Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 20 maja 2025 14:08
  • Data zakończenia: 20 maja 2025 14:22

Egzamin zdany!

Wynik: 25/40 punktów (62,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na podstawie fragmentu katalogu producenta regulatora ładowania dobierz zabezpieczenie do regulatora Solarix PRS 2020.

Regulator ładowania STECA Solarix PRSPRS 1010PRS 1515PRS 2020PRS 3030
Parametry operacyjne
Napięcie systemu12V (24V)
Zużycie własne< 4 mA
Strona wejściowa DC
Maksymalne napięcie obwodu otwartego Uoc paneli< 47 V
Maksymalny prąd wejściowy (Imax)10 A15 A20 A30 A
Strona wyjściowa DC
Napięcie akumulatorów9V ... 17 V (17,1 V ... 34 V)
Maksymalny prąd obciążenia10 A15 A20 A30 A
Zakończenie ładowania13,9 V (27,8 V)
Ładowanie boost14,4 V (28,8 V)
Ładowanie wyrównawcze14,7 V (29,4 V)
Załączenie po rozłączeniu (LVR)12,4 V ... 12,7 V (24,8 V ... 25,4 V)
Rozłączenie akumulatora (LVD)11,2 V ... 11,6 V (22,4 V ... 23,2 V))
Warunki pracy
Temperatura otoczenia-25°C ÷ +50°C
Montaż i podłączenie
Terminal16 mm2 / 25 mm2 - AWG 6 / 4
OchronaIP 32
Wymiary (D x W x G)187 x 96 x 45 mm
Masa345 g
A. 30 A
B. 10 A
C. 15 A
D. 20 A
Wybranie zabezpieczenia o wartości 20 A dla regulatora ładowania Solarix PRS 2020 jest prawidłowe, ponieważ maksymalny prąd wejściowy (I_max) zgodnie z informacjami zawartymi w katalogu producenta wynosi właśnie 20 A. Dobrze dobrane zabezpieczenie jest kluczowe dla efektywnej pracy systemu fotowoltaicznego, ponieważ chroni zarówno regulator, jak i akumulatory przed nadmiernym prądem, który mógłby prowadzić do ich uszkodzenia lub skrócenia żywotności. W praktyce, zabezpieczenie powinno być dostosowane do maksymalnych parametrów urządzenia, aby zapewnić optymalne działanie. W branży fotowoltaicznej zaleca się stosowanie zabezpieczeń o wartości nieprzekraczającej maksymalnego prądu wejściowego, co zmniejsza ryzyko przeciążenia. Przy doborze zabezpieczeń niezbędne jest również uwzględnienie warunków pracy oraz specyfiki instalacji, co jest istotnym elementem w zgodności z normami bezpieczeństwa. Warto także pamiętać, że właściwe zabezpieczenie wpływa na stabilność oraz wydajność całego systemu, co jest kluczowe dla inwestycji w odnawialne źródła energii.

Pytanie 2

Zawór STB w kotłach opalanych biomasą z wentylatorem i podajnikiem chroni kocioł przed

A. zbyt wysokim wzrostem temperatury wody
B. cofaniem płomienia
C. niedostatecznym spalaniem
D. zablokowaniem podajnika paliwa
Odpowiedzi sugerujące, że zawór STB zabezpiecza kocioł przed niezupełnym spalaniem, zatkaniem podajnika paliwa lub cofnięciem płomienia, wskazują na powszechne nieporozumienia dotyczące funkcji tego urządzenia. Zawór STB jest związany z regulacją temperatury wody w kotle, a nie z procesem spalania paliwa. Niezupełne spalanie jest wynikiem niewłaściwego doprowadzenia powietrza, niewłaściwych parametrów paliwa lub wadliwego działania elementów grzewczych, a nie bezpośrednio związane z działaniem zaworu STB. Zatkanie podajnika paliwa z kolei może prowadzić do przerwy w dostarczaniu paliwa, ale nie jest to sytuacja, którą zawór STB ma na celu rozwiązać. Cofnięcie płomienia, które może spowodować zagrożenie pożarowe, również nie jest funkcją zaworu STB, lecz wymaga zastosowania innych zabezpieczeń, takich jak klapy zwrotne czy systemy detekcji płomienia. Zrozumienie, że zawór STB działa głównie jako zabezpieczenie przed wzrostem temperatury, a nie jako element systemu kontroli procesów spalania, jest kluczowe dla zapewnienia prawidłowego eksploatowania kotłów na biomasę. Właściwe zrozumienie funkcji każdego elementu systemu grzewczego jest niezbędne do zapewnienia ich efektywności oraz bezpieczeństwa, a ignorowanie tej zasady może prowadzić do niepożądanych sytuacji i poważnych awarii.

Pytanie 3

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C
A. 30,00 zł
B. 12,00 zł
C. 60,00 zł
D. 45,00 zł
Poprawna odpowiedź to 30,00 zł, co wynika z prawidłowego zastosowania wzoru na obliczenie miesięcznych kosztów pokrycia strat energii. Aby obliczyć miesięczne koszty, należy wziąć pod uwagę dobowe straty energii, które w przypadku zbiornika SB-200 wynoszą 2 kWh. Następnie, mnożymy tę wartość przez liczbę dni w miesiącu, co daje 60 kWh (2 kWh x 30 dni). Koszt energii elektrycznej wynosi 0,50 zł za kWh, co prowadzi do obliczenia 60 kWh x 0,50 zł = 30 zł. Zrozumienie tego procesu jest kluczowe, ponieważ pozwala na realistyczne oszacowanie kosztów eksploatacyjnych systemów grzewczych i zbiorników. Wiedza ta jest istotna w kontekście optymalizacji kosztów operacyjnych oraz efektywności energetycznej. W praktyce, aby zminimalizować straty energii, można stosować różne metody izolacji zbiorników oraz monitorowania temperatury, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 4

W celu regulacji przepływu wody bezpośrednio na grzejnikach instaluje się

A. zawór czterodrożny
B. zawór termostatyczny
C. odpowietrznik
D. zawór trójdrożny
Zawór termostatyczny jest kluczowym elementem systemu grzewczego, który umożliwia precyzyjną regulację temperatury w pomieszczeniach. Jego działanie opiera się na automatycznym dopasowywaniu przepływu wody do aktualnych potrzeb grzewczych, co przyczynia się do oszczędności energii oraz poprawy komfortu użytkowania. Dzięki zastosowaniu zaworów termostatycznych można uniknąć przegrzewania pomieszczeń, co jest szczególnie istotne w okresie grzewczym. Przykładowo, w systemach ogrzewania podłogowego, gdzie temperatura może łatwo osiągać zbyt wysokie wartości, zawór termostatyczny działa jako zabezpieczenie, regulując ilość ciepłej wody wpływającej do obiegu. Ważne jest również, aby zawory te były odpowiednio dobrane do specyfiki instalacji, co powinno być zgodne z normami takimi jak PN-EN 215, które dotyczą wymagań dotyczących zaworów termostatycznych. Dzięki ich zastosowaniu można zwiększyć efektywność energetyczną budynków oraz poprawić ich komfort termiczny.

