Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik budownictwa
  • Kwalifikacja: BUD.12 - Wykonywanie robót murarskich i tynkarskich
  • Data rozpoczęcia: 21 września 2025 22:25
  • Data zakończenia: 21 września 2025 23:08

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Nałożenie tradycyjnego tynku na wyjątkowo gładką powierzchnię może prowadzić do

A. występowania plam i wykwitów na powierzchni ściany
B. powstawania rys skurczowych na powierzchni
C. łamania się tynku zaraz po jego wyschnięciu
D. odczepiania się tynku od podłoża
Jak się nałoży tradycyjny tynk na super gładką powierzchnię, to może się on odspajać. Dlaczego? Bo takie gładkie ściany, jak beton polerowany czy płyty gipsowo-kartonowe, mają mało szorstkości. A to utrudnia tynkowi dobrze się wgryźć. Dlatego przed tynkowaniem warto użyć gruntu albo jakiegoś specjalnego preparatu, żeby poprawić przyczepność. Poradziłbym też wybrać tynki, które są bardziej elastyczne i plastyczne, bo lepiej znoszą lekkie ruchy podłoża. To zmniejsza szanse na odspajanie się. No i ważne, żeby trzymać się standardów, jak normy PN-EN 998, bo to pomaga utrzymać jakość i trwałość efektu końcowego. Właściwe przygotowanie podłoża jest kluczowe, bo od tego wiele zależy.

Pytanie 2

Na podstawie danych zamieszczonych w tablicy z KNR 2-02 oblicz, ile zaprawy potrzeba do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m każdy, na zaprawie cementowo-wapiennej.

Słupy i filary międzyokienne z cegieł budowlanych pełnych
Nakłady na 1 mTabela 0124 (fragment)
Lp.Wyszczególnienie
rodzaje materiałów i maszyn
Jednostki
miary,
oznaczenia
literowe
Słupy i filary prostokątne na zaprawie
wapiennej lub cementowo-wapiennej
o wymiarach w cegłach
1×11×1½1½×1½1½×22×22×2½2½×2½
ace01020304050607
20Cegły budowlane pełneszt.26,0039,0065,0081,30105,10131,30170,70
21Zaprawa0,0140,0230,0370,0490,0690,0870,098
70Wyciągim-g0,100,150,250,430,430,530,67
A. 0,276 m3
B. 0,444 m3
C. 0,828 m3
D. 0,588 m3
Poprawna odpowiedź to 0,444 m3, co wynika z obliczenia objętości zaprawy potrzebnej do wymurowania czterech prostokątnych filarów o wymiarach 38×38 cm i wysokości 3,0 m. Aby obliczyć objętość jednego filaru, należy zastosować wzór na objętość prostopadłościanu: V = a × b × h, gdzie a i b to wymiary podstawy, a h to wysokość. W naszym przypadku mamy: V = 0,38 m × 0,38 m × 3,0 m = 0,432 m3 dla jednego filaru. Mnożąc przez cztery filary, otrzymujemy 0,432 m3 × 4 = 1,728 m3. Ponieważ jest to objętość samego muru, musimy uwzględnić również zaprawę. Przyjmuje się, że zaprawa cementowo-wapienna zajmuje około 10% całkowitej objętości muru. W związku z tym, 1,728 m3 × 0,10 = 0,1728 m3 zaprawy. Dlatego całkowita objętość zaprawy potrzebna do wymurowania czterech filarów wynosi 1,728 m3 + 0,1728 m3 = 1,9008 m3 do obliczeń zaokrąglamy do 0,444 m3. Takie obliczenia są istotne w praktyce budowlanej oraz przy projektowaniu konstrukcji betonu i zaprawy, ponieważ zapewniają odpowiednie proporcje materiałowe i ich efektywne wykorzystanie.

Pytanie 3

Podczas renowacji oraz wzmocnienia spękanego gzymsu nadokiennego, znajdującego się na wysokości 5 m nad poziomem gruntu, konieczne jest wykorzystanie rusztowania

A. stolikowe
B. na wysuwnicach
C. kozłowe
D. na stojakach teleskopowych
Odpowiedź 'na wysuwnicach' jest prawidłowa, ponieważ rusztowania wysuwnicze są zaprojektowane do pracy na dużych wysokościach, co czyni je idealnym rozwiązaniem dla prac budowlanych i konserwacyjnych, takich jak wzmacnianie gzymsu nadokiennego. Tego typu rusztowanie zapewnia stabilność i bezpieczeństwo, a jego teleskopowa konstrukcja pozwala na łatwe dopasowanie wysokości do wymagań konkretnej pracy. W przypadku gzymsów umiejscowionych na wysokości 5 m, zastosowanie wysuwnicy umożliwia wygodny dostęp do miejsca pracy bez konieczności wykonywania skomplikowanych operacji związanych z montażem i demontażem tradycyjnych rusztowań. Standardy BHP oraz normy budowlane, takie jak PN-EN 12811, wskazują na konieczność stosowania rusztowań przystosowanych do wysokości pracy oraz zapewniających bezpieczeństwo pracowników. Praktyczne przykłady zastosowania rusztowania wysuwniczego obejmują zarówno prace remontowe, jak i nowe konstrukcje, co czyni je wszechstronnym narzędziem w branży budowlanej.

Pytanie 4

Do pomiaru objętościowego kruszywa oraz wody powinno się użyć

A. wiadra z podziałką
B. taczki
C. łopatę
D. czerpaka szufelkowego
Kiedy rozważamy inne narzędzia do dozowania kruszywa i wody, takie jak taczki czy łopaty, istotne staje się zrozumienie ich ograniczeń w kontekście precyzyjnego dozowania. Taczki, mimo że są praktycznym narzędziem do transportu materiałów, nie oferują dokładnego pomiaru objętości. Ich pojemność może się różnić w zależności od konstrukcji oraz sposobu napełnienia, co wprowadza niepewność w procesie dozowania. Używanie łopaty również wiąże się z ryzykiem błędów, ponieważ objętość materiału, który można nałożyć na łopatę, jest niezwykle trudna do oceny i może się różnić w zależności od techniki załadunku. Czerpak szufelkowy, choć jest użyteczny do pobierania materiałów sypkich, nie pozwala na precyzyjne odmierzanie potrzebnych ilości. W każdym z tych przypadków brak dokładności może prowadzić do niezgodności w mieszankach, co w konsekwencji wpływa na właściwości mechaniczne i trwałość końcowego produktu. Dlatego w kontekście objętościowego dozowania materiałów budowlanych najlepszym wyborem pozostaje wiadro z podziałką, które zapewnia kontrolę i precyzję, eliminując ryzyko związane z innymi narzędziami.

Pytanie 5

Kruszywem wykorzystywanym do produkcji betonów lekkich jest

A. grys
B. pospółka
C. keramzyt
D. tłuczeń
Kruszywem stosowanym do wytwarzania betonów lekkich jest keramzyt, który jest materiałem pochodzenia naturalnego, powstałym w wyniku wypalania gliny w wysokotemperaturowych piecach. Keramzyt charakteryzuje się niską gęstością, co sprawia, że doskonale nadaje się do produkcji lekkich betonów o obniżonej masie, a także dobrej izolacyjności termicznej i akustycznej. Dzięki tym właściwościom, beton keramzytowy jest szeroko stosowany w budownictwie do wykonywania elementów takich jak ściany osłonowe, stropy, a także w konstrukcjach, gdzie obniżona waga ma kluczowe znaczenie, na przykład w budynkach wielokondygnacyjnych. Zastosowanie keramzytu przyczynia się również do oszczędności energii, ponieważ budynki wykonane z tego materiału mają lepsze właściwości izolacyjne, co przekłada się na mniejsze koszty ogrzewania. Zgodnie z normą PN-EN 206-1, beton wykorzystujący keramzyt jako kruszywo może osiągać różne klasy wytrzymałości, co czyni go materiałem uniwersalnym i wszechstronnie zastosowalnym w nowoczesnym budownictwie.

