Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 6 lipca 2025 20:07
  • Data zakończenia: 6 lipca 2025 20:19

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jaki przyrząd jest wykorzystywany do pomiarów rezystancji izolacyjnej kabli elektrycznych?

A. Waromierz
B. Pirometr
C. Anemometr
D. Megaomomierz
Megaomomierz to naprawdę ważne urządzenie, które pomaga mierzyć rezystancję izolacji, zwłaszcza w elektryce. Jego głównym zadaniem jest sprawdzanie, w jakim stanie są przewody, co jest mega istotne dla bezpieczeństwa naszych instalacji. Zazwyczaj działa przy napięciach od 250 do 5000 V, co daje nam pewność, że jakość izolacji jest na odpowiednim poziomie. Z mojego doświadczenia, regularne pomiary rezystancji izolacji są kluczowe. Powinno się to robić według norm, jak PN-EN 61557, bo to może pomóc w wykryciu problemów, takich jak zwarcia czy upływy prądu. Przecież nikt nie chce mieć nieprzyjemności związanych z awariami czy zagrożeniem dla bezpieczeństwa. Dobrze jest więc pamiętać o konserwacji i systematycznych kontrolach, bo to pozwala uniknąć drogich napraw i utrzymać instalację elektryczną w dobrym stanie.

Pytanie 2

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 220 V
B. 50 V
C. 70 V
D. 110 V
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 3

Określ prawidłową sekwencję działań przy wymianie uszkodzonego łącznika świecznikowego w instalacji elektrycznej.
włączenie napięcia, sprawdzenie prawidłowości działania.

A. Stwierdzenie braku napięcia, wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie
B. Wyłączenie napięcia, demontaż łącznika, montaż łącznika, sprawdzenie prawidłowości działania, stwierdzenie braku napięcia, włączenie napięcia
C. Sprawdzenie prawidłowości działania, włączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, wyłączenie napięcia
D. Wyłączenie napięcia, stwierdzenie braku napięcia, demontaż łącznika, montaż łącznika, włączenie napięcia, sprawdzenie prawidłowości działania
Kiedy zabierasz się za wymianę uszkodzonego łącznika świecznikowego, najważniejsze to zacząć od wyłączenia napięcia. Bez tego krok nie tylko porażka może się wydarzyć, ale coś gorszego. Potem, zanim zaczniesz grzebać w instalacji, dobrze jest upewnić się, że naprawdę nie ma napięcia w obwodzie. To trochę jak dobre nawyki, które mogą uratować życie. Jak już to masz za sobą, możesz zająć się demontażem starego łącznika, ale pamiętaj, żeby być ostrożnym – nigdy nie wiadomo, co może się zdarzyć. Po włożeniu nowego łącznika, dopiero wtedy możesz włączyć napięcie i sprawdzić, czy wszystko działa. Taka kolejność jest super ważna i zgadza się z normami bezpieczeństwa, jak PN-IEC 60364, które mówią, jak robić to bezpiecznie. W sumie, w domowym warsztacie to przydatna wiedza, bo często coś się psuje i warto wiedzieć, jak to zrobić porządnie i bezpiecznie.

Pytanie 4

Jakim środkiem ochrony przeciwporażeniowej zapewnia się bezpieczeństwo przed dotykiem pośrednim?

A. Umieszczenia elementów z napięciem poza zasięgiem ręki
B. Instalowania osłon i barier
C. Izolowania części czynnych
D. Samoczynnego szybkiego wyłączenia napięcia
Odpowiedź "Samoczynnego szybkiego wyłączenia napięcia" jest prawidłowa, ponieważ stanowi kluczowy element zabezpieczeń w instalacjach elektrycznych, mający na celu ochronę przed dotykiem pośrednim. Dotyk pośredni występuje, gdy osoba styka się z przewodzącymi elementami, które nie są bezpośrednio pod napięciem, ale stają się naładowane wskutek awarii izolacji. Samoczynne szybkie wyłączenie napięcia zapewnia, że w momencie wykrycia nieprawidłowości, np. zwarcia z przewodem ziemnym, nastąpi automatyczne odcięcie zasilania w sposób najszybszy możliwy, minimalizując ryzyko porażenia. Praktyczne zastosowanie tej metody można zauważyć w systemach ochrony, takich jak wyłączniki różnicowoprądowe (RCD), które są zgodne z normami PN-EN 61008 i PN-EN 61009. Ich działanie opiera się na ciągłej kontroli prądu różnicowego i błyskawicznej reakcji na jego wzrost, co skutecznie chroni użytkowników przed skutkami porażenia prądem. Dodatkowo, szybkie wyłączenie napięcia należy do najlepszych praktyk w projektowaniu instalacji elektrycznych, co podkreślają różne wytyczne oraz normy ochrony przeciwporażeniowej.

Pytanie 5

Podczas serwisowania urządzenia wymieniono uszkodzony silnik bocznikowy prądu stałego. W trakcie próbnego uruchamiania silnika zauważono, że jego prędkość obrotowa jest wyższa od wartości nominalnej. Co może być przyczyną tego zjawiska?

A. Zwarcie w obwodzie wzbudzenia silnika
B. Uszkodzenie w połączeniu uzwojenia bocznikowego z zasilaczem
C. Brak obciążenia na silniku
D. Uszkodzenie w połączeniu uzwojenia twornika z zasilaczem
Myślenie, że przerwa w połączeniu uzwojenia twornika z zasilaniem może prowadzić do wzrostu prędkości obrotowej jest błędne. Tak naprawdę silnik po prostu stanie, bo nie dostaje zasilania. Wydaje się, że uszkodzenie twornika wpływa na prędkość, ale to nie tak. Brak prądu oznacza, że silnik nie ma szans pracować. Co do zwarcia w obwodzie wzbudzenia, to można by pomyśleć, że to zwiększy prędkość, ale w praktyce zazwyczaj kończy się to uszkodzeniem silnika. Być może myślisz, że przerwa w uzwojeniu bocznikowym nie wpłynie na pracę silnika, ale to naprawdę kluczowa rzecz, jeśli chodzi o stabilność i regulację prędkości. A ta koncepcja o braku obciążenia silnika, chociaż brzmi sensownie, nie wyjaśnia wzrostu prędkości, który może się zdarzyć, gdy nie ma wzbudzenia; obciążenie na pewno ma znaczenie, ale w sytuacjach takich jak problemy z wzbudzeniem, to brak wzbudzenia może prowadzić do niekontrolowanego przyspieszania. Ogólnie rzecz biorąc, zarządzanie prędkością silników prądu stałego wymaga dobrego zrozumienia, jak różne elementy współdziałają, żeby wszystko działało jak trzeba.

