerter w zestawie odbiorczym telewizji satelitarnej?

A. Odbiera programy telewizyjne
B. Pośredniczy w przesyłaniu sygnałów z satelity do odbiornika
C. Przekazuje informacje pomiędzy satelitami
D. Nadaje sygnały z satelity
Konwerter w odbiorczym zestawie telewizji satelitarnej pełni kluczową rolę w procesie odbioru sygnałów telewizyjnych. Jego podstawową funkcją jest pośrednictwo w przekazie sygnałów z satelity do odbiornika. W praktyce konwerter znajduje się na końcu anteny parabolicznej, która skupia sygnały z satelity. Sygnały te są zazwyczaj przesyłane w zakresie częstotliwości Ku lub C, a konwerter ma za zadanie przetworzyć je na niższe częstotliwości, które są bardziej odpowiednie do przesyłania przez kabel do odbiornika. Dzięki temu możliwe jest uzyskanie wysokiej jakości obrazu i dźwięku. Warto również zauważyć, że konwertery mogą mieć różne właściwości, takie jak podwójne wyjścia, co pozwala na jednoczesne korzystanie z dwóch tunerów. Zastosowanie konwertera jest zgodne z normami branżowymi, które określają standardy jakości sygnału oraz efektywności jego przetwarzania.

Pytanie 27

Termin PDP odnosi się do typów wyświetlaczy

A. fluorescencyjnych
B. diodowych
C. plazmowych
D. ciekłokrystalicznych
PDP, czyli Plazma Display Panel, odnosi się do technologii wyświetlaczy plazmowych, które wykorzystują gazy szlachetne do generowania obrazu. W plazmowych wyświetlaczach, dwa cienkie szkła są pokryte warstwą fosforu i wypełnione gazem, takim jak argon czy neon. Kiedy na te gazy działa wysoka energia elektryczna, powstają cząstki plazmy, które emitują światło. Wyświetlacze plazmowe oferują szeroki kąt widzenia, żywe kolory i doskonały kontrast, co czyni je idealnym rozwiązaniem dla dużych ekranów telewizyjnych i projektorów. W praktyce, plazmy były popularne w telewizorach wysokiej rozdzielczości, szczególnie w dużych formatach. Choć technologia OLED zyskała na popularności, plazmowe wyświetlacze wciąż pozostają istotnym elementem w kontekście technologii wizualnych, dostarczając wyjątkową jakość obrazu przy odpowiednim oświetleniu pomieszczenia.

Pytanie 28

Kiedy w obwodzie prądu stałego rezystancja obciążenia jest taka sama jak rezystancja wewnętrzna źródła, to mówi się

A. o zwarciu w obwodzie
B. o stanie nieustalonym
C. o dopasowaniu energetycznym
D. o przerwie w obwodzie
Zrozumienie błędnych odpowiedzi wymaga analizy poszczególnych koncepcji, które mogą wydawać się logiczne, ale w rzeczywistości są mylne. Przerwa w obwodzie oznacza całkowity brak przepływu prądu, co jest sprzeczne z sytuacją, gdy rezystancja obciążenia jest równa rezystancji wewnętrznej źródła. W takim przypadku prąd w obwodzie nie tylko płynie, ale osiąga swój maksymalny poziom, co jest korzystne dla działania urządzenia. Stan nieustalony odnosi się do warunków przejściowych, które występują w momencie, gdy obwód jest w trakcie zmiany, co również nie ma miejsca w omawianej sytuacji, gdzie osiągamy stabilny stan. Zwarcie w obwodzie natomiast to sytuacja, w której prąd płynie w sposób niekontrolowany, co prowadzi do niebezpieczeństwa przegrzania lub uszkodzenia komponentów. Takie zjawisko jest całkowicie odmienne od sytuacji dopasowania energetycznego, gdzie prąd jest kontrolowany i efektywnie przekazywany do obciążenia. Dlatego kluczowe jest zrozumienie, że dopasowanie energetyczne umożliwia optymalne wykorzystanie energii i zapobiega niepożądanym efektom, takim jak straty energii czy uszkodzenia komponentów, co jest fundamentalne w projektowaniu systemów elektrycznych.