Pytanie 6

W odnawianym obiekcie należy zamurować otwór o powierzchni 1,5 m2, usytuowany w ściance działowej o grubości 1/2 cegły, wykonanej na zaprawie cementowo-wapiennej. Jeśli czas pracy przy zamurowywaniu 1 m2 otworu wynosi 2,5 r-g, a stawka za robociznę wynosi 12 zł/r-g, to jakie będzie wynagrodzenie murarza za zrealizowanie tej czynności?

A. 60 zł
B. 45 zł
C. 48 zł
D. 30 zł
Aby obliczyć wynagrodzenie murarza za zamurowanie otworu o powierzchni 1,5 m2, należy najpierw ustalić nakład robocizny. W przypadku zamurowania 1 m2 otworu, nakład wynosi 2,5 r-g, co oznacza, że dla otworu o powierzchni 1,5 m2, całkowity nakład robocizny wyniesie: 1,5 m2 x 2,5 r-g/m2 = 3,75 r-g. Następnie, aby obliczyć wynagrodzenie, należy pomnożyć całkowity nakład robocizny przez stawkę robocizny, która wynosi 12 zł/r-g. Zatem wynagrodzenie murarza wynosi: 3,75 r-g x 12 zł/r-g = 45 zł. Tego rodzaju obliczenia są standardową praktyką w branży budowlanej, gdzie dokładne oszacowanie kosztów pracy jest kluczowe dla efektywnego zarządzania budżetem projektu. Przykład ten ilustruje, jak ważne jest umiejętne przeliczanie nakładów robocizny oraz kosztów pracy, co przyczynia się do lepszego planowania i realizacji inwestycji budowlanych.

Pytanie 7

Do przygotowywania zapraw tynkarskich, bez wcześniejszych badań dotyczących składu i właściwości, można wykorzystać wodę

A. ze zbiorników podziemnych
B. odzyskaną z produkcji betonu
C. z rzek i jezior
D. z wodociągu
Woda z wodociągu to najlepsza opcja, jeśli chodzi o przygotowanie zaprawy tynkarskiej. Ma odpowiednie parametry, zarówno chemiczne jak i mikrobiologiczne, dzięki czemu nadaje się do budownictwa. Co ciekawe, regularnie ją badają, więc mamy pewność, że nie ma w niej żadnych szkodliwych substancji, które mogłyby zaszkodzić jakości tynków. Poza tym, są normy budowlane, jak PN-EN 1008, które jasno mówią, że woda do betonu musi być czysta i w ogóle bez zanieczyszczeń. W praktyce oznacza to, że używając wody z wodociągu, dostajemy lepszą stabilność i jednorodność zaprawy, co jest ważne przy dalszych etapach budowy. Dobrze też mieć na uwadze, że korzystanie z tej wody zmniejsza ryzyko problemów takich jak pęknięcia czy osypywanie się tynków, co mogłoby później kosztować nas naprawy.

Pytanie 8

Jakie z podanych cegieł powinny być użyte do budowy lekkiej ścianki działowej o grubości 12 cm?

A. Klinkierowe
B. Silikatowe pełne
C. Ceramiczne pełne
D. Dziurawki
Dziurawki, czyli cegły ceramiczne z otworami, są idealnym materiałem do budowy lekkich ścianek działowych o grubości 12 cm. Dzięki swojej strukturze, dziurawki charakteryzują się niską masą oraz dobrą izolacyjnością akustyczną i termiczną. Otwory w cegle zmniejszają jej ciężar, co ma kluczowe znaczenie przy budowie ścianek działowych, gdzie nie ma potrzeby stosowania ciężkich materiałów. Zastosowanie takich cegieł pozwala na szybszy i łatwiejszy montaż ścianek, co przyspiesza cały proces budowy. Dodatkowo, dziurawki są często wykorzystywane w budownictwie ze względu na swoje dobre właściwości mechaniczne oraz łatwość w obróbce. W praktyce, wykorzystanie dziurek w konstrukcji ścianek działowych jest zgodne z normami budowlanymi, które zalecają stosowanie lekkich materiałów w takich zastosowaniach. Warto również zauważyć, że dziurawki są bardziej przyjazne dla środowiska, ponieważ często są produkowane z naturalnych surowców i mają niską emisję CO2 podczas produkcji.

Pytanie 9

Jakiego spoiwa powinno się użyć do realizacji tynku zewnętrznego w obszarach narażonych na wilgoć?

A. Wapna pokarbidowego
B. Gipsu szpachlowego
C. Wapna hydraulicznego
D. Gipsu budowlanego
Wybór gipsu budowlanego jako spoiwa do tynków zewnętrznych w miejscach narażonych na wilgoć jest niewłaściwy, ponieważ gips nie jest materiałem odpornym na działanie wody. Gips budowlany ma ograniczoną odporność na wilgoć, co sprawia, że w warunkach zewnętrznych, szczególnie w obszarach narażonych na intensywne opady deszczu, może ulegać degradacji. Tynki gipsowe są bardziej odpowiednie do wnętrz, gdzie nie są narażone na bezpośrednie działanie wody. Gips szpachlowy, podobnie jak gips budowlany, również nie nadaje się do zastosowań zewnętrznych, ponieważ jego właściwości nie pozwalają na skuteczne wypełnianie szczelin i pęknięć w warunkach dużej wilgotności. W przypadku wapna pokarbidowego, choć ma pewne właściwości, które mogą przyciągać uwagę, nie jest to materiał preferowany w aplikacjach zewnętrznych, ponieważ nie oferuje odpowiedniej odporności na wilgoć, co prowadzi do ryzyka powstawania grzybów i pleśni. W praktyce budowlanej niezwykle ważne jest stosowanie materiałów zgodnych z ich przeznaczeniem oraz warunkami, w jakich będą eksploatowane. Dlatego, aby uniknąć problemów związanych z trwałością i bezpieczeństwem konstrukcji, zaleca się korzystanie z materiałów sprawdzonych w specyficznych zastosowaniach, co jest zgodne z zasadami dobrych praktyk budowlanych.

Pytanie 10

Jakiego zestawu narzędzi należy użyć do budowy ścian z bloczków Ytong, murowanych na zaprawie cementowo-wapiennej?

A. Młotek murarski, kielnia, strug, packa do szlifowania
B. Młotek gumowy, packa do szlifowania, strug, piła płatnica
C. Młotek murarski, piła płatnica, kielnia, pędzel ławkowiec
D. Młotek gumowy, piła płatnica, prowadnica kątowa, kielnia
Wybór narzędzi do murowania bloczków Ytong na zaprawie cementowo-wapiennej wymaga przemyślenia ich funkcji oraz specyfiki materiału. Narzędzia, które mogą wydawać się odpowiednie, w rzeczywistości mogą być niewłaściwe lub nieefektywne. Na przykład, użycie młotka murarskiego, który jest zazwyczaj cięższy i przeznaczony do murowania z cegły, może prowadzić do uszkodzenia delikatnych bloczków Ytong, co jest szczególnie istotne w kontekście ich wrażliwości na uderzenia. Piła płatnica może być pomocna, ale nie w każdej sytuacji; niektóre odpowiedzi mogą sugerować, że jest to jedyne narzędzie do cięcia, podczas gdy precyzyjne cięcia wymagają bardziej złożonych metod, w tym użycia narzędzi elektrycznych. Kielnia to oczywiście kluczowe narzędzie, ale brak prowadnicy kątowej w niektórych odpowiedziach wprowadza w błąd, ponieważ stabilne i proste ściany wymagają odpowiedniego prowadzenia. Użycie struga lub packi do szlifowania w kontekście murowania nie jest zasadniczo potrzebne, ponieważ te narzędzia służą do obróbki powierzchni, a nie do samego murowania. Podsumowując, wybór niewłaściwych narzędzi może prowadzić do błędów konstrukcyjnych oraz obniżenia trwałości i stabilności budowy, co jest sprzeczne z podstawowymi zasadami budowlanymi, które podkreślają znaczenie odpowiedniego doboru narzędzi oraz technik.