Pytanie 6

Który przekrój przewodu jest najczęściej używany do tworzenia obwodów gniazd wtyczkowych w podtynkowych instalacjach mieszkaniowych?

A. 4 mm2
B. 1,5 mm2
C. 2,5 mm2
D. 1 mm2
Przewód o przekroju 2,5 mm2 jest standardowo stosowany w obwodach gniazd wtyczkowych w instalacjach elektroenergetycznych w budownictwie mieszkaniowym. Taki przekrój zapewnia odpowiednią przewodność elektryczną oraz bezpieczeństwo użytkowania, co jest niezwykle istotne, biorąc pod uwagę maksymalne obciążenia, które mogą wystąpić w codziennym użytkowaniu. Przykładowo, w przypadku podłączenia urządzeń elektrycznych, takich jak odkurzacze czy piekarniki, które mogą wymagać wyższego poboru prądu, przewód 2,5 mm2 spełnia normy bezpieczeństwa i nie doprowadza do przegrzewania się instalacji. Zgodnie z normami PN-IEC 60364, stosowanie przewodów o mniejszym przekroju może prowadzić do nieefektywności energetycznej i zwiększonego ryzyka pożaru. Ważne jest również, aby pamiętać o odpowiednim doborze zabezpieczeń, takich jak bezpieczniki, które powinny być dostosowane do przekroju przewodu oraz przewidywanego obciążenia.

Pytanie 7

Aby uzyskać widoczną przerwę w obwodzie elektrycznym, należy użyć

A. odłącznika
B. przekaźnika
C. stycznika
D. wyłącznika
Odłącznik to urządzenie wykorzystywane do zapewnienia widocznej przerwy w obwodzie elektrycznym, co jest kluczowe z punktu widzenia bezpieczeństwa. Jego głównym zadaniem jest umożliwienie całkowitego odłączenia obwodu od źródła zasilania, co pozwala na bezpieczne przeprowadzanie prac konserwacyjnych lub naprawczych. W odróżnieniu od innych urządzeń, takich jak wyłącznik czy stycznik, odłącznik oferuje mechaniczną przerwę w obwodzie, która jest wizualnie dostępna, co pozwala operatorowi na jednoznaczne stwierdzenie, że dany układ jest odłączony od zasilania. Stosowanie odłączników jest zgodne z normami, takimi jak IEC 60947, które określają wymagania dotyczące urządzeń rozdzielczych. Przykładowe zastosowania odłączników to instalacje przemysłowe oraz systemy energetyczne, gdzie nieodzowne jest zapewnienie bezpieczeństwa pracowników podczas interwencji w obwodach elektrycznych.

Pytanie 8

Jakiego przewodu należy użyć, aby zastąpić uszkodzony kabel zasilający silnik trójfazowy zainstalowany w urządzeniu mobilnym?

A. YDY 4x2,5 mm2
B. YLY 3x2,5 mm2
C. SM 3x2,5 mm2
D. OP 4x2,5 mm2
Odpowiedź OP 4x2,5 mm2 jest prawidłowa, ponieważ ten typ przewodu jest odpowiedni do zasilania silników trójfazowych, zwłaszcza w aplikacjach, gdzie przewód ma być elastyczny i odporny na różne warunki pracy. Przewód OP (Ochronny Przewód) charakteryzuje się podwyższoną odpornością na działanie czynników zewnętrznych, co czyni go idealnym do zastosowań w odbiornikach ruchomych, gdzie przewód może być narażony na zginanie i tarcie. Zastosowanie przewodu o przekroju 4x2,5 mm2 oznacza, że mamy do czynienia z czterema żyłami, co jest typowe dla instalacji trójfazowych, gdzie potrzebne są trzy żyły fazowe i jedna żyła ochronna. Wybór odpowiedniego przewodu jest kluczowy dla zapewnienia bezpieczeństwa i efektywności działania silnika, a także minimalizowania ryzyka awarii. Przewody OP są zgodne z normami PN-EN 60228 oraz PN-EN 50525, co potwierdza ich wysoką jakość i odpowiednie parametry elektryczne w zastosowaniach przemysłowych.

Pytanie 9

Jakie urządzenie powinno być użyte do zasilania obwodu SELV z sieci 230 V, 50 Hz?

A. Falownikiem
B. Autotransformatorem
C. Transformatorem bezpieczeństwa
D. Dzielnikiem napięcia
Transformatory bezpieczeństwa to naprawdę ważne urządzenia, które używamy do zasilania obwodów SELV, czyli tych, które są bezpieczne w użytkowaniu. Dzięki nim możemy korzystać z energii elektrycznej w miejscach, gdzie jest ryzyko kontaktu z wodą czy innymi przewodzącymi substancjami. Ich główną rolą jest izolować niskonapięciowy obwód od sieci energetycznej, co zdecydowanie zmniejsza ryzyko porażenia prądem. Dobrze to widać w praktyce — na przykład, w oświetleniu ogrodowym, łazienkach czy w systemach alarmowych. Zgodnie z normą PN-EN 61558, transformatory te muszą spełniać różne wymogi dotyczące izolacji i zabezpieczeń przed przeciążeniem. W sumie, stosowanie transformatorów bezpieczeństwa tam, gdzie liczy się bezpieczeństwo, to dobra praktyka, którą warto stosować.

Pytanie 10

Przygotowując miejsce do przeprowadzania badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz wizualnej inspekcji i analizy stanu izolacji uzwojeń, uwzględnić między innymi realizację pomiarów

A. charakterystyki stanu jałowego
B. drgań
C. rezystancji uzwojeń
D. izolacji łożysk
Pomiar rezystancji uzwojeń silnika indukcyjnego jest kluczowym etapem w diagnostyce stanu technicznego tego urządzenia. Wartość rezystancji uzwojeń pozwala ocenić ich stan, a także zidentyfikować ewentualne uszkodzenia. W praktyce, pomiar ten powinien być przeprowadzany zgodnie z normami, takimi jak PN-EN 60034-1, które określają metody badania właściwości elektrycznych maszyn elektrycznych. Rezystancja uzwojeń wpływa na straty mocy, a ich zbyt wysoka wartość może wskazywać na problemy z przewodami lub złączeniami. Regularne monitorowanie rezystancji uzwojeń umożliwia wczesne wykrywanie problemów, co jest kluczowe dla utrzymania efektywności energetycznej i niezawodności pracy maszyny. W praktyce, wartości rezystancji uzwojeń porównuje się z danymi producenta oraz z wynikami pomiarów z przeszłości, co pozwala na identyfikację trendów i potencjalnych zagrożeń dla pracy silnika.

