Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 12 września 2025 22:06
  • Data zakończenia: 12 września 2025 22:26

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Podczas funkcjonowania urządzenia zaobserwowano nasilenie hałasu, spowodowane przez łożysko toczne. Odpowiednią metodą naprawy maszyny może być

A. zmniejszenie luzów łożyska
B. zmniejszenie nadmiaru smaru w łożysku
C. wymiana całego łożyska
D. wymiana osłony łożyska
Wymiana osłony łożyska może wydawać się odpowiednia, ale w rzeczywistości nie rozwiązuje problemu, ponieważ osłona ma na celu jedynie ochronę łożyska przed zanieczyszczeniami, a nie naprawę samego łożyska. Jeśli hałas jest spowodowany uszkodzeniem wewnętrznym łożyska, zmiana osłony nie przyniesie żadnych korzyści. W przypadku zmniejszenia nadmiaru smaru w łożysku, można sądzić, że problem z hałasem może być spowodowany nadmiernym smarowaniem, co w niektórych przypadkach może mieć sens, ale zbyt mała ilość smaru również prowadzi do szybszego zużycia i przegrzewania się łożyska. Analogicznie, zmniejszenie luzów łożyska może również wydawać się logiczne, ale w rzeczywistości luz jest krytycznym parametrem, który musi być dostosowany do specyfikacji producenta. Nadmierne luzowanie może prowadzić do wibracji i hałasów, ale próby dostosowania luzu bez zrozumienia rzeczywistego stanu technicznego łożyska mogą prowadzić do jeszcze większych problemów. Takie błędne podejścia do diagnostyki i napraw nie tylko mogą powodować dalsze uszkodzenia, ale także mogą prowadzić do kosztownych przestojów w produkcji, dlatego kluczowe jest podejście holistyczne i oparte na rzetelnej analizie stanu technicznego maszyny.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

Komutatorowa prądnica tachometryczna podłączona do wału silnika wykonawczego, działającego w systemie mechatronicznym, stanowi przetwornik

A. kąta obrotu na regulowane napięcie stałe
B. prędkości obrotowej na napięcie stałe
C. kąta obrotu na impulsy elektryczne
D. prędkości obrotowej na impulsy elektryczne
Wybór odpowiedzi dotyczącej konwersji kąta obrotu na impulsy elektryczne jest niepoprawny, ponieważ komutatorowa prądnica tachometryczna nie działa na zasadzie pomiaru kąta obrotu. Kąt obrotu, choć istotny w kontekście niektórych urządzeń pomiarowych, takich jak enkodery, nie jest bezpośrednio związany z funkcjonalnością prądnic tachometrycznych, które koncentrują się na prędkości obrotowej. Kolejna błędna koncepcja dotyczy przekształcania prędkości obrotowej na impulsy elektryczne. Chociaż impulsy elektryczne mogą być generowane przez różne typy czujników, w przypadku prądnic tachometrycznych generowane napięcie stałe jest bardziej stabilnym i dokładnym sposobem przedstawienia prędkości obrotowej, co jest kluczowe w aplikacjach wymagających precyzyjnego pomiaru. Ostatnia nieprawidłowa koncepcja wiąże się z regulowanym napięciem stałym, które nie jest typowe dla działania prądnic tachometrycznych. Te urządzenia dostarczają napięcie stałe, które jest proporcjonalne do prędkości obrotowej, a nie napięcie regulowane. Zrozumienie tych różnic jest kluczowe dla efektywnego wykorzystania technologii w systemach mechatronicznych oraz dla prawidłowej interpretacji i analizy danych pochodzących z różnych czujników i przetworników. Właściwe podejście do wyboru urządzeń pomiarowych może znacząco wpłynąć na wydajność i jakość projektów inżynieryjnych.

