Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 1 kwietnia 2025 10:37
  • Data zakończenia: 1 kwietnia 2025 10:57

Egzamin zdany!

Wynik: 21/40 punktów (52,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

Który sposób reperacji uszkodzonego kabla antenowego zapewni odpowiednią jakość przesyłu sygnału?

A. Połączenie przewodu za pomocą tulejek zaciskowych
B. Połączenie kabla przy użyciu kostki do przewodów elektrycznych
C. Zlutowanie oraz zaizolowanie kabla w miejscu uszkodzenia
D. Zainstalowanie w miejscu uszkodzenia złączki typu F
Połączenie kabla za pomocą tulejek zaciskowych może wydawać się praktycznym rozwiązaniem, jednak w kontekście sygnału antenowego, taka metoda łączenia nie zapewnia odpowiedniej jakości. Tulejki zaciskowe, choć stosunkowo proste w użyciu, nie dbają o integralność sygnału, ponieważ mogą powodować nierównomierne połączenie, co prowadzi do strat sygnałowych. Podobnie, użycie kostek do przewodów elektrycznych jest niewłaściwym wyborem, ponieważ te elementy są projektowane głównie do przewodów zasilających i nie gwarantują odpowiedniej izolacji ani ochrony przed zakłóceniami elektromagnetycznymi. Tego typu połączenia mogą wprowadzać nieprzewidywalne zmiany w impedancji, co negatywnie wpłynie na jakość transmisji. Z kolei zlutowanie i zaizolowanie kabla, mimo że jest techniką, która teoretycznie może zapewnić dobry kontakt, to jednak wymaga dużej precyzji i doświadczenia, aby uniknąć problemów z przegrzewaniem się oraz utlenianiem złącza. W praktyce, niewłaściwie przeprowadzone lutowanie może prowadzić do dodatkowych strat sygnału oraz wprowadzać szumy, co czyni tę metodę mało praktyczną dla profesjonalnych instalacji antenowych. Właściwe podejście do naprawy przerwanego kabla antenowego powinno więc opierać się na standardowych rozwiązaniach, takich jak złącza typu F, które są sprawdzone i szeroko stosowane w branży.

Pytanie 6

Jakie urządzenie służy do ochrony elektroniki przed skutkami wyładowań atmosferycznych?

A. ochronnik przepięciowy
B. ochronnik termiczny
C. wyłącznik różnicowoprądowy
D. wyłącznik nadprądowy
Odpowiedzi, które nie zostały wybrane, wskazują na brak zrozumienia funkcji i zastosowania poszczególnych urządzeń zabezpieczających. Wyłącznik nadprądowy, chociaż istotny w ochronie instalacji, działa głównie w przypadku przeciążeń i zwarć, zabezpieczając przed przepływem prądu większym od nominalnego, co nie jest związane z wyładowaniami atmosferycznymi. Z kolei wyłącznik różnicowoprądowy ma na celu ochronę przed porażeniem prądem elektrycznym poprzez wykrywanie różnicy prądów między przewodami roboczymi, co również nie odnosi się do ochrony przed przepięciami. Ochronnik termiczny, jak sama nazwa wskazuje, jest przeznaczony do zabezpieczania przed przegrzaniem i nie ma zastosowania w ochronie przed wyładowaniami atmosferycznymi. Typowym błędem myślowym jest mylenie różnych funkcji zabezpieczeń i ich zastosowań. Kluczowe jest zrozumienie, że każdy z tych elementów ma swoją specyfikę i nie należy ich stosować zamiennie. Aby skutecznie zabezpieczać instalacje i urządzenia przed wyładowaniami atmosferycznymi, niezbędne jest stosowanie odpowiednich rozwiązań, takich jak ochronniki przepięciowe, które są projektowane do tego celu. Wiedza o różnorodnych urządzeniach zabezpieczających jest istotna dla zapewnienia bezpieczeństwa zarówno w domach, jak i w obiektach przemysłowych.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jaką wartość napięcia sinusoidalnego mierzy woltomierz cyfrowy w trybie AC?