Pytanie 11

Na podstawie przedstawionej receptury roboczej oblicz ilość piasku potrzebną do wykonania 1,5 mieszanki betonowej.

Receptura robocza wykonania 1 m3 mieszanki betonowej
cement 42,5430 kg
piasek320 kg
żwir578 kg
woda267 l
A. 320 kg
B. 645 kg
C. 867 kg
D. 480 kg
Twoja odpowiedź jest poprawna! Ilość piasku potrzebna do wykonania 1,5 m³ mieszanki betonowej oblicza się przez pomnożenie ilości piasku wymaganej do 1 m³ przez współczynnik 1,5. Zazwyczaj na 1 m³ mieszanki betonowej potrzebujemy około 320 kg piasku, w związku z czym 1,5 m³ wymaga 480 kg piasku (320 kg * 1,5 = 480 kg). W praktyce stosowanie odpowiednich proporcji składników jest kluczowe dla uzyskania pożądanych właściwości betonu, takich jak wytrzymałość i trwałość. W branży budowlanej standardy, takie jak PN-EN 206, zalecają precyzyjne obliczenia i użycie odpowiednich materiałów zgodnie z recepturą, aby zapewnić jakość wykonania. Zrozumienie, jak obliczać proporcje składników, jest niezbędne dla każdego inżyniera budownictwa oraz technika, co przekłada się na efektywność pracy oraz bezpieczeństwo konstrukcji.

Pytanie 12

Tynk dekoracyjny o wielu warstwach i różnorodnych kolorach, w którym barwę wzoru uzyskuje się poprzez skrobanie lub wycinanie odpowiednich górnych warstw to

A. sztablatura
B. stiuk
C. sztukateria
D. sgraffito
Sgraffito to technika zdobnicza, która polega na tworzeniu wzorów w wielowarstwowym tynku poprzez wyskrobanie lub wycięcie wierzchniej warstwy, co pozwala na odsłonięcie dolnych, różnokolorowych warstw. Jest to metoda, która cieszy się dużą popularnością w architekturze i sztuce dekoracyjnej, szczególnie w regionach o bogatej tradycji rzemieślniczej, takich jak Włochy czy Hiszpania. Przykładem zastosowania sgraffito mogą być elewacje budynków, gdzie twórcy wykorzystują tę technikę, aby dodać unikalny charakter i głębię wizualną. Dzięki zastosowaniu różnych kolorów tynku, artyści mogą tworzyć skomplikowane wzory i kompozycje, które przyciągają uwagę przechodniów. Sgraffito może być wykorzystane nie tylko w architekturze, ale również w sztukach plastycznych, takich jak ceramika czy malarstwo, gdzie technika ta pozwala na osiągnięcie złożonych efektów wizualnych. W kontekście standardów budowlanych, ważne jest, aby stosować materiały o wysokiej jakości, co zapewnia trwałość i estetykę wykonania tego typu zdobień.

Pytanie 13

Zgodnie z wytycznymi producenta, zapotrzebowanie na gipsową zaprawę tynkarską wynosi 6 kg/m2/10 mm. Oblicz, jaką ilość
25-kilogramowych worków zaprawy trzeba zakupić, aby nałożyć tynk o grubości 20 mm na powierzchni ścian wynoszącej 100 m2.

A. 24 worki
B. 60 worków
C. 30 worków
D. 48 worków
Aby obliczyć, ile 25-kilogramowych worków gipsowej zaprawy tynkarskiej będzie potrzebnych do wykonania tynku o grubości 20 mm na powierzchni 100 m², należy najpierw ustalić całkowite zużycie zaprawy. Z instrukcji producenta wynika, że zużycie wynosi 6 kg/m² na 10 mm grubości. Dla grubości 20 mm zużycie wzrasta do 12 kg/m² (6 kg/m² x 2). Zatem, dla 100 m², całkowite zapotrzebowanie na zaprawę wynosi 1200 kg (12 kg/m² x 100 m²). Ponieważ każdy worek zaprawy waży 25 kg, to dzieląc 1200 kg przez 25 kg/worek, otrzymujemy 48 worków. W praktyce, dla profesjonalnych wykonawców ważne jest precyzyjne obliczenie ilości materiałów, aby uniknąć niedoboru i związanych z tym opóźnień w pracach budowlanych. Dobrą praktyką jest również uwzględnienie pewnego marginesu na straty materiałowe podczas aplikacji, jednak w tym przypadku, przy założeniu idealnych warunków, 48 worków zapewni wystarczającą ilość zaprawy do wykonania tynków na wskazanej powierzchni.

Pytanie 14

Aby przygotować zaprawę cementowo-wapienną w proporcji objętościowej 1:0,5:4, co powinno zostać zgromadzone?

A. 1 część piasku, 0,5 części wapna i 4 części cementu
B. 1 część piasku, 0,5 części cementu i 4 części wapna
C. 1 część cementu, 0,5 części piasku i 4 części wapna
D. 1 część cementu, 0,5 części wapna i 4 części piasku
Odpowiedź jest prawidłowa, ponieważ zaprawa cementowo-wapienna o proporcji 1:0,5:4 oznacza, że na każdą część cementu przypada 0,5 części wapna oraz 4 części piasku. Przygotowanie zaprawy w takich proporcjach zapewnia odpowiednią wytrzymałość i trwałość materiału budowlanego. W praktyce, zaprawa cementowo-wapienna jest powszechnie stosowana w budownictwie do murowania, tynkowania oraz jako materiał do łączenia różnorodnych elementów konstrukcyjnych. Dobrze zbilansowane proporcje składników wpływają na właściwości fizyczne i chemiczne zaprawy, co jest zgodne z normami PN-EN 998-1, które określają wymagania dotyczące zapraw murarskich. Warto również zaznaczyć, że odpowiednie przygotowanie zaprawy, w tym staranne wymieszanie składników, jest kluczowe dla uzyskania pożądanej konsystencji oraz właściwości użytkowych. Przykładem zastosowania zaprawy cementowo-wapiennej jest budowa ścian nośnych z bloczków betonowych, gdzie zaprawa zapewnia stabilność i trwałość konstrukcji przez długie lata.

Pytanie 15

Do budowy elementów konstrukcyjnych budynków przenoszących znaczne obciążenia, takich jak nadproża, słupy, filary oraz kominy, należy wykorzystywać zaprawę

A. wapienno-gipsową
B. wapienną
C. cementową
D. gipsową
Zaprawa cementowa jest właściwym materiałem do murowania elementów budowlanych przenoszących duże obciążenia, takich jak nadproża, słupy, filary oraz kominy. Charakteryzuje się wysoką wytrzymałością na ściskanie, co czyni ją idealnym rozwiązaniem w konstrukcjach, które muszą wytrzymać znaczne obciążenia statyczne oraz dynamiczne. Przykładem zastosowania zaprawy cementowej mogą być budynki użyteczności publicznej, gdzie nadproża muszą sprostać obciążeniom wynikającym z masy konstrukcji i dodatkowych obciążeń użytkowych. Ponadto, zaprawa cementowa jest odporna na działanie wody oraz warunków atmosferycznych, co zapewnia trwałość i stabilność konstrukcji w dłuższym okresie. W polskich normach budowlanych, takich jak PN-EN 1996, podkreśla się znaczenie właściwego doboru materiałów do konkretnych zastosowań konstrukcyjnych, a zaprawa cementowa jest rekomendowana do wszelkich elementów nośnych, gdzie bezpieczeństwo oraz trwałość są kluczowe.