Pytanie 29

Skrót "FM" odnosi się do modulacji

A. amplitudy
B. impulsowo-kodowej
C. fazy
D. częstotliwości
Modulacja częstotliwości (FM) to technika, w której informacja jest transmitowana poprzez zmianę częstotliwości fali nośnej. W praktyce oznacza to, że amplituda fali pozostaje stała, natomiast jej częstotliwość ulega modyfikacji w odpowiedzi na sygnał wejściowy, co pozwala na zwiększenie odporności na zakłócenia. Modulacja ta jest szeroko wykorzystywana w radiokomunikacji, w tym w stacjach radiowych FM, ponieważ zapewnia lepszą jakość dźwięku i większy zasięg w porównaniu do innych rodzajów modulacji, takich jak AM (modulacja amplitudy). Przykładem zastosowania FM może być transmisja sygnałów dźwiękowych w radiach samochodowych oraz w systemach komunikacji bezprzewodowej, gdzie kluczowe jest uzyskanie czystości sygnału. Dobry projekt systemu FM musi również uwzględniać normy dotyczące pasma częstotliwości, aby unikać interferencji i zapewnić zgodność z regulacjami na poziomie krajowym i międzynarodowym, takimi jak ITU-R.

Pytanie 30

Skracający się czas działania urządzenia zasilanego przez UPS wskazuje na

A. utracenie pojemności kondensatorów w zasilaczu awaryjnym UPS
B. nieprawidłowe podłączenie zasilacza awaryjnego UPS do urządzenia
C. awarię zabezpieczenia przeciążeniowego zasilacza awaryjnego UPS
D. konieczność wymiany akumulatora w zasilaczu awaryjnym UPS
Przyczyny zmniejszającego się czasu działania urządzenia pod zasilaniem UPS są często mylnie interpretowane. Utrata pojemności kondensatorów w zasilaczu nie jest typowym zjawiskiem, które bezpośrednio wpływa na czas podtrzymania. Kondensatory w UPS mają za zadanie wspierać stabilność napięcia i nie są głównym źródłem energii w przypadku awarii zasilania. Ich degradacja może wpływać na jakość dostarczanej energii, ale nie na czas działania urządzenia. Kolejny błąd to teza o błędnym podłączeniu UPS. Prawidłowo podłączony zasilacz awaryjny działa zgodnie z założeniami, a problemy z czasem podtrzymania są ściśle związane z akumulatorami. Uszkodzenie zabezpieczenia przeciążeniowego także nie ma bezpośredniego wpływu na czas działania, a raczej na bezpieczeństwo samego urządzenia. Zrozumienie, że podstawowym elementem odpowiedzialnym za czas działania jest akumulator, a nie inne komponenty, jest kluczowe dla prawidłowej diagnostyki. Właściwe zarządzanie i konserwacja akumulatorów w UPS to fundamentalne aspekty zapewnienia stabilności zasilania i unikania nieprzewidzianych przestojów w działaniu sprzętu. Regularne inspekcje systemów zasilania awaryjnego zgodnie z zaleceniami producentów są niezbędne, aby prawidłowo ocenić stan akumulatorów oraz ich wpływ na funkcjonalność całego systemu.

Pytanie 31

W elektromagnetycznych zaczepach można wyróżnić dwa główne tryby funkcjonowania: normalnie zamknięty (NC) oraz normalnie otwarty (NO). Jaką standardową konfigurację elektrozaczepu wykorzystuje się w systemie blokowania przejścia oraz w systemach domofonowych?