Pytanie 11

Przygotowując miejsce do przeprowadzenia badań odbiorczych trójfazowego silnika indukcyjnego o parametrach: UN = 230/400 V, PN = 4 kW, należy, oprócz inspekcji oraz oceny stanu izolacji uzwojeń, uwzględnić między innymi wykonanie pomiarów

A. izolacji łożysk
B. drgań
C. rezystancji uzwojeń
D. charakterystyki stanu jałowego
Pomiar rezystancji uzwojeń trójfazowego silnika indukcyjnego jest kluczowy dla oceny jego stanu technicznego. Rezystancja uzwojeń pozwala na ocenę ich integralności oraz wykrycie potencjalnych uszkodzeń, takich jak zwarcia czy przerwy. W praktyce, pomiar ten jest często realizowany przy użyciu omomierza, a wartości rezystancji powinny być zgodne z danymi producenta. Niekiedy, po dokonaniu pomiaru, porównuje się wyniki z normami zawartymi w dokumentacji technicznej silnika. Dobrą praktyką jest także wykonywanie pomiarów rezystancji w różnych warunkach temperaturowych, ponieważ wpływ temperatury na rezystancję może być znaczący. Warto dodać, że w przypadku silników wykonanych z materiałów o wysokiej przewodności, takich jak miedź, rezystancja powinna być minimalna, co świadczy o ich dobrej kondycji. Regularne pomiary rezystancji uzwojeń mogą również pomóc w planowaniu działań konserwacyjnych oraz przewidywaniu potencjalnych awarii, co jest zgodne z zasadami zarządzania majątkiem technicznym.

Pytanie 12

Tabela zawiera zalecane okresy pomiarów eksploatacyjnych urządzeń i instalacji elektrycznych pracujących w różnych warunkach środowiskowych. Jak często należy dokonywać pomiaru wyłącznika RCD oraz rezystancji izolacji instalacji zasilającej piec chlebowy w piekarni?

Rodzaj pomieszczeniaOkres pomiędzy kolejnymi sprawdzeniami
skuteczności ochrony przeciwporażeniowejrezystancji izolacji instalacji
O wyziewach żrącychnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Zagrożone wybuchemnie rzadziej niż co 1 roknie rzadziej niż co 1 rok
Otwarta przestrzeńnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Bardzo wilgotne o wilgotności ok. 100% i wilgotne przejściowo od 75% do 100%nie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Gorące o temperaturze powietrza ponad 35 °Cnie rzadziej niż co 1 roknie rzadziej niż co 5 lat
Zagrożone pożaremnie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Stwarzające zagrożenie dla ludzi (ZL I, ZL II, ZL III)nie rzadziej niż co 5 latnie rzadziej niż co 1 rok
Zapylonenie rzadziej niż co 5 latnie rzadziej niż co 5 lat
A. Wyłącznik RCD co 5 lat; rezystancja izolacji co 1 rok.
B. Wyłącznik RCD co 5 lat; rezystancja izolacji co 5 lat.
C. Wyłącznik RCD co 1 rok; rezystancja izolacji co 1 rok.
D. Wyłącznik RCD co 1 rok; rezystancja izolacji co 5 lat.
Kontrola wyłącznika RCD to naprawdę ważna sprawa, szczególnie w miejscach, gdzie jest sporo wilgoci, jak w piekarni. Z tego co wiem, powinna być przeprowadzana co roku, bo to może pomóc uniknąć porażenia prądem. RCD ma za zadanie wychwytywać różnice prądów, które mogą wskazywać na problemy z izolacją. A jeśli chodzi o sprawdzanie rezystancji izolacji pieca chlebowego, to przynajmniej co 5 lat to dobry pomysł. Takie coś jest zgodne z normami jak PN-IEC 60364, które mówią, jak często trzeba robić pomiary, żeby było bezpiecznie. W piekarni, gdzie wilgotność osiąga prawie 100%, regularne badania izolacji są niezbędne, żeby unikać kłopotów. To nie tylko spełnia wymagania, ale też chroni pracowników oraz sprzęt przed niebezpieczeństwami związanymi z uszkodzoną izolacją elektryczną.

Pytanie 13

Jak można podnieść moc bierną indukcyjną oddawaną do sieci przez działającą w elektrowni prądnicę synchroniczną przy niezmiennej mocy czynnej?

A. Zmniejszając prąd wzbudzenia
B. Zmniejszając moment napędowy
C. Zwiększając moment napędowy
D. Zwiększając prąd wzbudzenia
Zmniejszanie prądu wzbudzenia nie tylko nie pozwala na zwiększenie mocy biernej indukcyjnej, ale wręcz przeciwnie, może prowadzić do jej zmniejszenia. Przy niższym prądzie wzbudzenia strumień magnetyczny w wirniku zostaje osłabiony, co w konsekwencji ogranicza zdolność prądnicy do wytwarzania mocy biernej. Taki błąd myślowy wynika z nieporozumienia dotyczącego relacji między prądem wzbudzenia a mocą bierną. Często przyjmuje się, że zmniejszanie prądu wzbudzenia prowadzi do zmniejszenia obciążenia, co jest prawdą w kontekście mocy czynnej, jednak w przypadku mocy biernej działa to w odwrotny sposób. Podobnie, zmniejszanie momentu napędowego nie ma wpływu na zwiększenie mocy biernej, ponieważ moment napędowy jest związany z mocą czynną i obciążeniem maszyny. Zmniejszenie momentu napędowego może prowadzić do obniżenia prędkości obrotowej prądnicy, co może skutkować niewystarczającą produkcją zarówno mocy czynnej, jak i biernej. Zwiększanie momentu napędowego z kolei może być pomocne w innych kontekstach, ale sama w sobie nie dostarczy dodatkowej mocy biernej, jeśli nie zostanie skorelowane z odpowiednią regulacją prądu wzbudzenia. W związku z tym, kluczowe jest zrozumienie, że regulacja wzbudzenia jest decydującym czynnikiem w zarządzaniu mocą bierną w systemach elektroenergetycznych.