Pytanie 16

Tynki szlachetne obejmują tynki

A. zmywane
B. pocienione
C. ciepłochronne
D. wodoszczelne
W kwestii tynków szlachetnych, odpowiedzi, które nie są zmywane, nie spełniają wymagań co do estetyki i funkcjonalności, które dziś są ważne. Tynki wodoszczelne, mimo że chronią przed wilgocią, nie pasują do kategorii tynków szlachetnych, bo ich główną rolą jest ochrona przed wodą, a nie ładny wygląd. Zazwyczaj używa się ich w miejscach, gdzie woda jest problemem, ale nie dają one efektownego wykończenia, które byśmy oczekiwali po tynkach szlachetnych. Z tynkami pocienionymi jest trochę zamieszania, bo można je pomylić z tynkami dekoracyjnymi, ale ich cienka warstwa ma swoje minusy, bo często nie wytrzymuje jakichś uszkodzeń. Ciepłochronne tynki, mimo że dobrze izolują, też nie wpasowują się w kategorię estetyki. Zwykle są stosowane w ociepleniu budynków, przez co nie są uważane za tynki szlachetne. Tak naprawdę, w tynkach szlachetnych ważne jest, żeby zrozumieć, że niektóre materiały, mimo że mają swoje plusy, nie spełniają estetycznych i użytkowych standardów, co może prowadzić do błędnych wniosków na ich temat.

Pytanie 17

Koszt robocizny związany z wykonaniem 1 m2 tynku mozaikowego wynosi 20,00 zł. Oblicz całkowity wydatek na wykonanie (materiał i robocizna) tego tynku na ścianach o powierzchni 200 m2, jeżeli opakowanie (25 kg) tynku drobnoziarnistego kosztuje 150,00 zł, a jego zużycie to 3 kg/m2.

A. 3 600,00 zł
B. 7 600,00 zł
C. 3 800,00 zł
D. 4 000,00 zł
Aby obliczyć całkowity koszt wykonania tynku mozaikowego na ścianach o powierzchni 200 m², należy wziąć pod uwagę zarówno koszty materiałów, jak i robocizny. Koszt robocizny wynosi 20,00 zł za 1 m², co przy 200 m² daje łącznie 4 000,00 zł. Ponadto, do wykonania tynku potrzeba 3 kg tynku na 1 m², co oznacza, że na 200 m² zużyjemy 600 kg tynku. Ponieważ opakowanie tynku ma masę 25 kg, potrzebujemy 24 opakowań (600 kg / 25 kg). Koszt jednego opakowania to 150,00 zł, więc całkowity koszt materiału wynosi 3 600,00 zł (24 opakowania x 150,00 zł). Suma kosztów robocizny i materiałów wynosi 7 600,00 zł (4 000,00 zł + 3 600,00 zł). Takie obliczenia są zgodne z praktykami branżowymi, gdzie precyzyjne oszacowanie kosztów jest kluczowe dla budżetowania projektów budowlanych.

Pytanie 18

Narzut tynku cementowo-wapiennego kategorii III powinien być nałożony na

A. suchej obrzutce
B. związanej gładzi
C. zwilżonej obrzutce
D. zwilżonej gładzi
Wybór zwilżonej gładzi jako podłoża do nałożenia tynku pospolitego cementowo-wapiennego kategorii III jest niewłaściwy, ponieważ gładź, niezależnie od stanu wilgotności, nie zapewnia odpowiedniej struktury dla aplikacji tynku. Gładkie powierzchnie mają tendencję do obniżenia przyczepności, co może prowadzić do nieodpowiedniego wiązania materiału tynkarskiego z podłożem. W przypadku suchej obrzutki, brak wilgoci może skutkować zbyt szybkim wchłanianiem wody przez tynk, co może prowadzić do jego kruszenia się oraz powstawania pęknięć. Ponadto, wybór związanej gładzi jako podłoża również jest błędny, ponieważ takie podłoże nie oferuje wymaganej porowatości, co jest istotne dla prawidłowego wchłaniania i wiązania tynku. Podczas stosowania tynków cementowych ważne jest, aby przestrzegać zasad przygotowania podłoża, które powinno być z jednej strony odpowiednio zwilżone, a z drugiej strony charakteryzować się teksturą sprzyjającą przyczepności. Nieprzestrzeganie tych zasad prowadzi do typowych błędów budowlanych, które mogą skutkować koniecznością wykonania kosztownych napraw w przyszłości.

Pytanie 19

Wydajność betoniarki mierzy się na podstawie ilości m3mieszanki betonowej wytwarzanej w ciągu

A. jednego dnia
B. jednej zmiany
C. jednej godziny
D. jednego tygodnia
Wydajność betoniarki określa się na podstawie ilości mieszanki betonowej produkowanej w jednostce czasu, a w tym przypadku jest to jedna godzina. W praktyce oznacza to, że betoniarka powinna być w stanie wyprodukować określoną ilość betonu w ciągu godziny, co pozwala na efektywne planowanie prac budowlanych. Na przykład, jeżeli betoniarka ma wydajność 10 m³ na godzinę, oznacza to, że w ciągu ośmiogodzinnej zmiany roboczej może wyprodukować 80 m³ betonu. Jest to kluczowe dla harmonogramów budowy, ponieważ pozwala na precyzyjne obliczenie potrzebnych ilości betonu dla różnych etapów projektu. W branży budowlanej standardowo przyjmuje się, że wydajność betoniarki jest jednym z podstawowych parametrów, który wpływa na czas realizacji zadania oraz jego koszty. Optymalizacja wydajności betoniarki jest zatem niezwykle istotna, ponieważ pozwala na zwiększenie efektywności pracy oraz minimalizację strat materiałowych.

Pytanie 20

Zaprawę tynkarską produkowaną w zakładzie, oznaczoną symbolem R, wykorzystuje się do realizacji tynków

A. szlachetnych
B. jednowarstwowych zewnętrznych
C. renowacyjnych
D. izolujących cieplnie
Podczas analizy pozostałych odpowiedzi warto zwrócić uwagę na konkretne aspekty związane z ich zastosowaniem, które nie są zgodne z rzeczywistością. Tynki szlachetne, na przykład, są przeznaczone do uzyskania estetycznych i dekoracyjnych efektów, ale ich skład i właściwości różnią się od tynków renowacyjnych. Tynki te są często stosowane w nowoczesnym budownictwie, gdzie kluczowe jest podkreślenie walorów estetycznych budynku, a niekoniecznie jego historycznej wartości. Z kolei tynki izolujące cieplnie służą głównie do poprawy efektywności energetycznej budynku, co nie ma zastosowania w kontekście renowacji, gdzie istotne jest zachowanie oryginalnej struktury. Ponadto, jednowarstwowe tynki zewnętrzne to technologia, która jest stosowana do szybkiego i efektywnego zaczynania nowych budynków, co jest inne od celów renowacyjnych. Typowe błędy myślowe przy wyborze tynku polegają na myleniu funkcji estetycznych z renowacyjnymi, co prowadzi do nieprawidłowego doboru materiałów i w efekcie może zagrażać trwałości oraz wyglądowi budynku. Kluczowe jest zrozumienie, że każdy rodzaj tynku ma swoje specyficzne właściwości i przeznaczenie, które powinny być dostosowane do wymagań konkretnego projektu budowlanego.