Pytanie 8

Proces osuszania polega na absorbowaniu wilgoci oraz oleju ze sprężonego powietrza przez środek osuszający

A. poprzez schładzanie
B. adsorpcyjny
C. poprzez podgrzewanie
D. absorcyjny
Wybór odpowiedzi 'przez ogrzewanie' odnosi się do innego typu procesów, gdzie ciepło jest wykorzystywane do zwiększenia zdolności powietrza do wchłaniania wilgoci. Ogrzewanie powietrza upraszcza jego właściwości, ale nie eliminuje wilgoci, a jedynie zmienia jej stan. Z kolei 'przez oziębianie' to metoda, która polega na obniżeniu temperatury powietrza, co skutkuje skraplaniem wilgoci, ale nie jest to proces osuszania na poziomie absorpcyjnym. Oziębianie może prowadzić do kondensacji pary wodnej, ale wymaga dodatkowych środków, by ta skondensowana woda została usunięta. Wreszcie, 'adsorpcyjne' odnosi się do procesu, w którym cząsteczki wody przylegają do powierzchni materiału osuszającego, co jest różne od absorpcji, gdzie woda jest wchłaniana do wnętrza materiału. Zrozumienie różnicy między tymi procesami jest kluczowe dla efektywnego projektowania systemów osuszających. Typowe błędy myślowe, które prowadzą do wyboru niewłaściwych odpowiedzi, obejmują mylenie terminologii oraz niedostateczne zrozumienie mechanizmów działania środków osuszających.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Okulary ochronne
B. Buty ochronne
C. Odzież ochronna
D. Rękawice ochronne
Rękawice ochronne są kluczowym środkiem ochrony indywidualnej, który powinien być noszony przez pracowników zajmujących się konserwacją urządzeń mechatronicznych. Działania konserwacyjne często wiążą się z ryzykiem wystąpienia urazów mechanicznych, takich jak przecięcia, otarcia czy uderzenia. Rękawice ochronne zapewniają barierę między skórą a potencjalnymi źródłami urazów, co znacząco zmniejsza ryzyko kontuzji. Przykładem mogą być rękawice wykonane z materiałów odpornych na przebicia, które są standardem w branżach zajmujących się pracami w trudnych warunkach. Ponadto, w sytuacjach, gdzie używane są chemikalia lub substancje szkodliwe, odpowiednie rękawice chemiczne będą niezbędne do ochrony przed ich działaniem. Zgodnie z normą PN-EN 420:2004, rękawice ochronne powinny być dostosowane do rodzaju pracy i zagrożeń występujących w danym środowisku, dlatego ich wybór powinien być uzależniony od specyfiki wykonywanych zadań. Właściwe użycie rękawic ochronnych w połączeniu z innymi środkami, takimi jak kask czy odzież ochronna, tworzy kompleksowy system bezpieczeństwa.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Jaką wartość można zarejestrować korzystając z enkodera absolutnego jednoobrotowego?

A. Przyspieszenie
B. Moment obrotowy
C. Przesunięcie kątowe
D. Ciśnienie
Przyspieszenie, moment obrotowy oraz ciśnienie to wielkości, które nie są bezpośrednio mierzone przez enkodery absolutne jednoobrotowe, co może prowadzić do nieporozumień w kontekście ich zastosowań. Przyspieszenie odnosi się do zmiany prędkości obiektu w czasie i jest mierzonym parametrem, który można określić przy użyciu akcelerometrów, a nie enkoderów. Chociaż enkodery mogą być używane w systemach, które również mierzą przyspieszenie, same w sobie nie są w stanie tego dokonać. Moment obrotowy jest wielkością, która opisuje siłę działającą na obiekt w celu jego obrotu. Enkodery mogą dostarczać informacji o położeniu, ale ich funkcja nie obejmuje bezpośredniego pomiaru momentu obrotowego, który wymaga pomiaru siły oraz promienia działania. Z kolei ciśnienie jest parametrem fizycznym, mierzonym za pomocą czujników ciśnienia, a nie enkoderów. Typowe błędy myślowe w tym kontekście obejmują mylenie funkcji pomiarowych różnych urządzeń oraz niewłaściwe przypisanie ich do różnych zastosowań w automatyce. Kluczowym zrozumieniem jest to, że enkodery absolutne jednoobrotowe są projektowane z myślą o pomiarze kąta, a nie innych wielkości fizycznych, co jest fundamentalnym aspektem ich technologii i zastosowania.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Który z podanych materiałów znajduje zastosowanie w konstrukcjach spawanych?