A. Systemy blokowania przejścia – NC, systemy domofonowe – NO
B. Systemy blokowania przejścia – NO, systemy domofonowe – NC
C. Systemy blokowania przejścia – NO, systemy domofonowe – NO
D. Systemy blokowania przejścia – NC, systemy domofonowe – NC
Wybór elektrozaczepów w systemach blokowania przejścia oraz domofonowych wymaga zrozumienia ich funkcji oraz kontekstu użycia. W przypadku systemów blokowania przejścia, zastosowanie elektrozaczepów normalnie zamkniętych (NC) może prowadzić do opóźnień w procesie otwierania, co jest nieefektywne w sytuacjach, gdy szybka reakcja jest niezbędna. Podobnie, wybór elektrozaczepów normalnie otwartych (NO) w systemach domofonowych może wprowadzać ryzyko nieautoryzowanego dostępu, ponieważ drzwi pozostają odblokowane, gdy nie ma aktywnego sygnału. Błędne założenie, że obie funkcjonalności mogą być stosowane zamiennie, prowadzi do poważnych luk w bezpieczeństwie. W praktyce, systemy NC w domofonach są bardziej odpowiednie, ponieważ ich zamknięcie blokuje dostęp do momentu potwierdzenia tożsamości użytkownika, co jest zgodne z normami bezpieczeństwa. Ignorowanie tych zasad może skutkować nieodpowiednim doborem komponentów i w konsekwencji, niższym poziomem ochrony. Warto również pamiętać, że w kontekście zabezpieczeń budynków, stosowanie odpowiednich standardów i procedur jest kluczowe, aby zapewnić skuteczność systemów zabezpieczeń oraz minimalizować ryzyko wypadków.

Pytanie 32

Który z parametrów kamery wskazuje na jej efektywność w warunkach słabego oświetlenia?

A. Kąt widzenia kamery
B. Rozdzielczość
C. Czułość
D. Typ mocowania obiektywu
Czułość kamery, nazywana również ISO, określa jej zdolność do rejestrowania obrazu w warunkach niskiego oświetlenia. Im wyższa czułość, tym kamera lepiej radzi sobie z uchwyceniem detali w ciemniejszych scenach. Przykładem jej zastosowania jest monitoring w nocy, gdzie kamery o wysokiej czułości mogą wykrywać ruch i rejestrować obraz w praktycznie całkowitej ciemności. W kontekście standardów branżowych, czułość kamery często mierzy się w jednostkach ISO, a kamery o wartościach ISO powyżej 1600 są uznawane za odpowiednie do pracy w trudnych warunkach oświetleniowych. Dobrze dobrana czułość ma kluczowe znaczenie dla jakości obrazu, ponieważ zbyt wysoka czułość może prowadzić do zjawiska szumów, co negatywnie wpływa na klarowność obrazu. Wybór kamery o odpowiedniej czułości jest zatem kluczowy dla zapewnienia skutecznego monitoringu w różnych warunkach oświetleniowych.

Pytanie 33

Czym jest watchdog?

A. typ licznika rejestrującego impulsy zewnętrzne
B. system bezpośredniego dostępu do pamięci mikroprocesora
C. rodzaj timera kontrolującego działanie mikroprocesora
D. system bezpośredniego dostępu do portów I/O mikroprocesora
Watchdog to kluczowy element w systemach mikroprocesorowych, który działa jako rodzaj timera nadzorującego ich pracę. Jego głównym zadaniem jest monitorowanie stanu pracy systemu i wykrywanie potencjalnych awarii. W momencie, gdy system przestaje odpowiadać lub wchodzi w stan zawieszenia, watchdog resetuje mikroprocesor, co pozwala na przywrócenie jego prawidłowego działania. Przykłady zastosowania zegarów watchdog są widoczne w systemach krytycznych, takich jak urządzenia medyczne czy systemy wbudowane w lotnictwie, gdzie niezawodność i ciągłość działania są kluczowe. Wdrażając watchdogi w projektach, inżynierowie stosują standardy, takie jak IEC 61508, które zapewniają odpowiedni poziom bezpieczeństwa w systemach elektronicznych. To podejście jest zgodne z najlepszymi praktykami branżowymi, które zalecają implementację mechanizmów nadzorujących, aby minimalizować ryzyko awarii systemów oraz zapewnić ich ciągłe działanie.