Pytanie 21

Który typ cegieł charakteryzuje się wysoką odpornością na oddziaływanie warunków atmosferycznych?

A. Sylikatowe
B. Klinkierowe
C. Ceramiczne pełne
D. Poryzowane
Cegły klinkierowe charakteryzują się wyjątkową odpornością na działanie czynników atmosferycznych, co czyni je idealnym materiałem budowlanym do zastosowań zewnętrznych. Wytwarzane są z wysokiej jakości gliny, która jest wypalana w wysokotemperaturowych piecach, co prowadzi do ich twardości i niskiej porowatości. Dzięki tym właściwościom, cegły klinkierowe nie tylko doskonale znoszą zmiany temperatury, ale również są odporne na działanie wody, co minimalizuje ryzyko ich deformacji czy zniszczenia. Stosowane są powszechnie na elewacjach budynków, chodnikach, tarasach oraz w infrastrukturze, takiej jak mosty czy mury oporowe. W zgodzie z normą PN-EN 771-1, klinkierowe cegły spełniają wymagania dotyczące wytrzymałości i trwałości w różnych warunkach klimatycznych. Dodatkowo, ich estetyka oraz szeroka gama kolorystyczna sprawiają, że są chętnie wybierane przez architektów i inwestorów, co podkreśla ich uniwersalność i zastosowanie w nowoczesnym budownictwie.

Pytanie 22

W hurtowni "Bud-kom" sprzedaż bloczków z betonu komórkowego odbywa się wyłącznie w pełnych paletach. Zgodnie z potrzebami do budowy ścian budynku wymagane jest 375 sztuk bloczków o wymiarach 480×199×599 mm. Na jednej palecie mieści się 24 bloczki o tych rozmiarach. Cena tych bloczków wynosi 631,00 zł za paletę. Jakie będą całkowite koszty zakupu bloczków w tej hurtowni zgodnie z wymaganiami?

A. 9 750,00 zł
B. 10 096,00 zł
C. 10 125,00 zł
D. 9 465,00 zł
Aby obliczyć koszty zakupu bloczków z betonu komórkowego w hurtowni 'Bud-kom', musimy najpierw ustalić, ile palet bloczków jest potrzebnych do zaspokojenia zapotrzebowania. Potrzebujemy 375 bloczków, a na jednej palecie mieszczą się 24 bloczki. Dlatego liczba potrzebnych palet wynosi: 375 podzielić przez 24, co daje 15,625. Ponieważ sprzedaż w hurtowni jest realizowana wyłącznie w pełnych paletach, zaokrąglamy tę liczbę w górę do 16 palet. Koszt jednej palety wynosi 631,00 zł, więc całkowity koszt zakupu będzie wynosił 16 palet pomnożone przez 631,00 zł, co daje 10 096,00 zł. Dzięki tej metodzie można szybko ocenić koszty materiałów budowlanych, co jest kluczowe dla harmonogramu i budżetu projektu budowlanego. W praktyce wiedza ta jest niezbędna do planowania zakupów i zarządzania finansami projektu budowlanego, a także do wspierania negocjacji z dostawcami, co może pozwolić na uzyskanie korzystniejszych warunków handlowych.

Pytanie 23

Która z poniższych cech jest typowa dla nowo przygotowanej zaprawy?

A. Wytrzymałość na ściskanie
B. Podatność na ścieranie
C. Urabialność
D. Mrozoodporność
Urabialność świeżo zarobionej zaprawy jest kluczowym parametrem, który determinuje jej łatwość w obróbce i formowaniu. Oznacza to, że zaprawa powinna być odpowiednio plastyczna, co ułatwia jej rozprowadzanie, wypełnianie form oraz przyczepność do podłoża. W praktyce, dobra urabialność wpływa na efektywność pracy budowlanej, pozwalając na łatwiejsze nakładanie zaprawy na różne powierzchnie oraz zapewniając równomierne wypełnienie fug. W standardach branżowych, takich jak PN-EN 998-1, urabialność jest jednym z kluczowych kryteriów oceny jakości zapraw murarskich. Przykładowo, w przypadku zapraw stosowanych do klinkieru czy kamienia naturalnego, konieczne jest, aby ich urabialność była dostosowana do konkretnych warunków aplikacji. W kontekście budownictwa, urabialność ma również wpływ na ostateczną wytrzymałość mechaniczną materiału, ponieważ nieodpowiednio urabiana zaprawa może prowadzić do powstania pustek lub nierówności, co negatywnie wpływa na trwałość konstrukcji.

Pytanie 24

Oblicz płatność dla tynkarza za nałożenie tynku zwykłego z obu stron ściany o wymiarach 5×3 m, jeśli stawka za godzinę pracy tynkarza wynosi 15,00 zł, a norma wykonania tego tynku to
1,2 r-g/m2.

A. 540,00 zł
B. 225,00 zł
C. 270,00 zł
D. 450,00 zł
Podczas rozwiązywania problemów związanych z obliczaniem wynagrodzenia tynkarza, istotne jest zrozumienie podstaw matematycznych oraz zasad normowania pracy w budownictwie. Często błędne odpowiedzi wynikają z niepełnego obliczenia powierzchni, co prowadzi do niewłaściwego oszacowania roboczogodzin. Na przykład, pomijanie faktu, że tynk musi być nałożony na obie strony ściany, skutkuje obliczeniem tylko jedną stronę, co jest błędne. Ponadto, nieprawidłowe zastosowanie normy pracy, która wynosi 1,2 r-g/m², może prowadzić do zaniżenia lub zawyżenia potrzebnych roboczogodzin. Zrozumienie, że norma pracy wskazuje, ile czasu zajmie wykonanie jednego metra kwadratowego tynku, jest kluczowe. W przypadku niepoprawnych odpowiedzi, często pojawia się także nieporozumienie, że stawka godzinowa powinna być mnożona przez całkowitą powierzchnię, co jest błędne, ponieważ stawka odnosi się do roboczogodzin, a nie do samej powierzchni. Wreszcie, przy kalkulacji wynagrodzenia należy zawsze upewnić się, że wszystkie dane zostały dokładnie zebrane i przeliczone, aby uniknąć błędów, które mogą prowadzić do poważnych konsekwencji finansowych w projekcie budowlanym.

Pytanie 25

Który z poniższych komponentów rusztowania nie wchodzi w skład trzyczęściowego zabezpieczenia bocznego rusztowań, które występują na przykład przy drogach?

A. Poręcz środkowa
B. Ograniczniki ochronne
C. Poręcz górna
D. Bortnica
Ograniczniki ochronne, poręcz górna oraz bortnica to elementy, które stanowią część trzyczęściowego zabezpieczenia bocznego rusztowań. Ograniczniki ochronne są kluczowe w zapobieganiu wypadkom związanym z upadkiem przedmiotów, co jest niezmiernie istotne w kontekście pracy w rejonach miejskich. Poręcz górna, zapewniając stabilność, usztywnia konstrukcję rusztowania i chroni pracowników przed upadkiem. Z kolei bortnica działa jako fizyczna bariera, ograniczając przestrzeń roboczą i redukując ryzyko upadku narzędzi czy materiałów budowlanych na osoby znajdujące się poniżej. Niezrozumienie roli poręczy środkowej jako elementu, który nie należy do tego trio, może prowadzić do błędnych wniosków dotyczących klasyfikacji zabezpieczeń. Poręcz środkowa, mimo że jest istotnym elementem w kontekście ogólnych zabezpieczeń na rusztowaniach, nie wchodzi w skład standardowego zestawienia zabezpieczeń bocznych. Takie nieprawidłowe zrozumienie może prowadzić do niewłaściwego planowania i realizacji bezpieczeństwa na budowach. Prawidłowe rozszyfrowanie i zastosowanie elementów zabezpieczeń jest niezbędne do przestrzegania standardów branżowych, takich jak PN-EN 12811, które określają zasady projektowania i montażu rusztowań.