Pytanie 14

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Zmiana rodzaju źródeł światła w oprawach oświetleniowych
B. Rozbudowanie instalacji
C. Zadziałanie wyłącznika różnicowoprądowego
D. Zadziałanie zabezpieczenia przedlicznikowego
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 15

W przypadku gdy instrukcje stanowiskowe nie określają szczegółowych terminów, przegląd urządzeń napędowych powinien być przeprowadzany przynajmniej raz na

A. pięć lat
B. dwa lata
C. rok
D. cztery lata
Odpowiedzi wskazujące na cztery lata, rok lub pięć lat jako okres pomiędzy przeglądami urządzeń napędowych wykazują brak zrozumienia zasadności i potrzeby regularnych inspekcji. Zbyt długi okres przeglądów, na przykład cztery czy pięć lat, może prowadzić do nieodkrycia istotnych usterek, które mogą zagrażać bezpieczeństwu użytkowników oraz powodować poważne straty finansowe w wyniku awarii. Często mylone jest również pojęcie regularności przeglądów z intensywnością eksploatacji urządzeń; niezależnie od tego, jak intensywnie urządzenie jest używane, powinno być regularnie sprawdzane. Z kolei odpowiedź 'rok' jest niewystarczająca, ponieważ w przypadku wielu urządzeń napędowych, taki okres może być zbyt krótki, a niewłaściwe przeglądy mogą prowadzić do nadmiernych kosztów operacyjnych. Każdy system napędowy ma swoje specyficzne wymagania i normy, które powinny być brane pod uwagę przy ustalaniu harmonogramu przeglądów, a ogólne zasady wskazują na dwa lata jako maksymalny okres, który zapewnia bezpieczeństwo i efektywność działania urządzeń. Zrozumienie tych zasad jest kluczowe dla każdej osoby pracującej w obszarze zarządzania urządzeniami oraz ich konserwacją.

Pytanie 16

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 4 lata
B. 5 lat
C. 6 lat
D. 8 lat
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 17

Jaka jest podstawowa funkcja wyłącznika różnicowoprądowego?

A. Regulacja napięcia wyjściowego
B. Przekształcenie prądu przemiennego na stały
C. Ochrona przed porażeniem poprzez wykrycie różnicy prądów w przewodach
D. Ochrona przed przeciążeniem obwodu
Wyłącznik różnicowoprądowy jest kluczowym elementem systemów ochrony elektrycznej, którego głównym zadaniem jest zapobieganie porażeniom prądem elektrycznym. Działa on na zasadzie wykrywania różnicy pomiędzy prądem wpływającym a wypływającym z urządzenia lub instalacji. Jeśli taka różnica zostanie wykryta, oznacza to, że część prądu gdzieś 'ucieka', co może sugerować uszkodzenie izolacji lub kontakt prądu z osobą. W praktyce wyłącznik różnicowoprądowy automatycznie odłącza zasilanie w momencie wykrycia tego typu anomalii, minimalizując ryzyko porażenia. To urządzenie jest szeroko stosowane w instalacjach domowych i przemysłowych, zapewniając dodatkową warstwę ochrony w miejscach, gdzie mogą występować uszkodzenia izolacji lub wilgoć. Warto pamiętać, że nie zastępuje on standardowych zabezpieczeń nadprądowych, ale uzupełnia je, oferując ochronę przed skutkami niekontrolowanego przepływu prądu do ziemi. W kontekście bezpieczeństwa użytkownika wyłącznik różnicowoprądowy jest nieocenionym narzędziem, które powinno być standardem w każdej nowoczesnej instalacji elektrycznej.

Pytanie 18

Włączenie grzejnika skutkuje natychmiastowym działaniem zabezpieczenia nadprądowego. Co to oznacza?

A. uszkodzenie w grzałce
B. zwarcie między przewodem fazowym a neutralnym
C. uszkodzenie w przewodzie fazowym
D. zwarcie przewodu ochronnego z obudową
Zadziałanie zabezpieczenia nadprądowego przy załączeniu grzejnika wskazuje na wystąpienie zwarcia w obwodzie. W przypadku zwarcia przewodu fazowego do neutralnego, prąd przepływający przez obwód gwałtownie wzrasta, co przekracza dopuszczalne wartości dla zabezpieczeń nadprądowych, powodując ich natychmiastowe wyłączenie. Tego rodzaju sytuacje mogą wystąpić w przypadku uszkodzenia instalacji elektrycznej, co może skutkować niebezpiecznymi warunkami pracy urządzeń elektrycznych. Przykładem zastosowania tej wiedzy w praktyce jest regularna kontrola stanu instalacji elektrycznych, w tym grzejników, aby zminimalizować ryzyko zwarć. Standardy branżowe, jak PN-IEC 60364, nakładają obowiązek przeprowadzania okresowych przeglądów oraz stosowania odpowiednich zabezpieczeń, co ma na celu zapewnienie bezpieczeństwa użytkowników oraz utrzymanie sprawności systemów elektrycznych.

Pytanie 19

Na podstawie zamieszczonych w tabeli danych łożysk dobierz łożysko do silnika o średnicy wału d = 12 mm i szerokości tarczy łożyskowej B = 12 mm.

SymbolWymiary podstawowe
d [mm]D [mm]B [mm]r [mm]
6700101530,1
62003090,6
6001122880,3
630137121
A. 6200
B. 6700
C. 6001
D. 6301
Odpowiedź 6301 jest poprawna, ponieważ spełnia wszystkie wymagania dotyczące wymiarów łożyska do silnika o średnicy wału 12 mm oraz szerokości tarczy łożyskowej 12 mm. Łożyska 6301 mają średnicę wewnętrzną 12 mm, co jest idealne do mocowania na wale silnika, oraz standardową szerokość 12 mm, która odpowiada wymaganym parametrom. Wybór odpowiedniego łożyska jest kluczowy dla zapewnienia efektywności i trwałości pracy silnika. Stosowanie łożysk o nieodpowiednich wymiarach może prowadzić do ich przedwczesnego zużycia, zwiększonego tarcia oraz potencjalnych awarii. W praktyce, łożyska serii 6300 są powszechnie stosowane w różnych aplikacjach, w tym w silnikach elektrycznych, przekładniach oraz w układach napędowych. Ich wybór powinien opierać się na dokładnej analizie wymagań technicznych, a także na znajomości standardów branżowych, takich jak normy ISO dotyczące łożysk. Wiedza na temat doboru łożysk jest niezbędna dla inżynierów i techników, aby zapewnić optymalną wydajność i niezawodność maszyn.

Pytanie 20

Którego z wymienionych pomiarów eksploatacyjnych w instalacji oświetleniowej nie można zrealizować standardowym miernikiem uniwersalnym?