A. Średnią
B. Skuteczną
C. Maksymalną
D. Chwilową
Woltomierz cyfrowy w trybie AC wskazuje wartość skuteczną napięcia sinusoidalnego, która jest miarą równoważną wartości stałej, powodującą takie samo wydzielanie ciepła w rezystorze. Wartość skuteczna (rms) jest obliczana jako pierwiastek kwadratowy średniej arytmetycznej kwadratów chwilowych wartości napięcia w czasie, co pozwala na właściwe oszacowanie energii, jaka jest dostarczana do obciążenia. W zastosowaniach praktycznych, takich jak instalacje elektryczne, projektowanie układów zasilania czy analiza jakości energii, wartość skuteczna jest kluczowa, ponieważ pozwala określić, jaki prąd lub napięcie będą działać w danym obwodzie. Dobrą praktyką jest również zrozumienie różnicy między wartościami skutecznymi a maksymalnymi, ponieważ napięcie maksymalne (szczytowe) jest zazwyczaj wyższe niż wartość skuteczna o czynnik pierwiastek z dwóch (około 1,41 razy). Wartości skuteczne są szeroko stosowane w normach i przepisach dotyczących bezpieczeństwa i efektywności energetycznej, w tym w normach IEC oraz w wytycznych dotyczących projektowania systemów elektrycznych.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Kable zasilające, które łączą antenę z odbiornikiem, określamy jako

A. fidery
B. symetryzatory
C. direktory
D. dipole
Fidery to linie zasilające, które łączą antenę z odbiornikiem lub nadajnikiem. Ich głównym zadaniem jest przesyłanie sygnału radiowego z jednego urządzenia do drugiego z minimalnymi stratami. W kontekście systemów komunikacyjnych, fidery są kluczowe dla zapewnienia efektywności transmisji i odbioru sygnałów. Istnieje wiele typów fiderów, w tym kabel koncentryczny oraz przewody typu twinlead, które różnią się budową, charakterystyką impedancyjną oraz zastosowaniem. Na przykład, kabel koncentryczny jest szeroko stosowany w telekomunikacji i systemach wideo, ze względu na swoją zdolność do przesyłania sygnałów na dużych odległościach. W praktyce, odpowiedni dobór fidera jest niezwykle istotny, ponieważ wpływa na jakość sygnału oraz minimalizację zakłóceń. W branży telekomunikacyjnej i radiowej istnieją standardy dotyczące konstrukcji i testowania fiderów, co zapewnia ich wysoką niezawodność. Zrozumienie tego zagadnienia jest kluczowe dla profesjonalistów zajmujących się projektowaniem i instalacją systemów komunikacyjnych.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Akumulator o pojemności 5 Ah zapewnia podtrzymanie zasilania jednej kamery przez czas około 10 minut. W instalacji monitoringu należy wykonać układ podtrzymania zasilania awaryjnego dziesięciu kamer przez 10 minut. Która z zapisanych w tabeli propozycji doboru akumulatorów zapewnia najniższe koszty wykonania układu?

Pojemność akumulatora
Ah
Cena jednostkowa
Ilość
szt.
A.55010
B.7657
C.602451
D.301402

A. C.
B. D.
C. A.
D. B.
Odpowiedź C jest poprawna, ponieważ zapewnia odpowiednią pojemność akumulatorów w minimalnym koszcie. W przypadku zasilania dziesięciu kamer przez 10 minut, kluczowe jest obliczenie całkowitego zapotrzebowania na energię. Jeśli jedna kamera wymaga akumulatora o pojemności 5 Ah na 10 minut, to dla dziesięciu kamer potrzebujemy co najmniej 50 Ah. Opcja C oferuje akumulator o pojemności 60 Ah, co nie tylko spełnia wymogi, ale również pozostawia pewien zapas, co jest zalecane w praktyce. Wybór akumulatorów powinien uwzględniać nie tylko koszt, ale również ich żywotność i efektywność. Zgodnie z dobrą praktyką, należy dobierać akumulatory z pewnym naddatkiem pojemności, aby uniknąć zbyt głębokiego rozładowania, co wydłuża ich żywotność. Wybór C, przy koszcie 245 zł, jest więc najbardziej optymalny, zwłaszcza w dłuższym czasie eksploatacji systemu monitoringu.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