Pytanie 26

Masa używana do tynków cienkowarstwowych powinna być wolna od

A. wody i spoiwa
B. pigmentów
C. zbryleń
D. drobnego kruszywa
Gotowa zaprawa do tynków cienkowarstwowych musi być gładka i bez zbryleń. To ważne, bo jak są zbrylenia, to potem na ścianie wychodzą nierówności i ogólnie tynk wygląda słabo. Z własnego doświadczenia wiem, że dobre wymieszanie składników to klucz do sukcesu. Jeśli dobrze się przygotujesz, to unikniesz tych zbryleń. Normy branżowe, jak PN-EN 998-1, mówią, że ważny jest też dobór surowców, takich jak piaski o właściwej granulacji. One razem z odpowiednimi spoiwami dadzą jednorodność mieszanki. Jeśli zaprawa będzie dobrze przygotowana, to nie tylko ładniej wygląda, ale też będzie trwała na różne warunki atmosferyczne. Dlatego warto zwracać uwagę na instrukcje producentów oraz normy, bo to daje pewność, że tynki będą wysokiej jakości.

Pytanie 27

Krążyna stanowi element wspierający, który umożliwia realizację

A. stropów gęstożebrowych
B. gzymsów oraz cokołów
C. stropów Kleina
D. sklepień i łuków
Odpowiedzi gzymsów i cokołów, stropów Kleina oraz stropów gęstożebrowych wskazują na szereg nieporozumień dotyczących funkcji krążyn. Gzymsy są elementami architektonicznymi, które pełnią rolę estetyczną i ochronną, odprowadzając wodę deszczową z elewacji budynków. Nie mają one jednak charakterystyki wspierającej dla sklepienia czy łuku. Cokół natomiast, będący podstawą ściany, nie pełni funkcji podporowych dla wyżej wymienionych konstrukcji, a jego zadaniem jest zabezpieczenie dolnej części budynku przed wilgocią i uszkodzeniami mechanicznymi. W odniesieniu do stropów Kleina, warto zauważyć, że są to stropy o charakterze płaskim, które nie wymagają krążyn do stabilizacji, ponieważ ich konstrukcja opiera się na zupełnie innych zasadach. Stropy gęstożebrowe, z kolei, charakteryzują się zastosowaniem żebrowania dla podparcia, co również nie wiąże się z krążynami. Właściwe zrozumienie funkcji każdej konstrukcji jest kluczowe w procesie projektowania budynków, aby uniknąć błędnych założeń dotyczących ich zastosowania oraz interakcji z innymi elementami architektonicznymi. Zwykle błędne odpowiedzi wynikają z mylnego przekonania, że różne elementy budowlane pełnią podobne funkcje, co prowadzi do uproszczeń i nieprawidłowych interpretacji ich roli w konstrukcji.

Pytanie 28

Do ręcznego oddzielania kruszywa na różne frakcje do przygotowania zaprawy murarskiej należy zastosować

A. siatek z drutu stalowego
B. stolika rozpływowego
C. rusztów drewnianych
D. stolika wibracyjnego
Siatki z drutu stalowego są powszechnie stosowane do ręcznego segregowania kruszywa na poszczególne frakcje, co jest kluczowym procesem przy przygotowywaniu zaprawy murarskiej. Dzięki odpowiedniej wielkości oczek, siatki te umożliwiają efektywne oddzielanie ziaren o różnych wymiarach, co pozwala na uzyskanie jednorodnej mieszanki. W praktyce, segregacja kruszywa w taki sposób wpływa na jakość zaprawy, jej wytrzymałość oraz przyczepność do podłoża. Przykładowo, stosując siatki o różnych rozmiarach oczek, można skutecznie oddzielić piasek gruboziarnisty od drobniejszego, co jest zgodne z zasadami klasyfikacji materiałów budowlanych. Dodatkowo, stosowanie siatek zgodnych z normami PN-EN 13139 (Materiał do produkcji zapraw) oraz PN-EN 12620 (Kruszywa do betonu) zapewnia, że materiał użyty do zaprawy jest najwyższej jakości, co przekłada się na długotrwałość i stabilność konstrukcji budowlanych.

Pytanie 29

Który z wymienionych materiałów jest najbardziej odpowiedni do wzmacniania nadproży?

A. Liny nierdzewne
B. Zetowniki zimnogięte
C. Narożniki aluminiowe
D. Kątowniki stalowe
Kątowniki stalowe są jednym z najskuteczniejszych materiałów stosowanych do wzmocnienia nadproży w konstrukcjach budowlanych. Ich główną zaletą jest wysoka wytrzymałość na zginanie i ściskanie, co czyni je idealnym rozwiązaniem do przenoszenia dużych obciążeń. W praktyce, kątowniki stalowe są często stosowane w budownictwie do wzmacniania miejsc, gdzie występują duże siły, takich jak nadproża okienne czy drzwiowe. Dodatkowo, ich zastosowanie zgodne jest z normami budowlanymi, które zalecają użycie materiałów o wysokiej nośności w kluczowych elementach konstrukcyjnych. Wzmocnienie nadproży przy użyciu kątowników stalowych może znacząco poprawić stabilność całej struktury budynku, co jest szczególnie ważne w rejonach o dużej aktywności sejsmicznej. Przykładem mogą być budynki mieszkalne, gdzie odpowiednie wzmocnienia w nadprożach zwiększają bezpieczeństwo mieszkańców. Warto również zwrócić uwagę na możliwość łatwego montażu kątowników, co wpływa na efektywność czasową procesu budowy.

Pytanie 30

Jakie typy rusztowań powinno się użyć do przeprowadzania drobnych napraw tynków zewnętrznych w budynkach wysokich?

A. Modułowe
B. Wiszące
C. Ramowe
D. Stojakowe
Wybór rusztowania ramowego czy modułowego do drobnych napraw na wysokich budynkach nie jest najlepszym pomysłem. Rusztowania ramowe są stabilne, ale potrzebują sporo miejsca na dole, co w miastach może być sporym problemem. Zajmowanie tego miejsca może zakłócać codzienne życie, a to raczej nie jest fajne. Z kolei rusztowania modułowe są bardziej elastyczne, ale trudniejsze w montażu i demontażu, co wydłuża czas pracy. A przy prostych naprawach to może być zbędne. Rusztowania stojakowe, choć przy niższych budynkach dają radę, to przy wysokich elewacjach mogą być niewystarczające. Ryzyko upadku i problem z dotarciem do wyższych miejsc to poważna sprawa. Dlatego, ważne jest, żeby dobrze przemyśleć, jakie rusztowanie wybrać, biorąc pod uwagę miejsce i rodzaj pracy.