A. Rezystancji izolacji przewodów
B. Prądu pobieranego przez odbiornik
C. Ciągłości przewodów ochronnych
D. Napięć w poszczególnych fazach
Pomiar rezystancji izolacji przewodów jest kluczowym aspektem utrzymania bezpieczeństwa i niezawodności instalacji elektrycznych. Aby dokładnie wykonać ten pomiar, używa się specjalistycznych mierników zwanych megomierzami, które generują wysokie napięcia (zwykle od 250V do 1000V). Tego rodzaju pomiar jest istotny, ponieważ pozwala ocenić, czy izolacja przewodów nie jest uszkodzona oraz czy nie występują upływy prądu, co mogłoby prowadzić do zagrożenia pożarowego lub porażenia elektrycznego. Standardy takie jak PN-EN 61557-1 opisują wymagania dotyczące testowania rezystancji izolacji, a ich przestrzeganie jest kluczowe w ramach regularnych przeglądów oraz konserwacji instalacji. Przykładowo, podczas testowania instalacji oświetleniowej w budynku użycie megomierza może pomóc w identyfikacji potencjalnych problemów zanim doprowadzą one do awarii lub zagrożenia dla użytkowników.

Pytanie 21

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych Ib wynosi 21 A, a maksymalne dopuszczalne obciążenie tych przewodów Id to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji?

A. B16
B. B10
C. B25
D. B20
Dobra decyzja z tym wyłącznikiem B25! Wybierając go, postawiłeś na coś, co naprawdę pasuje do wartości prądu obciążenia, która wynosi 21 A. Z tego, co wiemy, wyłącznik powinien mieć wyższą wartość nominalną niż maksymalny prąd roboczy, ale nie może też za bardzo przekraczać obciążalności przewodów. Tu mamy 30 A dla przewodów, więc 25 A dla wyłącznika to świetny wybór. Dzięki temu nie tylko chronisz instalację przed przeciążeniem, ale też zmniejszasz ryzyko uszkodzenia przewodów. Gdybyś wybrał wyłącznik o wyższej wartości, mogłoby to prowadzić do niebezpiecznych sytuacji, w których obciążenia mogą przekraczać to, co jest dozwolone. Generalnie, wyłączniki B25 są dosyć popularne w instalacjach trójfazowych i dobrze się sprawdzają, bo utrzymują wartość prądu na odpowiednim poziomie. Ważne, żeby nie przekraczać 80% tej wartości nominalnej, co w twoim przypadku jest akurat spełnione.

Pytanie 22

Jakie jest prawidłowe postępowanie w przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego?

A. Natychmiastowe wyłączenie zasilania
B. Odłączenie uziemienia, co jest niebezpieczne i niewłaściwe
C. Podłączenie dodatkowego obciążenia, co może pogorszyć sytuację
D. Zmiana przewodów, chociaż to nie rozwiązuje problemu napięcia na obudowie
W przypadku podejrzenia obecności napięcia na obudowie urządzenia elektrycznego, najlepszym i najbezpieczniejszym działaniem jest natychmiastowe odłączenie zasilania. Jest to zgodne z podstawowymi zasadami bezpieczeństwa elektrycznego i normami BHP. Gdy urządzenie elektryczne ma napięcie na obudowie, może to oznaczać uszkodzenie izolacji lub inny problem techniczny, który stwarza ryzyko porażenia prądem. Szybkie odłączenie zasilania eliminuje to ryzyko i pozwala na dalsze, bezpieczne działania. Po odłączeniu zasilania należy również upewnić się, że urządzenie jest odpowiednio uziemione, aby uniknąć podobnych problemów w przyszłości. Następnie można przystąpić do diagnostyki i naprawy urządzenia przez wykwalifikowanego specjalistę, co jest zgodne z dobrą praktyką w branży elektrycznej. Ważne jest również, by regularnie sprawdzać stan techniczny urządzeń elektrycznych i ich uziemienia, aby uniknąć takich sytuacji w przyszłości. Moim zdaniem, wiedza o bezpiecznym postępowaniu w takich sytuacjach powinna być podstawą w każdej edukacji technicznej.

Pytanie 23

Podczas uruchamiania silnika pralki wyzwala się od razu wyłącznik różnicowoprądowy. Aby zidentyfikować problem, zmierzono rezystancję pomiędzy wszystkimi zaciskami uzwojeń silnika a obudową, uzyskując dla każdego pomiaru wartość w okolicach 7 kΩ. Co można wnioskować na podstawie tych pomiarów?

A. Jedno z uzwojeń odłączyło się od tabliczki zaciskowej
B. Pojawiła się przerwa w jednym z uzwojeń silnika
C. Jeden z zacisków silnika może być poluzowany
D. Izolacja uzwojeń silnika jest zawilgocona
Rozważając inne możliwe przyczyny zadziałania wyłącznika różnicowoprądowego, warto zauważyć, że twierdzenie o luzie w zaciskach silnika jest nieuzasadnione. Jeśli jeden z zacisków byłby nieprawidłowo podłączony, prawdopodobnie rezystancja między uzwojeniem a obudową byłaby znacznie niższa, a nie w okolicy 7 kΩ. Ponadto, przerwa w uzwojeniu silnika również nie tłumaczy niskiej rezystancji, ponieważ przerwa w uzwojeniu skutkowałaby brakiem rezystancji. Z kolei domniemanie, że jedno z uzwojeń odłączyło się od tabliczki zaciskowej, jest mało prawdopodobne, biorąc pod uwagę, że zadziałanie wyłącznika różnicowoprądowego sugeruje obecność przewodzenia prądu, a nie jego braku. Te błędne interpretacje mogą prowadzić do nieprawidłowej diagnostyki, co w efekcie może skutkować dalszymi uszkodzeniami sprzętu lub zagrożeniem dla użytkownika. Kluczowe jest zrozumienie, że prawidłowe diagnozowanie usterek w urządzeniach elektrycznych wymaga nie tylko znajomości teorii, ale też umiejętności praktycznych w interpretacji wyników pomiarów oraz rozpoznawania przyczyn, które mogą nie być oczywiste na pierwszy rzut oka.

Pytanie 24

Jakie mogą być przyczyny nadmiernego iskrzenia szczotek na pierścieniach w silniku pierścieniowym?