Badanie złącza p-n w tranzystorze bipolarnym można przeprowadzić przy użyciu

A. watomierza
B. amperomierza
C. omomierza
D. woltomierza
Odpowiedź dotycząca omomierza jest jak najbardziej trafna. To narzędzie służy do pomiaru oporu elektrycznego, co jest mega ważne przy badaniu złącza p-n w tranzystorze bipolarnym. Złącze p-n działa jak dioda, która w zasadzie jest przewodnikiem, gdy prąd płynie w jedną stronę, a w drugą - staje się opornikiem. Kiedy używamy omomierza, możemy sprawdzić, czy to złącze działa tak jak powinno, bo mierzymy opór w obu stanach. Jak tranzystor się uszkodzi, omomierz pokaże niską oporność nawet w stanie zaporowym, co oznacza, że coś jest nie tak. W elektronice omomierz to kluczowe narzędzie, zwłaszcza przy diagnozowaniu problemów w obwodach i produkcji komponentów elektronicznych. Każdy tranzystor musi być testowany, żeby był zgodny z normami jakości. To pokazuje, jak ważny jest omomierz przy weryfikacji złączy p-n.

Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

Które złącze jest przeznaczone do podłączenia sygnałów: zespolonego obrazu, koloru R, koloru G, koloru B, luminancji oraz chrominancji, a także sygnału audio dla lewego i prawego kanału?

A. DIN 5
B. JACK
C. S-VHS
D. EUROSCART
Odpowiedź EUROSCART to strzał w dziesiątkę! To złącze fajnie łączy sygnały wideo i audio w jednym kablu, co naprawdę ułatwia życie podczas oglądania filmów czy grania w gry. Obsługuje różne rodzaje sygnałów, takie jak R, G i B, co jest mega ważne dla jakości obrazu. Dodatkowo, EUROSCART przesyła dźwięk na dwa kanały – lewy i prawy, co sprawia, że można go znaleźć w wielu urządzeniach RTV, jak telewizory czy odtwarzacze DVD. Na przykład, kiedy podłączasz odtwarzacz DVD do telewizora, używając EUROSCART, nie musisz się martwić o bałagan z kablami. To złącze jest też zgodne z normą CENELEC EN 50049-1, co znaczy, że jest powszechnie uznawane w świecie elektroniki. Dobrze wiedzieć, że jest tak szeroko stosowane!

Pytanie 20

W przypadku wykorzystania w instalacji sieci komputerowej: panelu krosowego kategorii 7, przewodu S/FTP kategorii 6 oraz gniazd abonenckich kategorii 5e, cała instalacja sieciowa będzie

A. kategorii 7
B. kategorii 6
C. kategorii 5e
D. kategorii 3
Wybór innych kategorii niż 5e dla całej instalacji sieciowej jest błędny z kilku powodów. Nie można zdefiniować kategorii sieci jedynie na podstawie komponentu o najwyższej klasie, jak w przypadku panelu krosowego kategorii 7. Kluczowym aspektem przy ustalaniu klasy instalacji jest najniższa kategoria komponentów, które są w niej użyte. Na przykład, mimo że przewód S/FTP kategorii 6 i panel krosowy kategorii 7 mogą teoretycznie obsługiwać wyższe prędkości, instalacja z gniazdami abonenckimi kategorii 5e ogranicza maksymalną osiągalną prędkość do 1 Gb/s. Zatem, jeżeli w sieci znajdą się elementy o niższej kategorii, cała instalacja zostanie zredukowana do tej najniższej standardu. Możliwość mieszania różnych kategorii w instalacji wymaga przemyślanej strategii, aby nie obniżać ogólnej wydajności. Często popełnianym błędem jest założenie, że wyższa kategoria automatycznie podnosi jakość całego systemu, co nie jest zgodne z rzeczywistością branżową. Właściwe planowanie i zgodność z normami są kluczowe w projektowaniu efektywnych i przyszłościowych sieci komputerowych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jakie urządzenie służy do mierzenia ciśnienia?