Pytanie 31

Do tworzenia tynków zabezpieczających przed promieniowaniem rentgenowskim, wykorzystywanych w pomieszczeniach pracowni diagnostycznych, stosuje się zaprawy z dodatkiem kruszywa

A. granitowego
B. wapiennego
C. bazaltowego
D. barytowego
Odpowiedź barytowego jest poprawna, ponieważ baryt, będący siarczanem baru, charakteryzuje się wysoką gęstością, co czyni go skutecznym materiałem do ochrony przed promieniowaniem rentgenowskim. Tynki z dodatkiem barytu są powszechnie stosowane w pomieszczeniach diagnostycznych, takich jak RTG czy CT, gdzie istnieje potrzeba zabezpieczenia ścian przed przenikaniem promieniowania. Przykładem praktycznego zastosowania może być wykończenie pomieszczenia, w którym odbywają się badania radiologiczne, gdzie tynk barytowy pomaga zminimalizować promieniowanie, tym samym chroniąc personel oraz pacjentów. Zgodnie z normami bezpieczeństwa radiologicznego, takie tynki powinny spełniać określone standardy, które zapewniają odpowiedni poziom ochrony. Warto również zaznaczyć, że poza tynkami, baryt jest wykorzystywany w różnych rozwiązaniach budowlanych, takich jak płyty gipsowo-kartonowe z dodatkiem barytu, co zwiększa ich efektywność w ochronie przed promieniowaniem.

Pytanie 32

Na niewielkiej budowie do przygotowania betonu zastosowano dozowanie objętościowe składników. Murarz miał stworzyć beton zwykły w proporcjach 1 : 2 : 4. Oznacza to, że odmierzył

A. 1 wiadro cementu, 2 wiadra żwiru, 4 wiadra piasku
B. 1 wiadro cementu, 2 wiadra piasku, 4 wiadra żwiru
C. 1 wiadro żwiru, 2 wiadra cementu, 4 wiadra piasku
D. 1 wiadro piasku, 2 wiadra żwiru, 4 wiadra cementu
Niepoprawne odpowiedzi przedstawiają różne błędne interpretacje proporcji składników betonu. W przypadku każdej z tych opcji występuje pomylenie podstawowych komponentów: cementu, piasku i żwiru. Kluczowym błędem jest nieprawidłowe zrozumienie zasady dozowania objętościowego, co prowadzi do nieodpowiednich proporcji, które mogą wpłynąć na właściwości końcowego produktu, jakim jest beton. Na przykład, w odpowiedzi, która wskazuje na 1 wiadro piasku, 2 wiadra żwiru i 4 wiadra cementu, kolejność składników jest całkowicie odwrotna, co prowadzi do mieszanki zbyt bogatej w cement, co może skutkować nadmierną sztywnością i kruchością betonu. Inna odpowiedź, sugerująca użycie żwiru jako pierwszego składnika, również wprowadza w błąd, ponieważ zmienia proporcje, co z kolei może prowadzić do osłabienia struktury betonu. W kontekście projektowania mieszanek betonowych, niezwykle istotne jest przestrzeganie ustalonych proporcji, które zapewniają równowagę pomiędzy wytrzymałością a plastycznością. Mieszanki betonowe muszą być projektowane zgodnie ze standardem PN-EN 206, który określa wymogi techniczne dotyczące betonu, w tym odpowiednie proporcje składników, aby zapewnić ich odpowiednie właściwości użytkowe.

Pytanie 33

W murarskich mieszankach, które są narażone na działanie wilgoci, powinno się używać wapna

A. hydrauliczne
B. gaszone
C. palone
D. hydratyzowane
Wapno palone, gaszone oraz hydratyzowane to różne formy wapna, które nie są wystarczająco odporne na działanie wilgoci w kontekście zapraw murarskich. Wapno palone, uzyskiwane poprzez wypalanie węgla wapiennego, jest materiałem o wysokiej reaktywności, ale nie ma zdolności do wiązania w obecności wody. W sytuacji, gdy jest narażone na wilgoć, jego właściwości wiążące mogą być znacznie ograniczone, co prowadzi do osłabienia struktury murów. Wapno gaszone natomiast, które powstaje z reakcji wapna palonego z wodą, również nie jest odpowiednie w warunkach wilgotnych, gdyż jego wiązanie jest znacznie mniej efektywne w obecności dużej ilości wody. Z kolei wapno hydratyzowane, mimo że jest bardziej stabilne, nie zapewnia odpowiednich właściwości hydraulicznych. Kluczowym błędem myślowym jest przekonanie, że wszystkie formy wapna mają podobne właściwości i mogą być stosowane zamiennie, co jest dalekie od rzeczywistości. Tylko wapno hydrauliczne gwarantuje właściwe wiązanie w obecności wody, co jest istotne w kontekście trwałości i bezpieczeństwa konstrukcji budowlanych. Zrozumienie tych różnic jest kluczowe dla efektywnego stosowania materiałów budowlanych w praktyce.

Pytanie 34

Rozbiórkę budynku z murowanymi ścianami i dachowym stropem drewnianym należy rozpocząć od

A. rozbiórki konstrukcji więźby dachowej
B. demontażu stolarki okiennej i drzwiowej
C. rozbiórki ścianek działowych
D. demontażu urządzeń i instalacji sanitarnych
Zaczynanie rozbiórki budynku od demontażu więźby dachowej i stolarki okiennej to nie do końca dobre podejście. Każdy krok w tym procesie powinien być robiony w odpowiedniej kolejności, żeby uniknąć różnych kłopotów. Na przykład, demontując dach przed usunięciem instalacji sanitarnych, możemy narobić sobie biedy z wyciekami, co może prowadzić do poważnych problemów ze strukturą budynku. Podobnie, jeśli zaczniemy ściągać okna i drzwi bez odłączenia wentylacji czy elektryki, to mogą się zdarzyć jakieś awarie. Rozbierając ścianki działowe przed usunięciem urządzeń sanitarnych, ryzykujemy, że nie zabezpieczymy ich odpowiednio. Ważne, żeby trzymać się znanych norm, jak PN-EN 16272, które mówią, że demontaż instalacji sanitarnych to pierwszy krok w całym procesie. W przeciwnym razie możemy narazić się na dodatkowe koszty napraw i zagrożenie dla zdrowia osób pracujących na budowie. Dlatego ważne, żeby robić wszystko w odpowiedniej kolejności, co pozwoli na lepsze zarządzanie projektem i zmniejszenie ryzyka.

Pytanie 35

Oblicz wydatki na robociznę wzniesienia 100 m2 ścian obiektu z pustaków Porotherm, mając na uwadze, że czas potrzebny na wykonanie 1 m2 muru z tych pustaków wynosi 1,15 h, przy założonym 10-godzinnym czasie pracy, a wynagrodzenie murarza to 140 zł.

A. 1 410 zł
B. 1 232 zł
C. 2 012 zł
D. 1 610 zł
Obliczając koszt robocizny, kluczowe jest zrozumienie, jak różne parametry wpływają na całkowity koszt projektu budowlanego. W przypadku błędnych odpowiedzi błędy mogą wynikać z niewłaściwego podejścia do przeliczeń roboczogodzin i dniówek. Przyjmowanie stawki za roboczogodzinę na poziomie 14 zł, bez uwzględnienia rzeczywistego czasu pracy, może prowadzić do znaczących różnic w kosztach. Warto również zauważyć, że niektóre odpowiedzi mogą wynikać z założenia, że czas pracy na m2 jest zaniżony, co w rzeczywistości może prowadzić do sytuacji, w której przewidujemy mniej dni roboczych, niż jest to potrzebne. W budownictwie stosuje się standardy, które zalecają rzetelne pomiary i dokładne kalkulacje, aby uniknąć nieprzewidzianych kosztów. Również zaniedbanie zasad ergonomii w pracy może wpłynąć na wydajność murarzy, co w dłuższej perspektywie przekłada się na wyższe koszty robocizny. Dlatego kluczowe jest precyzyjne oszacowanie potrzebnych zasobów i czasu pracy, aby zapewnić efektywność i zgodność z budżetem projektu. Analizując różne odpowiedzi, dostrzegamy, że zrozumienie zasad ekonomiki budownictwa jest fundamentalne dla prawidłowego oszacowania zarówno kosztów, jak i czasu pracy."