A. Zbyt słabym dociskiem szczotek do pierścieni
B. Zbyt wysoką temperaturą otoczenia.
C. Brakiem symetrii napięć zasilających.
D. Nieprawidłową kolejnością faz.
Zbyt słaby docisk szczotek do pierścieni jest kluczowym czynnikiem, który może prowadzić do nadmiernego iskrzenia w silniku pierścieniowym. Właściwy docisk szczotek zapewnia odpowiedni kontakt elektryczny między szczotkami a pierścieniami, co jest niezbędne do prawidłowego działania silnika. Niewystarczający docisk skutkuje nieregularnym przewodnictwem i zwiększonym oporem, co prowadzi do miejscowego przegrzewania się i iskrzenia. Praktyczne przykłady z przemysłu pokazują, że regularne kontrole i właściwa konserwacja komponentów silnika, w tym szczotek i pierścieni, są kluczowe dla utrzymania efektywności pracy oraz minimalizacji uszkodzeń. W branży stosuje się standardy takie jak ISO 9001, które kładą nacisk na ciągłe doskonalenie procesów produkcyjnych, w tym również na monitorowanie stanu technicznego urządzeń. Dbałość o odpowiedni docisk szczotek może znacznie wydłużyć żywotność silnika oraz zminimalizować koszty eksploatacji.

Pytanie 25

Jaką minimalną liczbę pracowników z wymaganymi kwalifikacjami powinien zagwarantować pracodawca do realizacji prób i pomiarów przy urządzeniach elektrycznych o napięciu poniżej 1 kV w biurze?

A. Dwóch
B. Czterech
C. Trzech
D. Jednego
Wybór większej liczby pracowników, jak czterech, trzech czy dwóch, wskazuje na nieporozumienie dotyczące zasadności liczby osób wymaganych do wykonania prac przy urządzeniach elektrycznych o napięciu poniżej 1 kV. Często przyjmuje się, że większa liczba osób zwiększa bezpieczeństwo, co jest mylnym wnioskiem. Z punktu widzenia norm bezpieczeństwa, takich jak PN-IEC 60364, kluczowe jest, aby osoba wykonująca prace była odpowiednio wykwalifikowana i przeszkolona, a nie koniecznie, aby do wykonania prostych zadań występowało wiele osób. Więcej pracowników może wprowadzać dodatkowe ryzyko, takie jak chaos operacyjny, czy trudności w komunikacji, co może prowadzić do nieefektywności i potencjalnie zwiększać ryzyko wypadków. W praktyce, w wielu sytuacjach, standardowe procedury operacyjne przewidują, że jedna osoba jest wystarczająca do wykonania prób i pomiarów, o ile posiada odpowiednie uprawnienia. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi to nadmierne skupienie na liczbie osób zamiast na ich kwalifikacjach oraz zrozumieniu specyfiki wykonywanych prac. Takie podejście może podważać efektywność działań i prowadzić do niepotrzebnych kosztów związanych z zatrudnieniem większej liczby pracowników.

Pytanie 26

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Nawrót wirnika silnika
B. Całkowite zniszczenie wirnika silnika
C. Wzrost prędkości obrotowej wirnika silnika
D. Spadek prędkości obrotowej wirnika silnika
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 27

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Zwiększenie częstotliwości napięcia zasilającego.
B. Brak jednej z faz zasilania.
C. Przerwa w przewodzie ochronnym w sieci zasilającej.
D. Wzrost wartości napięcia z sieci zasilającej.
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 28

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. aM
B. gR
C. aL
D. gB
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.

Pytanie 29

Zgodnie z aktualnymi regulacjami, czas pomiędzy następnymi kontrolami skuteczności ochrony przed porażeniem prądem dla instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi, w strefach zagrożonych wybuchem oraz na terenie otwartym nie może przekraczać

A. pół roku
B. jeden rok
C. dwa lata
D. pięć lat
Odpowiedź "jeden rok" jest poprawna, ponieważ zgodnie z obowiązującymi przepisami, w tym normami IEC 60364 oraz krajowymi regulacjami, instalacje elektryczne w pomieszczeniach narażonych na działanie substancji żrących, zagrożone wybuchem czy na otwartej przestrzeni powinny być regularnie kontrolowane. Przepisy te mają na celu zapewnienie bezpieczeństwa użytkowników oraz ochrony przed ewentualnymi awariami, które mogą prowadzić do poważnych konsekwencji, w tym pożarów lub wybuchów. Regularne kontrole co roku pozwalają na wczesne identyfikowanie potencjalnych problemów, takich jak korozja elementów instalacji, luźne połączenia czy inne usterki, które w takich warunkach mogą pojawić się szybciej niż w standardowych warunkach. Przykładem zastosowania tej regulacji może być przemysł chemiczny, gdzie substancje agresywne mogą wpływać na stan techniczny instalacji elektrycznych i w konsekwencji na bezpieczeństwo pracy. Dlatego przestrzeganie rocznego terminu kontroli jest kluczowe dla minimalizacji ryzyka i zapewnienia odpowiednich standardów pracy.

Pytanie 30

Silnik prądu stałego w układzie szeregowym dysponuje parametrami: PN = 8 kW, UN = 440 V, IN = 20 A, Rt = 0,5 ? (całkowita rezystancja twornika), RW = 0,5 ? (rezystancja wzbudzenia). Jaką wartość powinna mieć całkowita rezystancja rozrusznika, jeśli prąd rozruchowy silnika ma wynosić dwa razy więcej niż prąd znamionowy?

A. 10 ?
B. 22 ?
C. 21 ?
D. 11 ?
Analizując błędne odpowiedzi, warto zauważyć, że niektóre z nich opierają się na niewłaściwym zrozumieniu relacji między prądem, napięciem a rezystancją. Na przykład, odpowiedzi sugerujące 21 ?, 11 ? czy 22 ? mogą wynikać z mylnych założeń dotyczących sposobu obliczania rezystancji rozrusznika. W przypadku obliczeń związanych z prądem rozruchowym, kluczowe jest prawidłowe zrozumienie, że prąd ten jest dwukrotnością prądu znamionowego, co powinno prowadzić do obliczeń w oparciu o prawo Ohma. Wiele osób może błędnie zakładać, że rezystancja powinna być wyższa niż obliczona wartość, nie biorąc pod uwagę całkowitych rezystancji w obwodzie i sumując je niepoprawnie. Dodatkowo, pomijanie wpływu rezystancji twornika i wzbudzenia na ogólną rezystancję układu prowadzi do poważnych błędów w obliczeniach. Ważne jest, aby przy projektowaniu obwodów rozruchowych brać pod uwagę wszystkie elementy, które wpływają na przepływ prądu, co jest kluczowe dla zapewnienia prawidłowego działania silnika. Praktyczne zastosowanie tej wiedzy w inżynierii elektrycznej polega na zapewnieniu odpowiednich warunków pracy urządzeń, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 31

Jaki typ przewodów jest zalecany do stosowania w instalacjach na zewnątrz budynków?