Pytanie 34

Monter realizuje montaż instalacji telewizji satelitarnej dla 6 mieszkańców w czasie 8 godzin. Koszt materiałów to 2 080 zł, a stawka za roboczogodzinę wynosi 40 zł. Jaka suma przypada na instalację dla jednego lokatora?

A. 350 zł
B. 400 zł
C. 333 zł
D. 450 zł
Analizując inne odpowiedzi, można zauważyć szereg błędów w obliczeniach i podstawowych założeniach. Odpowiedzi takie jak 450 zł czy 350 zł sugerują, że koszt materiałów lub robocizny został niepoprawnie podzielony lub zrozumiany. Na przykład, jeśli ktoś obliczyłby koszt materiałów na podstawie innej liczby lokatorów, może dojść do mylnego wniosku o wyższych kosztach, co nie odzwierciedla rzeczywistego rozkładu kosztów. Ponadto, odpowiedź 333 zł zdaje się ignorować pełne uwzględnienie robocizny, co jest kluczowe w kalkulacji całkowitych wydatków na instalację. W branży instalacji telewizyjnych istotnym standardem jest pełne uwzględnienie nie tylko materiałów, ale również czasu pracy fachowców, który wpływa na końcowy koszt usługi. Pomijanie tych elementów prowadzi do niedoszacowania kosztów, co może skutkować nieprzewidzianymi wydatkami w późniejszych etapach realizacji projektu. Aby skutecznie zarządzać kosztami, należy zawsze przeprowadzać dokładne kalkulacje, uwzględniając wszystkie składniki, co jest podstawową praktyką w profesjonalnym podejściu do instalacji. Kluczowe jest również zrozumienie, że różne czynniki, takie jak lokalizacja, dostępność materiałów czy stawki robocze, mogą wpływać na ostateczny koszt, dlatego warto korzystać z modeli kalkulacyjnych, które uwzględniają te zmienne.

Pytanie 35

Który rodzaj pamięci półprzewodnikowej po zaprogramowaniu powinien być chroniony przed działaniem światła słonecznego, aby zabezpieczyć jej dane?

A. EEPROM
B. EPROM
C. SRAM
D. DDR
EPROM, czyli Erasable Programmable Read-Only Memory, to taki typ pamięci, który po zaprogramowaniu należy chronić przed światłem słonecznym, żeby nie stracić danych. Jest to pamięć, która przechowuje informacje na stałe, ale można ją wymazać, wystawiając na działanie promieniowania UV. Dlatego podczas używania urządzeń z EPROM ważne jest, żeby nie były one narażone na bezpośrednie światło słoneczne, bo to może przypadkowo skasować dane. W praktyce EPROM często stosuje się, kiedy potrzebujemy trwale trzymać dane, jak w systemach wbudowanych czy w elektronice, gdzie programowanie odbywa się wielokrotnie, ale nie wymaga szybkiego dostępu do zmieniających się danych. Warto też wiedzieć, że są standardy techniczne, takie jak JEDEC, które regulują parametry EPROM, by mieć pewność, że działa niezawodnie w różnych zastosowaniach komercyjnych. Zrozumienie tych rzeczy jest kluczowe, zwłaszcza dla projektantów systemów elektronicznych, jeśli chodzi o długoterminowe przechowywanie danych.