Pytanie 5

Do zasilania jednofazowej jednostki zewnętrznej pompy ciepła typu split powinno się użyć przewodu

A. pięciożyłowego
B. trzyżyłowego
C. czterożyłowego
D. dwużyłowego
Jednofazowa jednostka zewnętrzna pompy ciepła typu split wymaga do swojego zasilania przewodu trzyżyłowego, ponieważ taki przewód zapewnia nie tylko zasilanie, ale również odpowiednie uziemienie. W skład przewodu trzyżyłowego wchodzą trzy żyły: jedna fazowa, jedna neutralna oraz jedna ochronna (uziemiająca). Uziemienie jest kluczowe dla bezpieczeństwa użytkowników oraz ochrony urządzenia przed uszkodzeniami spowodowanymi przepięciami czy awariami. Przewody trzyżyłowe są powszechnie stosowane w instalacjach elektrycznych zasilających urządzenia o większej mocy. W praktyce, zastosowanie przewodu trzyżyłowego w instalacji zasilającej pompę ciepła jest zgodne z normami oraz przepisami, co zapewnia zgodność z wymaganiami bezpieczeństwa. Dobrą praktyką jest również regularne sprawdzanie stanu przewodów oraz ich odpowiednie zabezpieczenie, aby zminimalizować ryzyko uszkodzeń. Warto również pamiętać, że instalacja elektryczna powinna być wykonana przez wykwalifikowanego specjalistę, co jest kluczowe dla zachowania bezpieczeństwa i wydajności systemu.

Pytanie 6

Jakie kształtki należy wykorzystać do wykonania rozłącznych połączeń rur AluPex w systemie podłogowym zintegrowanym z pompą ciepła?

A. skręcanie
B. zgrzewanie
C. zaciskanie
D. klejenie
Skręcanie jest właściwą metodą łączenia rur AluPex w instalacjach podłogowych, zwłaszcza w systemach współpracujących z pompami ciepła. Ta technika pozwala na uzyskanie szczelnych połączeń, które są niezbędne w instalacjach hydraulicznych z niskim ciśnieniem roboczym. W przypadku rur AluPex, które charakteryzują się warstwą aluminium, połączenia skręcane zapewniają doskonałą wytrzymałość mechaniczną i odporność na zmiany temperatury. W praktyce, skręcanie polega na użyciu specjalnych złączek, które są montowane za pomocą klucza, co zapewnia pewność i trwałość połączenia. Zastosowanie tej metody jest zgodne z normami branżowymi, takimi jak PN-EN 12001, które kładą nacisk na bezpieczeństwo i efektywność instalacji. Warto również zaznaczyć, że prawidłowe skręcanie złączek minimalizuje ryzyko wystąpienia przecieków i zwiększa żywotność całego systemu grzewczego.

Pytanie 7

Zestaw paneli fotowoltaicznych składa się z dwóch paneli fotowoltaicznych, regulatora ładowania oraz dwóch akumulatorów 12 V każdy. Aby zasilać tym zestawem urządzenia o napięciu znamionowym 12 V DC, należy podłączyć

A. akumulatory równolegle
B. panele szeregowo
C. akumulatory szeregowo
D. panele równolegle
Wybór połączenia akumulatorów szeregowo prowadzi do zwiększenia napięcia systemu do 24 V, co jest nieodpowiednie dla zasilania urządzeń zaprojektowanych do pracy z napięciem 12 V. Z tego powodu, takie połączenie może prowadzić do uszkodzenia podłączonych urządzeń, które nie są przystosowane do pracy z wyższym napięciem. Połączenie akumulatorów szeregowo jest powszechnie mylone z równoległym, ponieważ wiele osób nie dostrzega różnicy w funkcjonalności, a koncentruje się jedynie na wyjściowym napięciu. Kolejnym błędem jest myślenie, że panele fotowoltaiczne należy łączyć równolegle, aby zwiększyć ich moc. W rzeczywistości, dla uzyskania wyższego napięcia z paneli, połączenie szeregowe jest bardziej odpowiednie. Jednakże, w kontekście tego pytania, niezrozumienie zasady działania akumulatorów prowadzi do błędnych wniosków. Każde ogniwo akumulatora ma swoje napięcie oraz pojemność i ich połączenie wymaga znajomości zasad elektryczności. Przy prawidłowym połączeniu równoległym, każdy akumulator pracuje na swoich warunkach, co zapewnia równomierne rozładowanie i ładowanie. Zrozumienie tych zasad jest kluczowe dla projektowania efektywnych systemów zasilania opartych na energii odnawialnej.

Pytanie 8

Kotły wykorzystujące paliwa stałe, takie jak pellet, klasyfikowane są jako kotły

A. kondensacyjne.
B. niskotemperaturowe wodne.
C. wodnego wysokotemperaturowego.
D. ciśnieniowe wodne.
Wybór kotłów wodnych ciśnieniowych, wysokotemperaturowych czy kondensacyjnych jako odpowiedzi na pytanie o kotły na paliwa stałe, takie jak pellet, jest mylny i wynika z niepełnego zrozumienia zasad działania tych systemów. Kotły wodne ciśnieniowe są projektowane do pracy pod dużym ciśnieniem, co jest typowe dla tradycyjnych systemów ogrzewania, ale nie pasuje do charakterystyki kotłów na paliwa stałe, które zazwyczaj pracują w niższych ciśnieniach. Z kolei kotły wysokotemperaturowe funkcjonują w znacznie wyższych zakresach temperatur, co czyni je nieefektywnymi w przypadku pelletu, który najlepiej sprawdza się w niskotemperaturowych aplikacjach. Kotły kondensacyjne, chociaż efektywne w wykorzystaniu energii, są dedykowane do gazu lub oleju, a nie do paliw stałych, co dodatkowo podkreśla niewłaściwy dobór odpowiedzi. Zrozumienie różnic między tymi rodzajami kotłów jest kluczowe, aby uniknąć nieporozumień w planowaniu systemów grzewczych. Kluczowym błędem myślowym jest założenie, że wszystkie kotły wodne działają na tych samych zasadach, co prowadzi do wyboru niewłaściwego rozwiązania technologicznego, które nie tylko zmniejsza efektywność energetyczną, ale również może skutkować problemami w eksploatacji i zwiększonymi kosztami operacyjnymi.

Pytanie 9

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. zawór bezpieczeństwa
B. zawór zwrotny
C. grupę pompową
D. naczynie wzbiorcze
Zawór zwrotny to już zupełnie inna bajka w systemach grzewczych. Jego rola to zapobieganie cofaniu się czynnika grzewczego, czyli tak naprawdę dba o to, by płynął w jednym kierunku. To ważne dla działania pomp, bo jak nie, to mogą się pojawić różne nieprzyjemne zjawiska, takie jak problemy hydrauliczne, które mogą prowadzić do uszkodzeń. Tylko, że zawór zwrotny nie ma wpływu na kontrolę ciśnienia instalacji, co w kontekście wzrostu objętości wody przy podwyższonej temperaturze jest kluczowe. Grupa pompową z kolei odpowiada za to, żeby zapewnić odpowiedni przepływ czynnika grzewczego, i może coś tam regulować ciśnienie, ale sama w sobie nie zapobiegnie jego wzrostowi w sytuacjach awaryjnych. Zawór bezpieczeństwa to już inna sprawa – on działa, żeby chronić instalację przed zbyt dużym ciśnieniem, ale jego rola to spuszczenie nadmiaru, a nie kontrolowanie tego ciśnienia. Dlatego ważne jest, żeby zrozumieć, że te różne elementy mają swoje unikalne funkcje, ale żadne z nich nie zastąpi kluczowej roli naczynia wzbiorczego w zabezpieczaniu instalacji przed skutkami termicznej ekspansji czynnika grzewczego. Po prostu, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie, trzeba stosować naczynie wzbiorcze zgodnie z aktualnymi standardami i dobrymi praktykami w branży.