A. Stal niskowęglowa
B. Żeliwo białe
C. Żeliwo szare
D. Stal wysokowęglowa
Stal niskowęglowa to jeden z najpopularniejszych materiałów, jeśli chodzi o konstrukcje spawane. Ma świetne właściwości mechaniczne i jest łatwa do spawania. Niska zawartość węgla sprawia, że jest elastyczna i nie pęka tak łatwo podczas spawania. Dzięki tym zaletom, stal niskowęglowa znajduje różne zastosowania - w budownictwie, przemyśle stoczniowym czy motoryzacyjnym. Na przykład, używa się jej do produkcji belek, rur czy ram, gdzie potrzebna jest solidność i wytrzymałość na obciążenia. Zresztą, normy takie jak EN 10025 dokładnie określają wymagania dla stali konstrukcyjnych, co tylko potwierdza jej znaczenie w przemyśle. Z mojego doświadczenia, stal niskowęglowa jest lepszym wyborem niż stal wysokowęglowa, bo ma lepsze właściwości spawalnicze i mniejsze ryzyko wystąpienia naprężeń wewnętrznych, co jest mega istotne w konstrukcjach spawanych.

Pytanie 27

Podczas inspekcji urządzenia mechatronicznego zauważono - w trakcie ruchu przewodu - nieszczelność w miejscu przyłącza wtykowego w siłowniku pneumatycznym. Jaką metodę naprawy należy zastosować?

A. wymiana przyłącza
B. wymiana uszczelki pomiędzy przyłączem a siłownikiem
C. dokręcenie przyłącza kluczem dynamometrycznym
D. uszczelnienie przyłącza taśmą teflonową
Wydaje mi się, że wybór wymiany przyłącza to naprawdę dobry pomysł, szczególnie gdy zauważasz nieszczelności. Często to zużycie lub uszkodzenia połączeń sprawiają, że te problemy się pojawiają. Przyłącza, zwłaszcza w systemach pneumatycznych, są poddawane różnym czynnikom, jak ciśnienie, wibracje, a nawet korozja, co może wpływać na ich stan. Wymieniając przyłącze, masz pewność, że uzyskasz długotrwałe i solidne uszczelnienie, co jest mega ważne dla prawidłowego działania siłowników pneumatycznych. Z mojego doświadczenia, używanie uszczelnienia taśmą teflonową albo dokręcanie to często tylko chwilowe rozwiązanie, które nie eliminuje sedna problemu nieszczelności. Dlatego lepiej postawić na nowe, certyfikowane przyłącze, które spełnia normy branżowe – to najlepsza droga, żeby zapewnić efektywność i bezpieczeństwo systemu. Regularne sprawdzanie i wymiana krytycznych części to naprawdę dobre praktyki, które mogą uchronić cię przed poważniejszymi awariami i drogimi naprawami w przyszłości.

Pytanie 28

Jaka jest maksymalna wartość podciśnienia, które może być doprowadzone do zaworu o danych znamionowych zamieszczonych w tabeli?