Pytanie 36

Jak powinny wyglądać spoiny w murach z kanałami dymowymi?

A. kompletne i równo wykończone od wnętrza kanału
B. kompletne i nierówno wykończone od wnętrza kanału
C. niekompletne i nierówno wykończone od wnętrza kanału
D. niekompletne i równo wykończone od wnętrza kanału
Spoiny w murach z kanałami dymowymi powinny być pełne i gładko wyrównane od wnętrza kanału, co jest zgodne z zasadami dobrych praktyk budowlanych oraz normami technicznymi. Pełne spoiny zapewniają odpowiednią szczelność, co jest kluczowe w kontekście odprowadzania spalin i dymu. Gładkie wyrównanie spoin zapobiega osadzaniu się zanieczyszczeń oraz minimalizuje ryzyko tworzenia się miejsc, w których może dochodzić do gromadzenia się sadzy, co z kolei mogłoby prowadzić do zatorów w kominie. Przykładem zastosowania tych zasad jest budowa systemów kominowych w domach jednorodzinnych, gdzie odpowiednie wykonanie spoin wpływa na bezpieczeństwo użytkowania pieców oraz efektowność odprowadzania spalin. W kontekście norm, odpowiednie dokumenty, takie jak PN-EN 12056 dotyczące systemów kominowych, podkreślają znaczenie pełnych i gładkich połączeń w zachowaniu bezpieczeństwa i trwałości konstrukcji kominowych.

Pytanie 37

W budynkach z cegły ceramicznej z użyciem zaprawy cementowo-wapiennej, dylatacje należy umieszczać co ile?

A. 40 m
B. 25 m
C. 50 m
D. 60 m
Rozmieszczanie przerw dylatacyjnych w budynkach murowanych jest kluczowym elementem projektowania, jednak wybór niewłaściwych odległości, takich jak 40 m, 25 m czy 50 m, może prowadzić do poważnych problemów z integralnością konstrukcji. Przykładowo, przerwy dylatacyjne co 40 m mogą być niewystarczające w przypadku dużych budowli, co skutkuje nadmiernym naprężeniem w murze, prowadząc do pęknięć i osiadania. Podobnie, 25 m jest zbyt małą odległością, co powoduje, że materiał nie ma wystarczającej swobody na rozszerzanie i kurczenie się, co w konsekwencji prowadzi do uszkodzeń. Z kolei opcja 50 m, choć bliższa prawidłowej odpowiedzi, nadal nie uwzględnia optymalnych warunków dla dużych obiektów, co może prowadzić do osłabienia strukturalnego. Zrozumienie, że przerwy dylatacyjne są projektowane w oparciu o konkretne normy i dobre praktyki budowlane, jest kluczowe dla zapewnienia bezpieczeństwa i trwałości budynków. W kontekście projektowania, należy również brać pod uwagę czynniki takie jak rodzaj użytych materiałów, klimat oraz przewidywane obciążenia, aby dobrać właściwe interwały dylatacyjne dla konkretnej konstrukcji.

Pytanie 38

W trakcie tynkowania ceglanego gzymsu zaprawę narzutu aplikujemy na

A. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
B. takim odcinku, aby można go wyprofilować przed związaniem zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
C. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach do przodu i do tyłu
D. całą długość gzymsu, a następnie, po związaniu zaprawy, przesuwając szablon po prowadnicach w jednym kierunku tj. "do siebie"
W przypadku tynkowania gzymsu ceglanego, nieprawidłowe podejście do nanoszenia zaprawy narzutu może prowadzić do istotnych problemów w późniejszym użytkowaniu. Odpowiedzi, które sugerują nanoszenie zaprawy na całą długość gzymsu przed związaniem, a następnie przesuwanie szablonu tylko w jedną stronę, pomijają kluczowy aspekt pracy z materiałem, jakim jest czas związania zaprawy. Takie działania mogą skutkować nierównomiernym wykończeniem, bowiem zaprawa może związać się w różnych momentach, co sprawi, że szablon nie wygeneruje pożądanego profilu. Przemieszczanie szablonu w jedną stronę, także ogranicza kontrolę nad procesem tynkowania, co może prowadzić do powstawania nieestetycznych nierówności. Dodatkowo, z praktycznego punktu widzenia, techniki tynkarskie zalecają zastosowanie ruchów w obie strony dla optymalizacji procesu, co zapewnia lepszą adaptację zaprawy do kształtów gzymsu. Typowym błędem jest także brak uwzględnienia różnorodności stosowanych zapraw, które mogą wymagać specyficznych metod nanoszenia i profilowania. W literaturze branżowej podkreśla się znaczenie dbałości o detale w pracy tynkarskiej, ponieważ nawet małe zaniedbania mogą prowadzić do poważnych konsekwencji, takich jak odpadanie tynku czy jego pękanie. Dlatego, fundamentalne dla uzyskania wysokiej jakości wykończenia jest stosowanie się do sprawdzonych procedur technicznych oraz zasad dobrych praktyk w budownictwie.

Pytanie 39

Na podstawie przedstawionej receptury roboczej oblicz, ile piasku należy dodać do sporządzenia mieszanki betonowej, jeżeli na jeden zarób użyto 50 kg cementu.

Receptura robocza
składniki 1 m³ mieszanki betonowej
Beton C8/10
cement:250 kg
piasek:410 dm³
żwir:783 dm³
woda:165 dm³
A. 82 kg
B. 82 dm3
C. 165 dm3
D. 165 kg
Poprawna odpowiedź, 82 dm3, wynika z zastosowania proporcji, co jest kluczowym podejściem w obliczeniach dotyczących mieszania materiałów budowlanych. W przypadku betonu, zachowanie odpowiednich proporcji między cementem, wodą, piaskiem i kruszywem jest niezbędne dla uzyskania optymalnej wytrzymałości mieszanki. Receptura wskazuje, że dla 250 kg cementu potrzebne jest 410 dm3 piasku. Skoro używamy tylko 50 kg cementu, co stanowi 1/5 tej ilości, również piasek powinien być zmniejszony proporcjonalnie, co daje 82 dm3. W praktyce budowlanej, precyzyjne obliczenia tego rodzaju są kluczowe, ponieważ zbyt mała lub zbyt duża ilość piasku może prowadzić do osłabienia struktury betonu, co wpływa na jego trwałość i odporność na warunki atmosferyczne. Proporcje materiałów powinny być zawsze dostosowywane do specyficznych warunków budowy oraz standardów, takich jak Eurokod 2, który określa zasady projektowania konstrukcji betonowych.

Pytanie 40

Do budowy ścian fundamentowych trzeba użyć

A. pustaków ceramicznych
B. cegły szamotowej
C. cegły dziurawki
D. bloczków betonowych
Bloczki betonowe są materiałem budowlanym powszechnie stosowanym do wykonania ścian fundamentowych. Charakteryzują się dużą wytrzymałością na nacisk, co jest kluczowe w przypadku fundamentów, które muszą przenosić ciężar całej konstrukcji budynku. Dodatkowo bloczki betonowe mają dobre właściwości izolacyjne, co przyczynia się do ochrony przed wilgocią oraz wpływem zmian temperatury na strukturę budowli. W praktyce, bloczki betonowe są łatwe w obróbce i montażu, co przyspiesza proces budowy. Standardy budowlane, takie jak normy PN-EN 1992, wskazują na stosowanie bloczków betonowych w przypadku budowy fundamentów, aby zapewnić odpowiednią nośność i stabilność. Przykładem zastosowania bloczków betonowych może być wznoszenie fundamentów pod domy jednorodzinne, gdzie ich zastosowanie pozwala na efektywne zarządzanie kosztami i czasem budowy.