Pytanie 10

Kotły biomasowe o mocy większej niż 2 MW powinny być montowane w obiekcie

A. wolnostojącym, które jest przeznaczone wyłącznie na kotłownię
B. mieszkalnym, w wydzielonych pomieszczeniach technicznych na parterze
C. mieszkalnym, w wydzielonych pomieszczeniach technicznych na poziomie podziemnym
D. mieszkalnym, w pomieszczeniach, które nie są przeznaczone na cele mieszkalne
Wybór wolnostojącego budynku przeznaczonego wyłącznie na kotłownię dla kotłów na biopaliwo o mocy powyżej 2 MW jest zgodny z najlepszymi praktykami branżowymi oraz wymogami bezpieczeństwa. Tego typu instalacje powinny znajdować się w odizolowanych pomieszczeniach, aby zminimalizować ryzyko pożarowe i zapewnić odpowiednią wentylację. Ponadto, wolnostojące budynki pozwalają na łatwiejsze spełnienie norm dotyczących emisji spalin oraz zapewniają dostęp do odpowiednich systemów chłodzenia i odprowadzania spalin. Przykładowo, w przypadku dużych instalacji, takich jak kotły na biomasę, konieczne jest przestrzeganie przepisów technicznych, takich jak PN-EN 303-5, które określają wymagania dotyczące konstrukcji i eksploatacji takich obiektów, co znacząco podnosi poziom bezpieczeństwa eksploatacyjnego oraz efektywności energetycznej systemu grzewczego.

Pytanie 11

Optymalne warunki dla energetyki wiatrowej występują na obszarach, gdzie klasa szorstkości wynosi

A. 2,0
B. 1,0
C. 1,5
D. 2,5
Wybór klas szorstkości 2,0, 1,5 lub 2,5 to nie jest dobry pomysł z kilku powodów. Klasy 2,0 i 1,5 oznaczają umiarkowane szorstkości, co w praktyce znaczy, że teren może mieć różne przeszkody, jak drzewa czy budynki, które wprowadzają niepotrzebne turbulencje. Takie warunki nie pomagają turbinom wiatrowym, bo zmniejszają prędkość wiatru i stabilność, co później wpływa na generację energii. Klasa szorstkości 2,5 to już spory problem, bo tam przeszkód jest jeszcze więcej, przez co turbulencje są jeszcze większe. Musimy zrozumieć, jak różne klasy szorstkości wpływają na przepływ wiatru, bo to jest kluczowe przy projektowaniu farm wiatrowych. Wysoka szorstkość prowadzi do mniejszej efektywności i wyższych kosztów, co w branży nie jest zgodne z najlepszymi praktykami. Dlatego klasa szorstkości 1,0 to zdecydowanie najlepszy wybór dla efektywnej energetyki wiatrowej.

Pytanie 12

W przypadku tworzenia kosztorysu ofertowego nie uwzględnia się

A. zapisy z książki obmiarów zatwierdzone przez inspektora nadzoru
B. koszty rzeczowe robocizny, materiałów oraz pracy sprzętu
C. ceny jednostkowe oraz narzuty dotyczące kosztów pośrednich i zysku
D. dokumentację projektową oraz dane wyjściowe do projektowania
Odpowiedź dotycząca zapisów z książki obmiarów zatwierdzonych przez inspektora nadzoru jest prawidłowa, ponieważ te zapisy są specyficzne dla realizacji danego projektu i nie są stosowane w kontekście sporządzania kosztorysu ofertowego. Kosztorys ofertowy w praktyce budowlanej opiera się na kosztach rynkowych, które obejmują ceny jednostkowe robocizny, materiałów oraz pracy sprzętu, a także narzuty dotyczące kosztów pośrednich i zysku. Kluczowym elementem jest dokumentacja projektowa, która dostarcza niezbędnych danych do oszacowania kosztów inwestycji. Warto również zaznaczyć, że w procesie ofertowania należy brać pod uwagę aktualne wartości rynkowe komponentów budowlanych, co jest zgodne z zasadami rynkowymi oraz standardami kosztorysowania. Dobrą praktyką w kosztorysowaniu jest regularne aktualizowanie baz danych o ceny, co pozwala na precyzyjne odzwierciedlenie rzeczywistych kosztów w ofertach. Używając takich danych, firmy budowlane mogą skuteczniej konkurować na rynku oraz unikać błędów w ocenie kosztów realizacji projektów.

Pytanie 13

Który z poniższych rodzajów zbiorników nie powinien być używany do przechowywania biogazu?

A. Sferycznego membranowego
B. Suchego tłokowego niskociśnieniowego
C. Suchego stalowego wysokociśnieniowego
D. Membranowego dachowego
Odpowiedź 'Suchego stalowego wysokociśnieniowego' jest poprawna, gdyż zbiorniki te nie są odpowiednie do magazynowania biogazu, który jest mieszaniną gazów o zróżnicowanej kompozycji, w tym metanu i dwutlenku węgla. Biogaz jest zwykle przechowywany w warunkach niskiego ciśnienia, co zapewnia bezpieczeństwo oraz minimalizuje ryzyko eksplozji. Zbiorniki membranowe dachowe i sferyczne membranowe są projektowane z myślą o takich wymaganiach, gdyż potrafią dostosować swoją objętość do zmieniającej się ilości gazu oraz regulować ciśnienie wewnętrzne, umożliwiając efektywne zarządzanie biogazem. Na przykład, w systemach biogazowych wykorzystywanych w rolnictwie, stosowanie zbiorników niskociśnieniowych pozwala na efektywne przechowywanie oraz późniejsze wykorzystanie biogazu jako źródła energii, co jest zgodne ze standardami dotyczącymi zrównoważonego rozwoju. Wybór odpowiedniego zbiornika w kontekście bezpieczeństwa i efektywności energetycznej jest kluczowy dla skutecznego funkcjonowania systemów wykorzystujących biogaz.

Pytanie 14

Podczas instalowania systemu fotowoltaicznego stosuje się złączki, które zapewniają całkowitą hermetyczność oraz zapobiegają niewłaściwemu podłączeniu biegunów paneli słonecznych do akumulatora

A. WAGO
B. HDMI
C. MC4
D. MPX
Złączki MC4 są standardem w instalacjach fotowoltaicznych, służącym do łączenia paneli słonecznych z systemem zasilania. Dzięki swojej konstrukcji, złączki te zapewniają pełną hermetyczność, co jest kluczowe w kontekście ochrony przed wilgocią i zanieczyszczeniami. W praktyce oznacza to, że stosując złączki MC4, minimalizuje się ryzyko wystąpienia korozji oraz uszkodzeń, które mogą prowadzić do obniżenia wydajności systemu. Dodatkowo, złączki te wyposażone są w mechanizm blokujący, który uniemożliwia przypadkowe rozłączenie połączenia, co jest niezwykle istotne oraz zapewnia bezpieczeństwo w eksploatacji. Zgodnie z normami IEC 62109 oraz IEC 61730, przy wyborze komponentów do instalacji fotowoltaicznych, należy kierować się ich niezawodnością i odpornością na ekstremalne warunki atmosferyczne, co złączki MC4 z pewnością spełniają. Dlatego są one powszechnie stosowane zarówno w instalacjach domowych, jak i komercyjnych, co potwierdza ich skuteczność i popularność w branży.

Pytanie 15

W jakich urządzeniach wykorzystuje się rurkę ciepła?