MS-18-310/2-HN
Zawory elektromagnetyczne 3/2 G1/8
Średnica nominalna : 1,4 mm
Ciśnienie pracy : -0,95 bar...8 bar
Czas zadziałania : 12 ms
Temperatura pracy : -10°C...+70°C
Zabezpieczenie : IP 65 EN 60529
Napięcie sterujące : 12V DC - 230V AC
A. 2 bary.
B. 1 bar.
C. 0,75 bara.
D. 0,95 bara.
Wybór odpowiedzi, która nie wskazuje 0,95 bara jako maksymalnej wartości podciśnienia, może wynikać z kilku nieporozumień dotyczących interpretacji danych technicznych. Na przykład, wybór 0,75 bara jako maksymalnej wartości mógłby sugerować, że użytkownik nie zauważył pełnego zakresu ciśnień, który zawór może obsłużyć. W rzeczywistości maksymalne podciśnienie, które może być doprowadzone do zaworu, jest wyraźnie określone w dokumentacji technicznej, a jego przekroczenie może prowadzić do uszkodzenia urządzenia. Stosowanie ciśnień wyższych niż 0,95 bara, jak w przypadku odpowiedzi 2 bary lub 1 bar, wskazuje na nieporozumienie w zakresie parametrów pracy zaworu. Takie podejście może prowadzić do nieprawidłowego doboru urządzeń w systemach ciśnieniowych, co może skutkować nieefektywnym działaniem lub awarią. Na przykład, w systemach hydraulicznych istotne jest przestrzeganie określonych limitów ciśnienia, aby zapewnić bezpieczeństwo i wydajność. W praktyce, niedocenienie wartości podciśnienia może mieć poważne konsekwencje dla trwałości zaworów oraz całego układu, co podkreśla znaczenie dokładnej analizy danych technicznych i konsultacji z tabelami znamionowymi przed podjęciem decyzji o doborze komponentów.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Pomiary izolacyjności w instalacjach elektrycznych realizuje się

A. technicznym mostkiem Thomsona
B. laboratoryjnym mostkiem Thomsona
C. omomierzem
D. megaomomierzem
Chociaż istnieje wiele narzędzi do pomiarów elektrycznych, nie każde z nich jest odpowiednie do oceny rezystancji izolacji. Omomierz, który jest jednym z wymienianych urządzeń, jest używany do pomiaru rezystancji w obwodach niskonapięciowych, ale nie nadaje się do pomiarów izolacji. Podczas pomiarów rezystancji izolacji kluczowe jest stosowanie wysokich napięć, które są generowane tylko przez megaomomierze. Z kolei laboratoria często korzystają z mostków Thomsona, jednak te urządzenia są bardziej przeznaczone do precyzyjnych pomiarów rezystancji w warunkach laboratoryjnych, a nie do oceny stanu izolacji w rzeczywistych instalacjach. Istotnym błędem w myśleniu jest przekonanie, że jakiekolwiek urządzenie pomiarowe wystarczy do oceny izolacji. W rzeczywistości, aby zapewnić bezpieczeństwo i niezawodność instalacji, należy korzystać z odpowiednich narzędzi i technik, które są zgodne z wytycznymi branżowymi. Ignorowanie tej zasady może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem czy pożar, co jest sprzeczne z najlepszymi praktykami w dziedzinie elektryki. Właściwy wybór narzędzi pomiarowych jest kluczowy dla uzyskania wiarygodnych wyników oraz zapobiegania potencjalnym zagrożeniom.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Która z magistrali komunikacyjnych nie wymaga instalacji rezystorów terminacyjnych na końcach?

A. RS 485
B. SmartWire-DT
C. CAN
D. PROFINET
Wybór RS 485 jako odpowiedzi jest błędny z powodu jego specyfiki projektowej. RS 485 jest standardem szeregowej komunikacji, który wymaga terminowania linii na obu końcach magistrali, aby zminimalizować odbicia sygnału i zapewnić integralność danych. Użytkownicy często mylą RS 485 z innymi protokołami, nie zdając sobie sprawy z wpływu terminacji na jakość sygnału. Z kolei CAN, czyli Controller Area Network, również wymaga rezystorów terminujących, co jest kluczowe dla jego działania w kontekście komunikacji w czasie rzeczywistym, zwłaszcza w aplikacjach motoryzacyjnych i przemysłowych. SmartWire-DT jest systemem komunikacyjnym, który również wymaga terminacji. Warto zauważyć, że nie wszyscy użytkownicy mają pełne zrozumienie zasad działania różnych magistrali, co prowadzi do błędnych odpowiedzi. W przypadku komunikacji w automatyce przemysłowej istotne jest, aby projektanci systemów dokładnie rozumieli parametry techniczne wykorzystywanych protokołów, aby unikać problemów z transmisją danych, które mogą prowadzić do awarii lub spadku wydajności systemów. Kluczowe jest przestrzeganie standardów branżowych oraz dobrej praktyki projektowej, co zapewnia stabilność i efektywność całego systemu komunikacyjnego.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Jakiego typu silnik prądu stałego powinno się użyć w systemie napędowym dla bardzo ciężkiej przepustnicy?