A. Przewody aluminiowe
B. Przewody o podwyższonej odporności na UV
C. Przewody do instalacji wewnętrznych
D. Przewody z miedzi beztlenowej
Przewody o podwyższonej odporności na UV są zalecane do stosowania w instalacjach na zewnątrz budynków ze względu na ich zdolność do wytrzymywania promieniowania ultrafioletowego. UV może powodować degradację materiałów, co w przypadku przewodów może prowadzić do ich mechanicznego uszkodzenia i utraty izolacyjności. Tego typu przewody są zaprojektowane tak, aby wytrzymać trudne warunki atmosferyczne, w tym intensywne nasłonecznienie, deszcz czy zmienne temperatury. Wybór przewodów odpornych na UV zwiększa niezawodność instalacji i zmniejsza ryzyko awarii. Z mojego doświadczenia wynika, że odpowiednie zaplanowanie instalacji z użyciem takich przewodów jest kluczowe dla jej długowieczności. W praktyce, przewody odporne na UV są często stosowane w instalacjach fotowoltaicznych, oświetleniowych na zewnątrz budynków oraz wszędzie tam, gdzie przewody są narażone na bezpośrednie działanie promieni słonecznych. Warto zawsze zwracać uwagę na oznaczenia producenta, które potwierdzają odporność na UV, co jest zgodne z normami branżowymi i dobrymi praktykami eksploatacyjnymi.

Pytanie 32

Jaką czynność kontrolną można przeprowadzić podczas obserwacji silnika elektrycznego w trakcie jego działania?

A. Sprawdzenie stopnia nagrzewania obudowy
B. Weryfikacja stabilności połączeń elementów napędowych
C. Kontrola stanu szczotek oraz szczotkotrzymaczy
D. Ocena stanu pierścieni ślizgowych i komutatora
Sprawdzenie stopnia nagrzewania się obudowy silnika elektrycznego jest kluczowym elementem monitorowania jego stanu podczas pracy. Nagrzewanie się silnika może wskazywać na różne problemy, takie jak przeciążenie, zatarcie łożysk, niewłaściwe smarowanie lub awarię izolacji. W praktyce, do pomiaru temperatury obudowy można wykorzystać pirometr lub czujniki temperatury, co pozwala na monitorowanie parametrów pracy silnika w czasie rzeczywistym. Wartości temperatury powinny być zgodne z normami producenta; ich przekroczenie może prowadzić do uszkodzenia silnika, co w konsekwencji wiąże się z kosztownymi naprawami i przestojami w produkcji. Zgodnie z zaleceniami branżowymi, regularne pomiary temperatury są częścią rutynowych przeglądów technicznych, co pozwala na wczesne wykrywanie problemów i zwiększa bezpieczeństwo operacyjne. Właściwe podejście do monitorowania temperatury silnika jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu oraz z normami ISO, które zalecają proaktywne podejście do zarządzania ryzykiem w infrastrukturze technicznej.

Pytanie 33

Jaka powinna być nominalna wartość prądu bezpiecznika aparatu zamontowanego w obwodzie pierwotnym transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, używanego w ładowarce do akumulatorów, jeśli przewidywana wartość prądu ładowania akumulatorów wynosi 15 A?

A. 10A
B. 16A
C. 1A
D. 6A
Przy wyborze wartości prądu znamionowego bezpiecznika aparatowego kluczowe jest zrozumienie, dlaczego niektóre odpowiedzi są błędne. Wartości prądu 6A, 10A i 1A są niewłaściwe, ponieważ nie uwzględniają rzeczywistego prądu obciążenia ładowania akumulatorów, który wynosi 15 A. Wybór bezpiecznika o wartości 6A lub 10A byłby nieodpowiedni, ponieważ taki bezpiecznik zadziałałby w przypadku normalnej pracy urządzenia, co doprowadziłoby do niepotrzebnych przerw w działaniu systemu. Przykład 1A jest skrajnie nieodpowiedni – w praktyce nie może on zapewnić ochrony w obwodzie, w którym prąd roboczy wynosi 15 A, co prowadziłoby do niebezpiecznych sytuacji. Niewłaściwy dobór wartości prądu bezpiecznika może skutkować nie tylko uszkodzeniem urządzeń, ale również stanowić zagrożenie dla bezpieczeństwa użytkowników. Dlatego warto pamiętać, że standardowe praktyki inżynieryjne wymagają doboru bezpieczników w taki sposób, aby ich prąd znamionowy był co najmniej 20-25% wyższy od maksymalnego przewidywanego prądu roboczego, co w tym przypadku potwierdza konieczność zastosowania bezpiecznika 16A.

Pytanie 34

Aby przeprowadzić pomiar rezystancji metodą techniczną, należy przygotować

A. mostek Thomsona
B. omomierz oraz woltomierz
C. amperomierz i woltomierz
D. mostek Wheatstone'a
Prawidłowa odpowiedź to wykorzystanie amperomierza i woltomierza do pomiaru rezystancji metodą techniczną. Pomiar rezystancji w tym przypadku opiera się na zasadzie Ohma, według której rezystancja (R) jest równa napięciu (U) podzielonemu przez natężenie prądu (I), czyli R = U/I. Amperomierz służy do pomiaru natężenia prądu płynącego przez obwód, natomiast woltomierz mierzy spadek napięcia na rezystorze. Dzięki temu można uzyskać dokładne wartości rezystancji, które są istotne w różnych zastosowaniach, od projektowania obwodów elektronicznych po diagnostykę sprzętu elektrycznego. Zastosowanie tej metody pomiarowej jest zgodne z dobrymi praktykami inżynieryjnymi, ponieważ zapewnia dokładność i wiarygodność wyników. Warto również zaznaczyć, że metody techniczne pomiaru rezystancji powinny być stosowane w odpowiednich warunkach, aby uniknąć błędów pomiarowych, takich jak zakłócenia elektromagnetyczne czy niewłaściwe ustawienia urządzeń pomiarowych.

Pytanie 35

Jakim przewodem powinno się przeprowadzić instalację oświetlenia natynkowego na uchwytach w piwnicy budynku wielorodzinnego?