A. Kolektorach słonecznych powietrznych
B. Modułach fotowoltaicznych
C. Kolektorach słonecznych cieczowych
D. Biogazowych fermentatorach
Cieczowe kolektory słoneczne wykorzystują rurki ciepła jako efektywny element transferu ciepła. Te urządzenia są zaprojektowane do absorpcji energii słonecznej, a rurki ciepła działają na zasadzie efektywnej wymiany ciepła pomiędzy absorberem a czynnikiem roboczym, którym jest zazwyczaj woda lub inny płyn. Rurki ciepła działają na zasadzie zmiany stanu czynnika roboczego: ciecz w rurce odparowuje pod wpływem ciepła, co powoduje wzrost ciśnienia i przemieszczenie pary do części chłodnej rurki, gdzie skrapla się, oddając ciepło do obiegu. Dzięki temu mechanizmowi, rurki ciepła charakteryzują się wysoką efektywnością i szybkością odpowiedzi na zmiany poziomu nasłonecznienia. W praktyce oznacza to, że cieczowe kolektory słoneczne z rurkami ciepła mogą być stosowane do ogrzewania wody użytkowej, wspomagania systemów grzewczych w budynkach, a także w aplikacjach przemysłowych, takich jak ogrzewanie procesów technologicznych. Stosowanie rur ciepła w cieczowych kolektorach słonecznych jest rekomendowane przez takie organizacje jak Solar Energy Industries Association, co potwierdza ich niezawodność i wydajność w zastosowaniach domowych i przemysłowych.

Pytanie 16

W jakiej technologii łączy się kolektor słoneczny z wymiennikiem ciepła?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Klejenie
D. Zgrzewanie
Lutowanie twarde jest techniką, która jest powszechnie stosowana do łączenia elementów w systemach grzewczych, w tym kolektorów słonecznych z wymiennikami ciepła. Proces lutowania twardego polega na użyciu stopu metalu o wysokiej temperaturze topnienia, co zapewnia mocne i trwałe połączenie. Dzięki temu, że lutowanie twarde tworzy spoiny odporne na wysoką temperaturę oraz ciśnienie, jest idealne do zastosowań w układach, w których występują ekstremalne warunki operacyjne, takie jak w instalacjach solarnych. Przykładem może być połączenie miedzi w instalacjach solarnych, gdzie zastosowanie lutowania twardego jest zgodne z normą PN-EN 12792:2007, która określa wymagania dla systemów solarnych. Dodatkowo, lutowanie twarde pozwala na osiągnięcie wysokiej wydajności wymiany ciepła, co zwiększa efektywność całego systemu. W praktyce, lutowanie twarde może być stosowane do łączenia elementów o różnych grubościach, co czyni tę metodę bardzo wszechstronną w inżynierii cieplnej.

Pytanie 17

Zbyt niskie natężenie przepływu czynnika roboczego w układzie solarnym, realizowane przez pompę obiegową, może prowadzić do

A. wzrostu temperatury czynnika roboczego
B. zapowietrzenia systemu
C. zwiększenia efektywności kolektorów
D. zatrzymania pompy obiegowej
Wiesz, zwiększenie sprawności kolektorów nie jest takie proste, jak się wydaje, zwłaszcza jeśli przepływ czynnika roboczego jest zbyt mały. Sprawność kolektorów zależy od wielu rzeczy, ale najważniejsze jest skuteczne usuwanie ciepła z kolektora. Kiedy przepływ jest zbyt mały, ciepło gromadzi się w kolektorze i przez to można się przegrzać, co na pewno nie poprawia wydajności. A tak w ogóle, zapowietrzenie instalacji to jest problem, który może mieć różne przyczyny, jak źle napełniony system wodą albo jakieś nieszczelności. Ale mały przepływ sam w sobie nie powoduje bezpośrednio zapowietrzenia. I wiecie co? Zatrzymanie pompy cyrkulacyjnej to już bardzo poważna sprawa, która może się stać, gdy pompa nie działa jak powinna, ale nie ma to bezpośrednio związku z natężeniem przepływu. Dlatego, jak projektujecie i używacie instalacje solarne, to ważne, żeby trzymać się zasad odpowiedniego doboru pompy i jej regulacji oraz serwisowania. Myślę, że to pozwala uniknąć problemów z niskim przepływem i zapewnia dobre warunki dla całego systemu. W praktyce dobór pompy powinien być dostosowany do tego, co dokładnie potrzebujesz, żeby dobrze cyrkulować czynnik roboczy.

Pytanie 18

Jeśli prędkość wiatru zwiększyła się dwukrotnie, to turbina wiatrowa będzie mogła wygenerować

A. osiem razy więcej energii
B. cztery razy więcej energii
C. dwa razy więcej energii
D. szesnaście razy więcej energii
Odpowiedź "osiem razy więcej energii" jest prawidłowa, ponieważ moc generowana przez turbinę wiatrową jest proporcjonalna do sześcianu prędkości wiatru. Zgodnie z równaniem moc = 1/2 * gęstość powietrza * powierzchnia wirnika * prędkość^3, zauważamy, że podwajając prędkość wiatru (2v), moc staje się (1/2 * gęstość powietrza * powierzchnia wirnika * (2v)^3), co sprowadza się do 8 * (1/2 * gęstość powietrza * powierzchnia wirnika * v^3). W praktyce oznacza to, że nawet niewielkie zmiany w prędkości wiatru mogą znacząco wpłynąć na generowaną moc. To zjawisko jest kluczowe w projektowaniu i eksploatacji turbin wiatrowych, co potwierdzają liczne badania i dane operacyjne, które pokazują, że optymalizacja ustawienia turbin względem kierunku i siły wiatru może przynieść znaczne korzyści w zakresie efektywności energetycznej. Dlatego też, znajomość tych zależności jest istotna dla inżynierów i specjalistów pracujących w branży energetyki odnawialnej.

Pytanie 19

Jaką wartość ma 1 roboczogodzina przy montażu 1 szt. kolektora słonecznego, jeśli koszt robocizny za zamontowanie 10 kolektorów słonecznych wynosi 5 000,00 zł, a ustalona stawka za roboczogodzinę to 25,00 zł?

A. 20 r-g/szt.
B. 100 r-g/szt.
C. 1000 r-g/szt.
D. 500 r-g/szt.
Wybór błędnej odpowiedzi mógł wynikać z tego, że nie do końca zrozumiałeś, jak się robi obliczenia w kosztorysach robocizny. Na przykład, gdy ktoś wybiera 100, 1000 czy 500 roboczogodzin na montaż jednego kolektora, to zazwyczaj chodzi o jakieś błędne założenia albo niepoprawne użycie stawki za roboczogodzinę. Ważne, żeby pamiętać, że kosztorysowanie wymaga dokładnych obliczeń oraz zrozumienia, jak różne elementy wpływają na całkowity koszt projektu. Błędy w obliczeniach często wynikają z pominięcia ważnych kroków, na przykład podziału całkowitego czasu pracy przez liczbę rzeczy do zamontowania. W praktyce, żeby uzyskać dobre wyniki, trzeba mieć systematyczne podejście, które obejmuje analizowanie kosztów i planowanie robocizny. Gdy robi się takie błędy w zarządzaniu projektem, to mogą one prowadzić do opóźnień i przekroczeń budżetowych, co nie jest mile widziane w branży budowlanej.