A. manometr
B. tachometr
C. luksomierz
D. pirometr
Manometr jest urządzeniem służącym do pomiaru ciśnienia gazów lub cieczy. Pomiar ciśnienia jest kluczowy w wielu dziedzinach, takich jak inżynieria, przemysł chemiczny, hydraulika oraz w systemach HVAC. Manometry mogą być mechaniczne, wykorzystujące zasadę sprężystości lub cieczy, lub elektroniczne, które oferują większą dokładność oraz możliwość zdalnego odczytu. Przykładem zastosowania manometrów jest monitorowanie ciśnienia w instalacjach wodociągowych, gdzie nadmierne ciśnienie może prowadzić do uszkodzeń. W przemyśle chemicznym manometry są niezbędne do kontrolowania procesów reakcyjnych, które są wrażliwe na ciśnienie. W standardach branżowych, takich jak ASME B40.100, określone są wymagania dotyczące kalibracji i konserwacji manometrów, co zapewnia ich niezawodność i dokładność. Zrozumienie i poprawne stosowanie manometrów jest kluczowe w kontekście bezpieczeństwa i efektywności operacyjnej.

Pytanie 23

W tabeli przedstawiono parametry techniczne

tryb pracy: pentaplex
wyświetlanie do 8 obrazów w rozdzielczości maksymalnej 1920x1080 p
kompresja H.264
każdy kanał może nagrywać z prędkością 25 kl/s w 1080 p
każdy kanał można odtwarzać z prędkością 25 kl/s w 1080 p
jednoczesna praca wyjść HDMI/VGA
zaawansowana wideo detekcja: detekcja ruchu, zanik obrazu
archiwizacja: 2x HDD Sata III (max. 6TB), 2x USB2.0
interfejs sieciowy: 1x RJ-45 Ethernet (10/100M)
wejścia i wyjścia alarmowe: 8/1
wbudowany web server, obsługa przez BCS View Manager

A. odbiornika TV
B. nadajnika TV
C. odtwarzacza DVD
D. rejestratora DVR
Wybór nadajnika TV, odbiornika TV lub odtwarzacza DVD jako odpowiedzi wydaje się zrozumiały, jednak opiera się na pewnych mylnych założeniach dotyczących funkcji i zastosowania tych urządzeń. Nadajniki TV i odbiorniki TV są elementami systemów telewizyjnych, których główną rolą jest przechwytywanie i przesyłanie sygnału wideo oraz audio. Nadajniki koncentrują się na emisji sygnału, natomiast odbiorniki na dekodowaniu i wyświetlaniu go. Dla użytkowników, którzy poszukują informacji o monitoringu, funkcje te nie są wystarczające. Odtwarzacze DVD z kolei służą do odtwarzania filmów i programów zapisanych na nośnikach optycznych, a ich techniczne parametry są zupełnie inne niż te związane z rejestratorami DVR. W kontekście systemów nadzoru wideo, istotne jest zrozumienie, że rejestratory DVR są zaprojektowane do rejestrowania i przechowywania obrazu z kamer, co nie ma związku z funkcjami ani specyfikacjami urządzeń telewizyjnych. Praktyczne podejście do tematu monitoringu wymaga znajomości takich parametrów jak rozdzielczość, kompresja, sposób przechowywania danych, czy możliwości analizy wideo, co nie jest charakterystyczne dla żadnego z wymienionych urządzeń. Błędne odpowiedzi mogą wynikać z pomylenia roli różnych urządzeń w systemach wideo, co podkreśla znaczenie precyzyjnego zrozumienia ich funkcji.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Ukształtowanie terenu ma wpływ na zasięg przesyłu sygnału za pośrednictwem

A. światłowodu
B. skrętki ekranowanej
C. skrętki nieekranowanej
D. linii radiowej
Linie radiowe, w przeciwieństwie do innych typów transmisji, takich jak skrętki czy światłowody, są szczególnie wrażliwe na ukształtowanie terenu. Fale radiowe mogą być tłumione i odbijane przez różne przeszkody, w tym góry, budynki i inne elementy krajobrazu. W praktyce oznacza to, że w obszarach górzystych lub zabudowanych zasięg sygnału radiowego może być znacznie ograniczony, co wpływa na jakość transmisji danych. W przypadku skrętek, zarówno ekranowanych, jak i nieekranowanych, sygnał przesyłany jest przewodowo, co eliminuje problem tłumienia przez ukształtowanie terenu. W kontekście standardów, projektowanie sieci radiowych wymaga starannego planowania, w tym analizy terenu oraz zastosowania technologii, które mogą kompensować te efekty, takich jak MIMO (Multiple Input Multiple Output) czy beamforming. Przykładem zastosowania linii radiowych jest komunikacja bezprzewodowa w sieciach komórkowych, gdzie odpowiednie zasięg i jakość sygnału są kluczowe dla użytkowników.