Pytanie 36

Wysokie napięcia w punktach przejściowych, w gniazdach abonenckich, na stacji głównej telewizji kablowej oraz na wejściu urządzenia abonenckiego mogą się pojawić w wyniku

A. zjawiska indukcji
B. zmiany częstotliwości sygnału
C. wyrównywania potencjałów połączeń
D. tłumienia impulsów napięcia
Zjawisko indukcji elektromagnetycznej jest kluczowym fenomenem w systemach elektrycznych i telekomunikacyjnych. Powstaje ono, gdy zmienne pole magnetyczne wytwarza napięcie w przewodniku. W kontekście wysokich napięć w telekomunikacji, zjawisko to może prowadzić do niepożądanych efektów, jak na przykład powstawanie wysokich napięć w punktach przejściowych i gniazdach. Praktyczne zastosowanie tej wiedzy leży w projektowaniu odpowiednich układów zabezpieczeń, takich jak transformatory separacyjne, które minimalizują ryzyko indukcji. Warto również wspomnieć o standardach, takich jak IEC 61000, które dotyczą kompatybilności elektromagnetycznej (EMC) i zalecają odpowiednie metody ochrony urządzeń przed skutkami indukcji. Dobrze zaprojektowane systemy kablowe uwzględniają zjawisko indukcji, stosując odpowiednie materiały izolacyjne oraz prowadząc przewody w sposób zminimalizowany w kontekście potencjalnych źródeł zakłóceń.

Pytanie 37

Jednym z komponentów urządzenia elektronicznego jest rezystor o wartości rezystancji 1 kΩ i mocy 1 W. Jeśli brakuje elementu o tych parametrach, można go zastąpić rezystorem

A. o identycznej rezystancji i niższej mocy
B. o niższej rezystancji i tej samej mocy
C. o wyższej rezystancji i tej samej mocy
D. o identycznej rezystancji i wyższej mocy
Ta odpowiedź jest prawidłowa, ponieważ w przypadku zastępowania rezystora istotne jest, aby zachować jego rezystancję oraz zwiększyć moc. Rezystor o rezystancji 1 kΩ i mocy 1 W oznacza, że przy maksymalnej mocy 1 W, rezystor ten może pracować bez przegrzewania się. Gdybyśmy chcieli zastąpić go innym rezystorem, powinniśmy wybrać taki o tej samej rezystancji (1 kΩ), aby nie zmieniać parametrów obwodu. Zwiększona moc pozwoli na bezpieczniejsze i bardziej stabilne działanie w przypadku, gdy obwód będzie wymagał większej mocy. Standardowe praktyki inżynieryjne zalecają zawsze dobierać komponenty z marginesem bezpieczeństwa, co oznacza, że wybór rezystora o większej mocy (np. 2 W lub 5 W) minimalizuje ryzyko uszkodzenia elementu oraz wydłuża jego żywotność. Przykłady zastosowania obejmują układy zasilające, gdzie elementy są narażone na zmienne obciążenia, a także w aplikacjach audio, gdzie stabilność działania jest kluczowa.

Pytanie 38

Jakie jest przybliżone wartości rezystancji trzech rezystorów połączonych równolegle, jeżeli rezystancja każdego z nich wynosi 30 kΩ?

A. 15 kΩ
B. 60 kΩ
C. 10 kΩ
D. 90 kΩ
Kiedy mamy rezystory połączone równolegle, całkowita rezystancja R obliczamy według wzoru: 1/R = 1/R1 + 1/R2 + 1/R3. Dla trzech rezystorów, każdy o rezystancji 30 kΩ, wygląda to tak: 1/R = 1/30k + 1/30k + 1/30k, co możemy uprościć do 1/R = 3/30k. Po przekształceniu dostajemy R = 30k/3, co daje nam 10kΩ. W praktyce, połączenie równoległe rezystorów jest często używane w układach, gdzie chcemy obniżyć całkowitą rezystancję, a więc zwiększyć przepływ prądu. Na przykład w układach audio, gdzie więcej rezystorów równolegle pomaga obniżyć impedancję, co jest super dla wzmocnienia sygnału. Dobrze jest też rozumieć, jak wartości rezystancji wpływają na charakterystykę całego obwodu, bo to kluczowa sprawa w projektowaniu systemów elektronicznych.