A. DYd
B. LgY
C. YDYt
D. YDY
Odpowiedź YDY jest prawidłowa, ponieważ przewód YDY to przewód jednożyłowy, który jest odpowiedni do instalacji oświetleniowych w obiektach budowlanych, w tym w piwnicach. Charakteryzuje się on trwałą izolacją z PVC, co zapewnia odporność na wilgoć oraz różnorodne chemikalia, które mogą występować w piwnicach. Przewód YDY jest elastyczny, co ułatwia jego montaż na uchwytach, a także jest zgodny z obowiązującymi normami, co czyni go odpowiednim do tego typu zastosowań. W praktyce, podczas montażu instalacji oświetleniowej w piwnicy, ważne jest, aby przewody były dobrze zabezpieczone przed uszkodzeniami mechanicznymi i wilgocią, co przewód YDY spełnia. Ponadto, ze względu na swoje właściwości, przewód YDY jest szeroko stosowany w różnych instalacjach elektrycznych, takich jak zasilanie oświetlenia w pomieszczeniach mieszkalnych oraz użytkowych. Zgodnie z normą PN-EN 60502-1, przewody te mogą być stosowane w instalacjach w pomieszczeniach narażonych na działanie wody, co podkreśla ich przydatność w kontekście instalacji w piwnicach.

Pytanie 36

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP32
B. IP11
C. IP22
D. IP44
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 37

Jaką minimalną liczbę osób należy zaangażować do pracy w warunkach szczególnego zagrożenia?

A. Dwie osoby
B. Trzy osoby
C. Cztery osoby
D. Jedna osoba
Minimalna liczba osób wykonujących prace w warunkach szczególnego zagrożenia powinna wynosić dwie osoby, co jest zgodne z zasadami bezpieczeństwa pracy oraz regulacjami prawnymi. W praktyce, obecność co najmniej dwóch pracowników zapewnia wzajemne wsparcie i możliwość szybkiej reakcji w sytuacjach awaryjnych. Na przykład, w przypadku prac w zamkniętych przestrzeniach, takich jak zbiorniki czy kanały, jeden pracownik może pełnić rolę osoby asekurującej, co jest niezbędne w przypadku wystąpienia zagrożenia zdrowia lub życia. Istotne jest, by w ramach tych prac, każdy z pracowników miał przypisane konkretne zadania oraz mógł efektywnie komunikować się z partnerem. Zgodnie z normami, takimi jak PN-N-18002 dotycząca zarządzania bezpieczeństwem i higieną pracy, pracodawcy są zobowiązani do zapewnienia odpowiednich warunków, które minimalizują ryzyko wypadków. W praktyce, w przypadku awarii sprzętu lub nagłych problemów zdrowotnych, obecność drugiej osoby może być kluczowa w zapewnieniu szybkiej pomocy oraz wezwania służb ratunkowych.

Pytanie 38

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Niewłaściwe wyważenie wirnika silnika
B. Nierównomierna szczelina powietrzna w silniku
C. Przerwa w jednym z fazowych przewodów zasilających
D. Wyższa częstotliwość napięcia zasilającego
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.

Pytanie 39

W celu oceny stanu technicznego instalacji elektrycznej łazienki dokonano jej oględzin i pomiarów.
Na podstawie wyników pomiarów zamieszczonych w tabeli określ uszkodzenie powstałe w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji:
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna
Wartość:232 V0 V51 V49 V0 V
A. Uszkodzone połączenia wyrównawcze miejscowe.
B. Przebicie izolacji przewodu fazowego do metalowych rur.
C. Zwarcie między przewodem neutralnym, a ochronnym.
D. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
Zwarcie między przewodem neutralnym a ochronnym, przebicie izolacji przewodu fazowego do metalowych rur, oraz uszkodzona izolacja przewodu neutralnego w pobliżu wanny to odpowiedzi, które mogą wydawać się logiczne na pierwszy rzut oka, ale nie oddają rzeczywistej sytuacji opisanej w wyniku pomiarów. Przy zwarciu między przewodem neutralnym a ochronnym zwykle obserwuje się znaczny wzrost prądu, co prowadziłoby do zadziałania zabezpieczeń, jak bezpieczniki czy wyłączniki różnicowoprądowe. Jeśli jednak nie doszło do takiej reakcji, to znaczy, że problem nie dotyczy tego aspektu. Przebicie izolacji jest zjawiskiem, które także ujawniałoby się poprzez zjawisko porażenia prądem lub spadek izolacji, co nie zostało wskazane w wynikach pomiarów. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny, chociaż brzmi groźnie, nie jest bezpośrednio związana z pomiarami napięcia między przewodem ochronnym a metalowymi elementami instalacji. W praktyce oznaczałoby to, że metalowe elementy nie byłyby prawidłowo uziemione, co prowadziłoby do niebezpiecznego wzrostu potencjału. Kluczowe jest, aby pamiętać, że nieprawidłowe interpretacje wyników pomiarów mogą prowadzić do błędnych wniosków dotyczących stanu technicznego instalacji, co może mieć poważne konsekwencje dla bezpieczeństwa użytkowników. W przypadku pojawiania się nieprawidłowych wartości napięcia, najpierw należy zweryfikować stan połączeń wyrównawczych, ponieważ to one powinny zapewniać bezpieczeństwo w danym obszarze. Zachowanie ostrożności i dokładne zrozumienie wyników pomiarowych są kluczowe dla zapobiegania poważnym wypadkom.

Pytanie 40

Jaką wielkość należy zmierzyć, aby ocenić skuteczność zabezpieczeń podstawowych w elektrycznej instalacji o napięciu znamionowym do 1 kV?

A. Rezystancji izolacji
B. Rezystancji uziomu
C. Impedancji zwarciowej
D. Napięcia krokowego
Wybór innych odpowiedzi na to pytanie może prowadzić do pewnych nieporozumień dotyczących bezpieczeństwa instalacji elektrycznych. Mierzenie rezystancji uziomu jest istotnym działaniem, jednak jego celem jest przede wszystkim ocena skuteczności systemu uziemiającego, a nie bezpośrednio ochrony podstawowej. Uziemienie zapewnia odprowadzenie prądów zwarciowych do ziemi, co jest ważne, ale nie eliminuje ryzyka porażenia prądem w przypadku wystąpienia uszkodzenia izolacji. Napięcie krokowe z kolei odnosi się do różnicy potencjałów, jaka może wystąpić na powierzchni ziemi podczas zwarcia, co nie jest miarą skuteczności samej izolacji. Pomiar impedancji zwarciowej jest również ważny, ale najczęściej używa się go do oceny zdolności instalacji do wytrzymania prądów zwarciowych, a nie do weryfikacji stanu izolacji. Właściwe zrozumienie tych koncepcji jest kluczowe, aby uniknąć błędnych wniosków. Zamiast polegać na pomiarach, które nie są bezpośrednio związane z izolacją, należy skupić się na testach, które dostarczą informacji na temat integralności systemu ochrony podstawowej, co jest kluczowe dla bezpieczeństwa użytkowników i trwałości instalacji.