Pytanie 27

THT to metoda

A. realizacji instalacji podtynkowej
B. prowadzenia przewodów przez otwory w ścianach
C. umieszczania kabli w rurkach instalacyjnych
D. montowania elementów elektronicznych na płytkach drukowanych
Montaż przewlekany THT (Through-Hole Technology) to technika montażu elementów elektronicznych, w której komponenty są wprowadzane przez otwory w płytkach drukowanych (PCB) i lutowane na ich odwrotnej stronie. Jest to jedna z tradycyjnych metod montażu, która jest powszechnie stosowana w produkcji elektroniki, zwłaszcza w przypadku urządzeń wymagających dużej mocy lub w trudnych warunkach operacyjnych. Przykłady zastosowania THT obejmują produkcję zasilaczy, modułów komunikacyjnych czy układów analogowych, gdzie stabilność połączeń i ich odporność na wibracje są kluczowe. Zgodnie z normami IPC-A-610, THT zapewnia wysoką jakość lutowania, a także dużą odporność mechaniczną, co czyni tę metodę odpowiednią do zastosowań przemysłowych. Warto również zauważyć, że THT umożliwia łatwe wymienianie komponentów, co jest istotne podczas serwisowania i naprawy urządzeń elektronicznych, co czyni tę metodę korzystną z perspektywy całkowitych kosztów cyklu życia produktu.

Pytanie 28

W firmie produkującej radiatory z aluminiowych kształtowników pracuje pięć osób. Każda z nich wytwarza codziennie 30 radiatorów. Na wykonanie 10 radiatorów potrzebny jest jeden kształtownik aluminiowy. Ile wynosi dzienny koszt nabycia materiałów do produkcji, jeśli jeden kształtownik kosztuje 50 zł?

A. 150 zł
B. 750 zł
C. 500 zł
D. 2 500 zł
Aby obliczyć dzienny koszt zakupu materiałów do produkcji radiatorów, należy najpierw ustalić, ile radiatorów produkują wszyscy pracownicy razem. Każdy z pięciu pracowników wykonuje 30 radiatorów dziennie, co daje 5 * 30 = 150 radiatorów. Ponieważ jeden kształtownik aluminiowy wystarcza na wykonanie 10 radiatorów, potrzebujemy 150 / 10 = 15 kształtowników. Koszt jednego kształtownika wynosi 50 zł, zatem całkowity koszt zakupu materiałów wyniesie 15 * 50 zł = 750 zł. W praktyce, znajomość kosztów materiałowych jest kluczowa dla efektywnego zarządzania produkcją w zakładach przemysłowych. Monitorowanie tych kosztów pozwala na optymalizację procesów i zwiększenie rentowności firmy. Zastosowanie odpowiednich standardów dotyczących zarządzania materiałami, takich jak Just-In-Time, może również przyczynić się do redukcji nadmiarów materiałowych oraz kosztów magazynowania.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Operatorzy kablowych sieci telewizyjnych sprawdzają jakość sygnału u poszczególnych subskrybentów, wykonując pomiary parametrów sygnału