Pytanie 20

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. poprawy przewodności cieplnej czynnika grzewczego
B. zmniejszenia korozji instalacji
C. oczyszczenia czynnika grzewczego z zanieczyszczeń
D. pozbycia się kamienia kotłowego z systemu
Inhibitory korozji są substancjami chemicznymi dodawanymi do czynnika grzewczego w instalacjach centralnego ogrzewania w celu ograniczenia korozji elementów metalowych systemu. Korozja jest naturalnym procesem, który może prowadzić do intensywnego zużycia sprzętu, a w skrajnych przypadkach - do jego awarii. Inhibitory działają na zasadzie tworzenia ochronnej warstwy na powierzchni metalu, co zmniejsza kontakt z agresywnymi substancjami chemicznymi w wodzie. Przykłady zastosowania to dodawanie inhibitorów takich jak azotany czy fosforany, które są zgodne z normami takimi jak PN-EN 14731, które dotyczą jakości wody w instalacjach grzewczych. Działanie inhibitorów jest kluczowe dla wydłużenia żywotności instalacji, co przekłada się na mniejsze koszty konserwacji oraz zwiększoną efektywność energetyczną systemu.

Pytanie 21

Jak określa się rurę łączącą najwyżej usytuowaną część systemu wodnego kotła c.o. na drewno kawałkowe z przestrzenią powietrzną otwartego naczynia wzbiorczego?

A. Informacyjna
B. Bezpieczeństwa
C. Odpowietrzająca
D. Przelewowa
Rura bezpieczeństwa jest kluczowym elementem systemów grzewczych, szczególnie w kotłach c.o. na drewno kawałkowe. Jej głównym zadaniem jest zapewnienie bezpiecznego odprowadzenia nadmiaru wody lub pary wodnej do naczynia wzbiorczego, co jest niezbędne w sytuacji, gdy ciśnienie w kotle przekracza dopuszczalne wartości. W przypadku awarii lub nadmiernego ogrzewania, rura ta chroni system przed uszkodzeniami, zapobiegając niekontrolowanemu wzrostowi ciśnienia. Przykład praktyczny: w kotłach o dużej mocy, rura bezpieczeństwa jest niezbędna do zapewnienia odpowiedniego chłodzenia i ochrony przed potencjalnym wybuchem. Warto również zwrócić uwagę na normy PN-EN 303-5, które regulują wymagania dotyczące systemów grzewczych, w tym zasady dotyczące rur bezpieczeństwa. Dobrą praktyką jest regularne sprawdzanie stanu rur bezpieczeństwa oraz ich drożności, aby zapewnić pełną funkcjonalność i bezpieczeństwo systemu grzewczego.

Pytanie 22

W trakcie montażu systemów energii odnawialnej multicyklony wykorzystywane są jako urządzenia redukujące emisję do atmosfery

A. tlenku siarki
B. tlenku węgla
C. koksu
D. pyłu
Pył jest składnikiem, który może być emitowany podczas różnych procesów przemysłowych, w tym w energetyce odnawialnej, gdzie jego ograniczenie jest kluczowe dla ochrony środowiska. Multicyklony to urządzenia wykorzystywane do separacji cząstek stałych z gazów, co pozwala na skuteczne wychwytywanie pyłu przed jego uwolnieniem do atmosfery. W takich instalacjach, jak elektrownie wiatrowe czy biogazownie, multicyklony są używane do kontroli jakości powietrza i redukcji negatywnego wpływu na zdrowie ludzi oraz środowisko. Standardy takie jak ISO 14001 dotyczące systemów zarządzania środowiskowego nakładają na przedsiębiorstwa obowiązek monitorowania i ograniczania emisji pyłów i innych zanieczyszczeń. Przykładem zastosowania multicyklonów może być instalacja w przemyśle biomasy, gdzie odpady organiczne spalane są w komorach, a multicyklony wychwytują pył powstający w trakcie tego procesu, co przyczynia się do redukcji emisji pyłów do atmosfery i poprawy efektywności energetycznej systemu.

Pytanie 23

W porowatych skałach o niskiej wilgotności znajdują się zasoby zmagazynowanej energii

A. konwencjonalnie nieodnawialnej
B. nieodnawialnej
C. hydrotermalnej
D. petrotermalnej
Odpowiedzi takie jak 'hydrotermiczna' czy 'nieodnawialna' są nietrafione, bo w kontekście suchych skał nie pasują do tego, co mówimy o zmagazynowywaniu energii. Hydrotermalne źródła energii zazwyczaj są w wilgotnych miejscach, gdzie gorące płyny geotermalne mogą być wykorzystane do produkcji energii. A w suchych skałach brak wody sprawia, że takie źródła się nie tworzą. Z kolei określenie 'nieodnawialna' dotyczy ogółu zasobów, a nie konkretnego typu energii związanej z porowatymi skałami, więc to też jest mylące. Odpowiedź 'konwencjonalnie nieodnawialnej' też nie pasuje, bo nie wyjaśnia konkretnego kontekstu dotyczącego petrotermicznych zasobów. Często popełniane błędy to pomijanie kluczowych cech geologicznych skał oraz mylenie różnych typów zasobów energetycznych z ich właściwościami fizycznymi. Żeby dobrze zrozumieć, jak działa złoże węglowodorowe, ważne jest, żeby odróżniać różne rodzaje energii i ich geologiczne uwarunkowania.

Pytanie 24

Jak należy łączyć miedziane rury z rurami ze stali ocynkowanej?

A. Lutuje się stalową złączkę do miedzianej rury
B. Lutuje się miedzianą złączkę do stalowej rury
C. Zaciska się miedzianą rurę na stalowej rurze
D. Używa się specjalnej złączki mosiężnej jako przejściowej
Lutowanie złączki stalowej do rury miedzianej oraz lutowanie złączki miedzianej do rury stalowej to metody, które mogą wydawać się logiczne, jednak w praktyce są niewłaściwe ze względu na różnice w temperaturze topnienia oraz charakterystyce chemicznej obu materiałów. Lutowanie wymaga odpowiednich materiałów lutowniczych, a w przypadku stali i miedzi występuje ryzyko powstawania nieszczelności, gdyż różnice w rozszerzalności cieplnej mogą prowadzić do pęknięć w połączeniach. Co więcej, lutowanie stalowych złączek do miedzi może skutkować korozją elektrolityczną, co jest skutkiem kontaktu dwóch różnych metali w obecności elektrolitu, jakim jest woda. Użycie zacisku do rur miedzianych na rurze stalowej jest również niewłaściwym podejściem, gdyż nie zapewnia trwałego, szczelnego połączenia. Zaciski mogą z czasem się luzować, co prowadzi do wycieków. W praktyce, dla bezpieczeństwa i wydajności systemów hydraulicznych, powinno się stosować dedykowane złączki mosiężne, które eliminują te problemy i gwarantują długotrwałą niezawodność połączeń. Warto również pamiętać o przestrzeganiu norm dotyczących łączenia różnych materiałów, co jest kluczowe dla zapewnienia bezpieczeństwa i trwałości instalacji.

Pytanie 25

Aby uzyskać optymalną wydajność instalacji słonecznej do podgrzewania wody w basenie w trakcie lata, kolektory powinny być ustawione pod kątem względem poziomu

A. 45o
B. 90o
C. 60o
D. 30o
Ustawienie kolektorów słonecznych pod kątem 45 stopni, 60 stopni, czy 90 stopni nie jest odpowiednie do zapewnienia maksymalnej efektywności instalacji grzewczej w basenie w sezonie letnim. Kąt 45 stopni, chociaż może być używany do instalacji systemów w innych porach roku, nie wykorzystuje pełni potencjału promieniowania słonecznego latem, gdy słońce znajduje się wyżej na niebie. Taki kąt powoduje, że kolektory są mniej efektywne w absorpcji energii, co przekłada się na niższą wydajność podgrzewania wody. Podobnie, kąt 60 stopni jest zbyt stromy, co również skutkuje mniejszą ilością energii słonecznej docierającej do kolektorów w letnich miesiącach. Co więcej, kąt 90 stopni, który zakłada, że kolektor jest ustawiony pionowo, w praktyce niemal całkowicie blokuje dostęp promieni słonecznych w ciągu dnia, co prowadzi do minimalnej wydajności systemu. W praktyce błąd w podejściu do właściwego kąta nachylenia wynika z nieznajomości cyklu słonecznego i jego wpływu na wydajność instalacji. Aby osiągnąć maksymalną efektywność, należy stosować się do sprawdzonych metod ustawienia kolektorów, które uwzględniają zarówno kąt nachylenia, jak i kierunek, w którym są skierowane. Dostosowanie tych parametrów jest kluczowe dla uzyskania optymalnych rezultatów w wykorzystaniu energii słonecznej.