A. Szeregowy
B. Obcowzbudny
C. Bezszczotkowy
D. Bocznikowy
Silniki obcowzbudne, bocznikowe i bezszczotkowe, choć mają swoje zastosowania, nie nadają się najlepiej do obsługi bardzo ciężkich przepustnic. Silniki obcowzbudne charakteryzują się stałym momentem obrotowym, co sprawia, że przy dużych obciążeniach mogą mieć problemy z dostarczeniem wymaganego momentu w niskich prędkościach. W praktyce oznacza to, że silnik tego typu może nie zapewnić wystarczającej siły do otwarcia ciężkiej przepustnicy, co może prowadzić do niewłaściwego działania systemu. Silniki bocznikowe, choć oferują lepsze właściwości w zakresie regulacji prędkości, również nie generują takiego momentu obrotowego przy rozruchu jak silniki szeregowe, co jest kluczowe w sytuacji, gdy konieczne jest pokonanie dużego oporu przy uruchamianiu. Bezszczotkowe silniki prądu stałego, z kolei, chociaż oferują wiele zalet, takich jak mniejsze zużycie i wyższa efektywność, w kontekście zastosowań wymagających dużych momentów obrotowych przy rozruchu, mogą nie spełniać oczekiwań. Wybór niewłaściwego typu silnika w krytycznych aplikacjach może prowadzić do awarii systemów oraz zwiększonego zużycia energii. Dlatego kluczowe jest zrozumienie specyfiki i wymagań aplikacji, a także właściwego doboru komponentów w oparciu o rzetelną analizę ich charakterystyk. Wydajność, niezawodność i bezpieczeństwo systemu napędowego muszą być zawsze priorytetem.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Z wymienionych materiałów wybierz ten, który jest najczęściej używany w produkcji łożysk ślizgowych?

A. Polistyren
B. Epoksyt
C. Żeliwo białe
D. Teflon
Epoksyt, teflon, polistyren oraz żeliwo białe reprezentują różne materiały, które mogą być używane w różnych kontekstach inżynieryjnych, lecz nie wszystkie z nich są optymalne w produkcji łożysk ślizgowych. Epoksyt to materiał kompozytowy, który charakteryzuje się wysoką wytrzymałością mechaniczną oraz odpornością na chemikalia, ale nie ma właściwości samosmarujących, co jest kluczowe dla łożysk, które wymagają minimalizacji tarcia i zwiększonej trwałości. Polistyren, z drugiej strony, jest materiałem o niskiej wytrzymałości mechanicznej i wysokiej podatności na działanie wysokich temperatur, co czyni go nieodpowiednim w zastosowaniach wymagających dużej odporności. Żeliwo białe, chociaż jest materiałem o dobrej trwałości, nie nadaje się na łożyska ślizgowe, ze względu na swoją sztywność i dużą masę, które mogą prowadzić do zwiększenia oporów tarcia. Często błędem jest utożsamianie materiałów z wysoką wytrzymałością z ich zastosowaniem w łożyskach; w rzeczywistości kluczowe znaczenie mają także ich właściwości tribologiczne, które w przypadku niektórych z wymienionych materiałów są niewystarczające. Zrozumienie różnic w zastosowaniach tych materiałów i ich właściwości jest kluczowe w procesie projektowania komponentów mechanicznych.