A. w kanale zwrotnym
B. w poszczególnych gniazdach abonenckich
C. nadanego przez stację czołową
D. na wyjściach poszczególnych węzłów optycznych
Wybór odpowiedzi związanych z pomiarem sygnału nadawanego przez stację czołową, w poszczególnych gniazdach abonenckich czy na wyjściach węzłów optycznych nie odzwierciedla rzeczywistych praktyk monitorowania jakości sygnału w telewizji kablowej. Monitorowanie sygnału nadawanego przez stację czołową jest istotne, ale dotyczy ono głównie analizy jakości źródłowego sygnału, a nie jego odbioru przez abonentów. Istotnym elementem jest kanał zwrotny, który umożliwia spływ informacji z sieci abonenckiej do centralnej bazy danych operatora. Pomiar jakości sygnału bezpośrednio w gniazdach abonenckich nie jest praktyczny, ponieważ czynniki lokalne mogą wprowadzać zbyt wiele zmiennych, takich jak uszkodzenia kabli czy nieprawidłowe podłączenia, co znacznie utrudnia diagnozowanie ogólnych problemów w sieci. Podobnie, pomiar na wyjściu węzłów optycznych może dostarczać informacji na temat jakości sygnału, ale nie odzwierciedla to doświadczenia konkretnego abonenta, który może doświadczyć różnych problemów w zależności od lokalnych warunków. Dlatego kluczowe jest monitorowanie sygnału w kanale zwrotnym, co pozwala na zbieranie danych od wszystkich abonentów i wczesne wykrywanie problemów w sieci, a tym samym zapewnienie lepszej jakości usług. Niepoprawne podejścia mogą prowadzić do błędnych wniosków i opóźnień w diagnostyce problemów, co jest niepożądane w branży, gdzie jakość usług ma kluczowe znaczenie dla zadowolenia klientów.

Pytanie 31

Zamiana uszkodzonego tranzystora w końcowej fazie przetwornicy napięcia wymaga

A. usunęcia kondensatora filtrującego
B. zwarcia wejścia układu
C. odłączenia układu od zasilania
D. podłączenia obciążenia sztucznego
Wymontowanie kondensatora filtrującego przed wymianą tranzystora może wydawać się logiczne, jednak jest to podejście niezgodne z najlepszymi praktykami w dziedzinie elektroniki. Kondensatory filtrujące mają za zadanie stabilizować napięcie i eliminować zakłócenia w obwodach. W przypadku ich demontażu, układ może nie działać poprawnie lub może wystąpić niepożądane zjawisko oscylacji, co może prowadzić do dalszych uszkodzeń. Podłączenie sztucznego obciążenia jako sposób na wymianę tranzystora również jest niewłaściwe, gdyż wprowadza dodatkowe ryzyko uszkodzenia innych komponentów. Sztuczne obciążenie nie ma zastosowania w kontekście wymiany uszkodzonego tranzystora, a jego użycie może prowadzić do nieodpowiednich warunków pracy, które mogą wprowadzić dodatkowe problemy. Natomiast zwarcie wejścia układu jest skrajnym i niebezpiecznym zachowaniem, które może prowadzić do uszkodzeń zarówno tranzystora, jak i samej przetwornicy. Takie działanie nie tylko naraża komponenty na uszkodzenia, ale także stwarza potencjalne zagrożenie dla użytkownika. W elektronice kluczowe jest przestrzeganie zasad bezpieczeństwa oraz procedur, co oznacza, że przed wymianą jakichkolwiek komponentów konieczne jest zapewnienie, że układ jest całkowicie odłączony od zasilania.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

Korzystając z tabeli wskaż parametry pracy, przy których kamera nie może być uruchomiona?

Parametr pracy kamery IPWartość
Zasilanie12 VDC ±10%
Wilgotność5÷75%
Temperatura−25÷50°C

A. Temperatura 30°C, wilgotność 45%.
B. Zasilanie 10 V, temperatura 45°C.
C. Zasilanie 13 V, wilgotność 65%.
D. Temperatura -10°C, wilgotność 40%.
W przypadku temperatury 30°C, wilgotności 45%, zasilania 13 V oraz wilgotności 65%, odpowiedzi te mogą wydawać się odpowiednie, ale nie są zgodne z rzeczywistością. W kontekście pierwszej opcji, temperatura 30°C i wilgotność 45% mieszczą się w akceptowalnych zakresach dla większości kamer. Drugie zasilanie 13 V mieści się w standardowym zakresie zasilania (10,8 V - 13,2 V), więc te parametry nie wykluczają uruchomienia kamery. Warto zauważyć, że wilgotność 65% również jest w granicach tolerancji, co oznacza, że ta odpowiedź nie może być uznana za nieprawidłową. W przypadku temperatury -10°C, również jest ona w dopuszczalnym zakresie pracy, ponieważ kamery mogą funkcjonować w temperaturach od -25°C do 50°C. Tylko zasilanie 10 V jest poniżej minimalnych wymagań. Zaniedbanie tych kryteriów może prowadzić do uszkodzenia kamery lub jej nieprawidłowej pracy. Typowe błędy myślowe obejmują ignorowanie specyfikacji technicznych producenta oraz mylenie akceptowalnych wartości z wartościami optymalnymi. Niezrozumienie tych zasad może prowadzić do wniosków, które są nie tylko błędne, ale także mogą negatywnie wpłynąć na praktykę użytkowania sprzętu elektronicznego.