Pytanie 26

Głównym celem instalacji fotowoltaicznej typu on-grid jest produkcja energii elektrycznej

A. w lokalizacjach, gdzie nie ma dostępu do sieci elektrycznych
B. na potrzeby własne oraz do sieci elektrycznej
C. wyłącznie na potrzeby własne, bez podłączenia do sieci
D. do przechowywania w akumulatorach
Instalacja fotowoltaiczna typu on-grid jest zaprojektowana przede wszystkim do wytwarzania energii elektrycznej, która może być wykorzystywana zarówno do zaspokajania własnych potrzeb energetycznych użytkownika, jak i do zasilania sieci elektrycznej. W przypadku tego systemu energię elektryczną wytwarza się na podstawie promieniowania słonecznego, a nadmiar wyprodukowanej energii jest przesyłany do lokalnej sieci energetycznej. Dzięki temu użytkownik może korzystać z energii z paneli słonecznych, a jednocześnie wygenerować dodatkowy zysk poprzez sprzedaż nadwyżki energii. Wiele krajów stosuje systemy net meteringu, które pozwalają na rozliczanie energii, co sprawia, że instalacje on-grid stają się ekonomicznie opłacalne. Dodatkowo, te instalacje są zgodne z aktualnymi standardami branżowymi, co zapewnia ich efektywność oraz bezpieczeństwo. Przykładem może być instalacja domowa, gdzie energia z paneli zasila urządzenia elektryczne, a nadmiar energii jest oddawany do sieci, co przyczynia się do zmniejszenia rachunków za energię i korzystania z odnawialnych źródeł energii.

Pytanie 27

Kto nie należy do uczestników procesu budowlanego?

A. kierownik budowy
B. projektant
C. inwestor
D. kominiarz
Wybór kominiarza jako osoby, która nie uczestniczy w procesie budowlanym, jest jak najbardziej trafny. W procesie budowlanym uczestniczą kluczowe role takie jak inwestor, projektant i kierownik budowy, którzy są bezpośrednio zaangażowani w projektowanie, nadzór i realizację budowy. Inwestor odpowiada za finansowanie projektu oraz podejmowanie kluczowych decyzji. Projektant zajmuje się tworzeniem i opracowaniem projektu budowlanego, w tym jego zgodności z obowiązującymi normami i przepisami. Kierownik budowy jest odpowiedzialny za organizację i koordynację prac na placu budowy, zapewniając jednocześnie, że realizacja przebiega zgodnie z projektem oraz z wymaganiami prawa budowlanego. Kominiarz, choć odgrywa istotną rolę w zakresie bezpieczeństwa i użytkowania obiektów budowlanych, nie jest bezpośrednim uczestnikiem procesu budowlanego, co sprawia, że nie jest zaangażowany w jego kluczowe etapy. Wiedza na temat ról w procesie budowlanym jest niezbędna, aby skutecznie zarządzać projektami budowlanymi oraz zapewnić ich prawidłową realizację.

Pytanie 28

Przy wymianie kolektora słonecznego, koszt zakupu materiałów wyniósł 1600 zł, wartość pracy według wykonawcy została oszacowana na 240 zł, a wydatki na użycie sprzętu to 150 zł. Jaką wartość narzutu kosztów można obliczyć od nabytych materiałów, które stanowią 12%?

A. 46,80 zł
B. 192,00 zł
C. 238,80 zł
D. 210,00 zł
Wybór błędnej odpowiedzi często wynika z nieprawidłowego zrozumienia pojęcia narzutu kosztów oraz sposobu jego obliczania. Często pojawiającym się błędem jest przyjęcie, że narzut powinien być obliczany na podstawie całkowitych kosztów, które obejmują nie tylko materiały, ale także koszty robocizny i pracy sprzętu. Takie podejście prowadzi do niepoprawnych wyników, ponieważ narzut jest zazwyczaj stosowany wyłącznie do wartości materiałów, co zostało jasno określone w treści zadania. Inny częsty błąd to pomylenie procentów, co może skutkować obliczeniem narzutu na zbyt wysokim lub zbyt niskim poziomie. Dodatkowo, przy obliczeniach warto zwrócić uwagę na to, czy procent narzutu jest poprawnie przeliczony na ułamek dziesiętny. W praktyce, przy wycenach projektów budowlanych i instalacyjnych, niezwykle ważne jest, aby mieć jasne zrozumienie podstawowych zasad kalkulacji kosztów oraz zapewnić zgodność z obowiązującymi standardami branżowymi. Zastosowanie niepoprawnych metod obliczeniowych może prowadzić do poważnych konsekwencji finansowych, a także do utraty zaufania ze strony klientów. Dlatego kluczowe jest, aby każda osoba pracująca w branży budowlanej była dobrze zaznajomiona z zasadami wyceny kosztów i metodami kalkulacji, aby móc przeprowadzać rzetelne i dokładne obliczenia.

Pytanie 29

Jakie narzędzie powinno być zastosowane do eliminacji zadziorów powstających po przecięciu rury polietylenowej o średnicy 40 mm?

A. Tarnika
B. Nażynki
C. Gratownika
D. Frezu
Nażynki, mimo że są narzędziem o określonym zastosowaniu w obróbce materiałów, nie są przeznaczone do usuwania zadziorów z rur z polietylenu. Ich główną funkcją jest usuwanie nadmiaru materiału lub korygowanie kształtu, co w kontekście rurociągów może nie przynieść oczekiwanego efektu, a wręcz przeciwnie, może pogorszyć jakość cięcia. Tarniki, które są również narzędziami stosowanymi do wygładzania powierzchni, nie są optymalne do pracy z polietylenem, ponieważ mogą prowadzić do odklejania się włókien lub zjawisk degradacyjnych materiału. Z kolei frezy, pomimo że mogą być używane do obróbki różnych materiałów, zazwyczaj wymagają większej precyzji i skomplikowanego sprzętu, co czyni je mniej praktycznymi w kontekście prostych zadziorów na rurach. Właściwe rozumienie charakterystyki narzędzi oraz ich zastosowania jest kluczowe w pracy z materiałami sztucznymi, ponieważ nieodpowiedni dobór narzędzi może prowadzić do uszkodzeń materiału, a także do poważniejszych problemów związanych z bezpieczeństwem i wydajnością instalacji. Dlatego zaleca się zawsze stosowanie narzędzi dedykowanych, takich jak gratownik, które zapewnią odpowiednią jakość wykonania.