Pytanie 39

Podłączenie urządzenia elektronicznego klasy I do gniazda elektrycznego bez bolca ochronnego może prowadzić do

A. uszkodzenia urządzenia
B. skrócenia okresu użytkowania
C. wzrostu temperatury pracy urządzenia
D. pojawienia się napięcia na obudowie
Podłączenie urządzenia do gniazdka bez bolca ochronnego nie prowadzi do skrócenia czasu eksploatacji, ponieważ czas pracy urządzenia zależy głównie od jego jakości, użytkowania oraz warunków pracy. W przypadku braku bolca ochronnego występuje jednak ryzyko, że podczas awarii napięcie może pojawić się na obudowie, co jest znacznie bardziej niebezpieczne. Uszkodzenie urządzenia może zdarzyć się, ale nie jest to bezpośredni skutek braku bolca – wiele urządzeń może działać poprawnie przez pewien czas, zanim dojdzie do awarii. Wzrost temperatury pracy urządzenia w efekcie podłączenia bez uziemienia mógłby wystąpić w przypadku zbyt dużego obciążenia, ale nie jest to kwestia związana z brakiem bolca ochronnego. Kluczowe jest zrozumienie, że odpowiednie uziemienie ma na celu nie tylko ochronę samego urządzenia, ale przede wszystkim bezpieczeństwo użytkownika. Ignorowanie norm dotyczących klasyfikacji i bezpieczeństwa urządzeń elektrycznych może prowadzić do groźnych sytuacji, w tym porażenia prądem. Dlatego tak ważne jest, aby zwracać uwagę na szczegóły instalacji elektrycznej i stosować się do najlepszych praktyk, aby zapewnić bezpieczeństwo i niezawodność pracy urządzeń.

Pytanie 40

Brak uziemienia na nadgarstku pracownika zajmującego się serwisowaniem sprzętu elektronicznego może prowadzić do

A. powstania prądów wirowych, wywołanych przez zmienne pole magnetyczne
B. porażenia prądem elektrycznym
C. wpływu pola magnetycznego na organizm ludzki
D. wyładowania elektrostatycznego groźnego dla układów typu MOS
Pojawiające się mylne przekonania dotyczące potencjalnych konsekwencji braku uziemionej opaski na przegubie pracownika serwisu wynika z niepełnego zrozumienia zagadnień związanych z elektrycznością i wpływem pola magnetycznego na człowieka. Pierwsza z odpowiedzi sugeruje, że brak uziemienia może prowadzić do powstawania prądów wirowych wywoływanych przez zmienne pole magnetyczne. W rzeczywistości prądy wirowe są zjawiskami związanymi z przewodnikami umieszczonymi w zmiennym polu magnetycznym, co jest bardziej związane z indukcją elektromagnetyczną niż z uziemieniem. Oddziaływanie pola magnetycznego na organizm człowieka nie jest bezpośrednio związane z brakiem uziemienia, a raczej z długotrwałym narażeniem na silne pola magnetyczne, co jest zupełnie innym zagadnieniem. Porażenie prądem elektrycznym nie jest głównym zagrożeniem związanym z elektrostatyką, gdyż wyładowania elektrostatyczne mają znacznie niższe napięcie, jednak mogą być szkodliwe dla delikatnych układów elektronicznych. Kluczowe jest zrozumienie, że wyładowania elektrostatyczne, a nie prąd elektryczny w tradycyjnym rozumieniu, są realnym zagrożeniem dla komponentów takich jak układy MOS. Zastosowanie technologii ESD (Electrostatic Discharge) w praktyce, w tym uziemienie oraz stosowanie mat antystatycznych, jest niezbędne do ochrony sprzętu i zapewnienia jego długotrwałej niezawodności.