Pytanie 30

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 20°C
B. 15°C
C. 30°C
D. 25°C
Temperatura 20°C, wskazana w jednej z odpowiedzi, jest często mylona z warunkami STC, ale w rzeczywistości nie jest to poprawna wartość do oceny wydajności paneli fotowoltaicznych. Podobnie, zarówno 30°C, jak i 15°C nie są standardowymi temperaturami dla testów. Użytkownicy mogą nie zdawać sobie sprawy, że standardowe testy dla paneli PV są zawsze przeprowadzane w 25°C, co stanowi punkt odniesienia dla efektywności. W praktyce, różnice w temperaturze mogą wprowadzać znaczne odchylenia w wynikach i porównaniach. Wysoka temperatura, jak 30°C, może prowadzić do obniżenia wydajności ogniw, podczas gdy temperatura 15°C może sprawić, że panele będą działały bardziej efektywnie, ale nie oddaje to rzeczywistych warunków pracy w terenie. Często błędem myślowym jest zakładanie, że jakiekolwiek różnice w temperaturze nie mają znaczenia. Dlatego kluczowe jest, aby dobrze zrozumieć standardy i ich wpływ na ocenę paneli PV, co z kolei pozwala na lepsze prognozowanie efektywności instalacji w różnych warunkach atmosferycznych.

Pytanie 31

Aby poprawnie połączyć instalację z rur miedzianych w technologii lutowania miękkiego, należy wykorzystać zestaw narzędzi, który zawiera:

A. obcinak krążkowy do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
B. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
C. obcinak krążkowy do rur, gratownik, czyścik do rur, szczotka do rur miedzianych, palnik gazowy z butlą
D. nożyce do rur, kalibrator, czyścik do rur, szczotka do rur miedzianych, lutownica transformatorowa
Wybór zestawu narzędzi składającego się z obcinaka krążkowego do rur, gratownika, czyścika do rur, szczotki do rur miedzianych oraz palnika gazowego z butlą jest kluczowy dla prawidłowego wykonania połączenia instalacji z rur miedzianych w technologii lutowania miękkiego. Obcinak krążkowy jest niezbędny do precyzyjnego cięcia rur miedzianych, co zapewnia ich idealne dopasowanie. Gratownik służy do usuwania zadziorów powstałych podczas cięcia, co zapobiega uszkodzeniom uszczelek i zwiększa trwałość połączeń. Czyścik do rur oraz szczotka do rur miedzianych pozwalają na dokładne oczyszczenie powierzchni, co jest niezbędne dla uzyskania dobrego połączenia lutowniczego. Palnik gazowy z butlą umożliwia dostarczenie odpowiedniej temperatury do lutowania, co jest kluczowe dla uzyskania solidnych i trwałych połączeń. Stosowanie się do tych zasad oraz wybór odpowiednich narzędzi jest zgodne z normami branżowymi, które zalecają zachowanie prawidłowych procedur montażowych, co znacząco wpływa na bezpieczeństwo i efektywność instalacji.

Pytanie 32

Największa dozwolona wysokość hałd przy magazynowaniu materiału aktywnego biologicznie powinna wynosić

A. 3 m
B. 6m
C. 4m
D. 5m
Ustalanie maksymalnej wysokości hałd na poziomie 3 m, 5 m lub 6 m może prowadzić do szeregu problemów związanych z bezpieczeństwem oraz oddziaływaniem na środowisko. Przykładowo, 3 m może wydawać się odpowiednią wysokością, ale w praktyce może to ograniczać efektywność składowania oraz zwiększać ilość wymaganej przestrzeni. Wysokości przekraczające 4 m, takie jak 5 m czy 6 m, stwarzają ryzyko osuwania się materiału oraz mogą prowadzić do poważnych incydentów w przypadku silnych opadów deszczu, co może skutkować niekontrolowanym wypływem substancji bioaktywnych. Wysokie hałdy są trudniejsze do monitorowania i kontrolowania, co zwiększa ryzyko rozwoju szkodników oraz emisji nieprzyjemnych zapachów. Ponadto, przekroczenie norm wysokości może naruszać lokalne przepisy dotyczące ochrony środowiska, co wiąże się z sankcjami i kosztami. Z perspektywy zarządzania ryzykiem, składowanie materiałów bioaktywnych w sposób niezgodny z najlepszymi praktykami branżowymi może prowadzić do znacznych problemów zdrowotnych, zarówno dla pracowników, jak i mieszkańców okolicznych terenów. Niewłaściwe podejście do składowania może także negatywnie wpłynąć na wizerunek firmy oraz jej relacje z organami regulacyjnymi.

Pytanie 33

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
B. Prostopadle, na południowej ścianie obiektu
C. W poziomie, na tarasie
D. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
Montaż fotoogniw pod kątem 55 stopni do powierzchni terenu na południowej połaci dachu jest optymalnym rozwiązaniem, które zapewnia maksymalną efektywność ich pracy przez cały rok. Pod kątem 55 stopni panel słoneczny jest w stanie lepiej wykorzystać promieniowanie słoneczne, szczególnie w miesiącach zimowych, kiedy Słońce znajduje się nisko na horyzoncie. Południowa ekspozycja dachu zapewnia, że panele będą miały największy dostęp do światła słonecznego w ciągu dnia, co przekłada się na wyższą produkcję energii. Warto również zauważyć, że taki kąt montażu minimalizuje ryzyko gromadzenia się śniegu i zanieczyszczeń na powierzchni paneli, co mogłoby wpłynąć na ich wydajność. Dodatkowo, stosowanie się do zaleceń branżowych dotyczących montażu, takich jak standardy IEC 61215 i IEC 61730, gwarantuje bezpieczeństwo i trwałość instalacji. Odpowiedni dobór kąta i miejsca montażu jest kluczowy dla długoterminowej efektywności systemów fotowoltaicznych oraz ich opłacalności ekonomicznej.

Pytanie 34

Jakiego rodzaju instalację PV należy zbudować, aby móc sprzedawać energię elektryczną do sieci energetycznej?

A. Wyspową
B. Autonomiczną
C. On-grid
D. Off-grid
Odpowiedź 'On-grid' jest prawidłowa, ponieważ instalacje fotowoltaiczne typu on-grid są zaprojektowane do współpracy z siecią elektroenergetyczną. W przypadku tego typu instalacji, panele słoneczne generują energię elektryczną, która jest wykorzystywana do zasilania budynku, a nadwyżka energii może być odsprzedawana do sieci. Przykładem zastosowania instalacji on-grid jest dom jednorodzinny, który produkuje więcej energii, niż zużywa, i sprzedaje nadwyżki energii lokalnemu operatorowi sieci. Takie rozwiązanie sprzyja efektywności energetycznej i obniżeniu kosztów eksploatacyjnych. W Polsce, zgodnie z Ustawą o OZE, właściciele instalacji on-grid mają prawo do odsprzedaży energii, co jest regulowane przez system net-billingu, gdzie nadwyżki energii są rozliczane na korzystnych warunkach. Standardy instalacji on-grid obejmują również konieczność zastosowania inwerterów sieciowych, które przekształcają prąd stały wytworzony przez panele na prąd zmienny, odpowiedni do wprowadzenia do sieci.

Pytanie 35

Wydostawanie się płynu solarnego przez zawór bezpieczeństwa w sytuacji wysokiej temperatury kolektora słonecznego wskazuje na

A. zbyt małą powierzchnię wężownicy w wymienniku ciepła
B. zbyt ograniczoną pojemność naczynia przeponowego
C. nieprawidłowe ustawienia zaworu bezpieczeństwa
D. niewłaściwą ilość płynu solarnego w systemie
Jak dla mnie, problem z za małą pojemnością naczynia przeponowego w układzie cieplnym kolektora słonecznego to poważna sprawa. Kiedy pojemność jest za mała, ciśnienie w systemie może wystrzelić w górę, co często kończy się wyciekiem płynu solarnego przez zawór bezpieczeństwa. Takie naczynie ma ważne zadanie – kompensuje zmiany objętości płynu, które wynikają z jego nagrzewania. Jak płyn się grzeje, jego objętość rośnie, a jeśli naczynie nie ma wystarczającej pojemności, ciśnienie może osiągnąć niebezpieczny poziom. Zawór bezpieczeństwa uruchamia się wtedy, żeby chronić system przed uszkodzeniem. Z mojego doświadczenia, w większych systemach solarnych warto, żeby naczynie miało pojemność przynajmniej 10% z całego obiegu. Dzięki temu można lepiej reagować na zmiany temperatury. Normy, takie jak EN 12976, naprawdę podkreślają, jak ważne jest właściwe dobieranie komponentów, żeby uniknąć problemów z układem. Dlatego, odpowiedni wybór pojemności naczynia przeponowego jest kluczowy dla długotrwałego działania instalacji oraz dla bezpieczeństwa wszystkich użytkowników.

Pytanie 36

Aby zredukować wahania wskazań rotametru w jednostce pompującej w instalacji solarnej, należy wykonać

A. odpowietrzenie instalacji
B. zwiększenie ciśnienia w układzie solarnym
C. zmniejszenie ciśnienia w układzie solarnym
D. regulację pompy obiegowej
Wybór regulacji pompy obiegowej, zwiększenia lub zmniejszenia ciśnienia w układzie solarnym, aby zlikwidować wahania wskazań rotametru, jest błędny, ponieważ te działania nie eliminują podstawowej przyczyny problemu, jakim jest obecność powietrza w systemie. Regulacja pompy może wpłynąć na przepływ, ale jeśli w układzie znajduje się powietrze, to jakiekolwiek zmiany w pracy pompy nie rozwiążą problemu niestabilnych wskazań rotametru. Zwiększanie ciśnienia w układzie może prowadzić do zjawiska kawitacji, co jest szkodliwe dla instalacji, a zmniejszenie ciśnienia może wręcz pogorszyć sytuację, skutkując jeszcze większymi wahaniami przepływu. Takie podejścia są typowe w przypadku braku zrozumienia mechanizmów działania instalacji solarnych. Właściwe zarządzanie instalacją wymaga bowiem nie tylko reakcji na objawy, ale także zrozumienia ich przyczyn. Użytkownicy powinni być świadomi, że każda instalacja wymaga regularnego monitorowania i konserwacji, w tym odpowietrzenia, aby zapewnić jej optymalne działanie. Zignorowanie tych mechanizmów prowadzi do nieefektywności systemu i potencjalnych uszkodzeń.

Pytanie 37

W trakcie dorocznego przeglądu systemu grzewczego wykorzystującego energię słoneczną, na początku należy

A. przeprowadzić odpowietrzenie instalacji
B. sprawdzić stan jakości płynu solarnego
C. zrealizować dezynfekcję instalacji
D. wykonać regulację położenia kolektorów
Sprawdzenie stanu jakości płynu solarnego jest kluczowym krokiem w corocznej konserwacji instalacji grzewczej. Płyn solarny, który pełni rolę nośnika energii cieplnej, podlega różnym procesom chemicznym oraz fizycznym w trakcie eksploatacji. Regularne monitorowanie jego stanu pozwala uniknąć problemów, takich jak korozja elementów instalacji czy obniżenie efektywności energetycznej. Zgodnie z normami branżowymi, takim jak norma EN 12975, jakość płynu musi spełniać określone parametry, aby zapewnić prawidłowe funkcjonowanie systemu. Praktyczne przykłady obejmują analizę pH, zawartości inhibitorów korozji oraz innych dodatków chemicznych, które mogą wpływać na funkcjonalność instalacji. W przypadku stwierdzenia nieprawidłowości, zaleca się wymianę płynu, co zwiększy żywotność instalacji i poprawi jej efektywność energetyczną.

Pytanie 38

Na podstawie przedstawionych w tabeli danych technicznych płaskich kolektorów słonecznych wskaż, który z nich ma najwyższą sprawność optyczną.

Transmisyjność pokrywy przezroczystej0,920,900,860,90
Emisyjność absorbera0,100,900,800,15
Absorpcyjność absorbera0,950,880,900,90
ABCD
A. D.
B. A.
C. B.
D. C.
Kolektor A został wskazany jako ten z najwyższą sprawnością optyczną, co jest kluczowym wskaźnikiem jego wydajności. Sprawność optyczna mierzy zdolność kolektora do absorpcji światła słonecznego, co jest niezbędne dla efektywnego przetwarzania energii słonecznej na energię cieplną. Wartości te są określane przez iloczyn transmisyjności pokrywy przezroczystej oraz absorpcyjności absorbera. Kolektor A wykazuje najwyższe wartości tych parametrów, co można przypisać zastosowaniu nowoczesnych materiałów o wysokiej transmisyjności oraz nanoszenia powłok selektywnych na powierzchni absorbera. W praktyce, wysoka sprawność optyczna przekłada się na lepsze wyniki w kontekście efektywności energetycznej instalacji solarnych, co może prowadzić do znacznych oszczędności w kosztach eksploatacyjnych i zwiększenia zwrotu z inwestycji. Standardy branżowe, takie jak EN 12975, regulują sposób pomiaru tych parametrów, co potwierdza rzetelność przedstawionych wyników. Zrozumienie sprawności optycznej jest zatem kluczowe dla inżynierów zajmujących się projektowaniem systemów solarnych.

Pytanie 39

Jakie metody łączenia stosuje się do rur miedzianych w instalacjach solarnych?

A. złączki konektorowe
B. lutowanie miękkie
C. złączki zaciskowe
D. lutowanie twarde
Lutowanie twarde to kluczowa technika stosowana w instalacjach solarnych do łączenia rur miedzianych. Proces ten polega na użyciu wysokotemperaturowego stopu lutowniczego, który wnika w szczeliny między elementami, tworząc mocne połączenie odporniejsze na wysokie ciśnienie i temperatury. Lutowanie twarde jest preferowane w instalacjach, gdzie wymagana jest wysoka wytrzymałość i szczelność, co jest szczególnie istotne w systemach solarnych, gdzie płyny robocze muszą być transportowane bez strat. Zgodnie z normami branżowymi, lutowanie twarde powinno być przeprowadzane zgodnie z wytycznymi ASME B31.9 dotyczącymi instalacji przemysłowych, co zapewnia trwałość oraz niezawodność systemów. Przykładem zastosowania lutowania twardego jest łączenie rur w systemach solarnych, gdzie narażone są one na zmienne warunki atmosferyczne oraz różnice ciśnienia. Dodatkowo, technika ta jest również stosowana w instalacjach HVAC i chłodnictwie, co podkreśla jej uniwersalność i niezawodność w różnych aplikacjach.

Pytanie 40

Całkowita moc identycznych pomp ciepła połączonych w kaskadzie wynosi

A. jest równa mocy pojedynczej pompy
B. większa dla jednej z pomp
C. sumę mocy wszystkich poszczególnych pomp
D. połowę mocy jednej z pomp
Fajnie, że wybrałeś odpowiedź, która mówi, że moc kaskadowo połączonych pomp ciepła to suma mocy każdej z nich. To naprawdę tak działa! Każda pompa dodaje swoją moc, więc jak masz pięć pomp po 5 kW, to mamy 25 kW mocy całkowitej. Kaskadowe połączenia są super, bo pozwalają lepiej wykorzystać moc i dostosować system do potrzeb. Widziałem to w dużych instalacjach grzewczych, gdzie trzeba osiągnąć wyższą moc, a jednocześnie zmieścić się w małej przestrzeni. A jak mowa o efektywności energetycznej, to takie połączenia z odnawialnymi źródłami energii to bardzo dobry pomysł!