Pytanie 35

Multiswitche umożliwiają

A. stworzenie systemu antenowego z dowolną ilością gniazd do odbioru.
B. zmianę kąta azymutu anteny.
C. sterowanie wszystkimi torami satelitarnymi.
D. wybór programów telewizyjnych do odbioru.
Multiswitche to urządzenia stosowane w systemach telewizji satelitarnej, które umożliwiają rozdzielenie sygnału satelitarnego na wiele gniazd odbiorczych. Dzięki nim można zbudować instalację antenową o dowolnej liczbie odbiorników, co jest szczególnie przydatne w dużych obiektach, takich jak bloki mieszkalne czy hotele. Multiswitch pozwala na podłączenie wielu dekoderów do jednego talerza satelitarnego. W praktyce oznacza to, że mieszkańcy mogą korzystać z różnych programów telewizyjnych bez potrzeby instalacji osobnych anten. Warto podkreślić, że dobrze zaprojektowana instalacja z użyciem multiswitchy powinna uwzględniać odpowiednie normy, takie jak EN 50083-2, które dotyczą parametrów technicznych systemów rozdzielających sygnały. Właściwe dobranie multiswitcha oraz jego konfiguracja mogą zadecydować o jakości odbioru i stabilności sygnału w różnych warunkach użytkowania.

Pytanie 36

Jak nazywa się jednostka mocy pozornej?

A. watogodzina.
B. woltoamper.
C. wat.
D. war.
Woltoamper (VA) jest jednostką mocy pozornej, która odnosi się do sumy mocy czynnej i mocy biernej w obwodach prądu przemiennego. W przeciwieństwie do wata, która mierzy moc czynną i uwzględnia jedynie energię, która jest rzeczywiście wykorzystywana do pracy, woltoamper uwzględnia także moc, która jest 'stracona' w systemie w wyniku opóźnień fazowych pomiędzy prądem a napięciem. W przypadku obwodów z indukcyjnościami lub pojemnościami, moc pozorna jest istotna dla określenia potrzebnych zabezpieczeń oraz wymagań dotyczących transformatorów i urządzeń, gdyż może wpływać na ich wydajność i żywotność. Przykładami zastosowania mocy pozornej są instalacje elektryczne w przemyśle, gdzie ważne jest, aby rozważać zarówno moc czynną, jak i bierną w celu zoptymalizowania efektywności energetycznej. Zgodnie z normami IEC, poprawne obliczenie mocy pozornej jest kluczowe dla projektowania systemów, które minimalizują straty energii.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. IrDA
B. NFC
C. Bluetooth
D. WiFi
IrDA (Infrared Data Association) to standard komunikacyjny, który wykorzystuje podczerwień do przesyłania danych pomiędzy urządzeniami. W odróżnieniu od pozostałych standardów wymienionych w pytaniu, takich jak WiFi, NFC i Bluetooth, które operują na falach radiowych, IrDA działa w zakresie podczerwieni, co oznacza, że wymaga bezpośredniej linii wzroku między nadajnikiem a odbiornikiem. Przykładem zastosowania IrDA mogą być połączenia między urządzeniami mobilnymi a drukarkami, gdzie dane są przesyłane bezprzewodowo, ale w sposób wymagający precyzyjnego ustawienia obu urządzeń. IrDA była powszechnie stosowana w starszych telefonach komórkowych oraz laptopach do przesyłania plików. Ze względu na swoje ograniczenia, takie jak krótki zasięg oraz konieczność utrzymania linii wzroku, IrDA nie zdołała utrzymać konkurencyjnej pozycji wobec technologii radiowych, które oferują większą wszechstronność i wygodę. Warto również zauważyć, że IrDA była jednym z pierwszych standardów w zakresie bezprzewodowej komunikacji, co czyni ją przykładem historycznym w kontekście rozwoju technologii transmisji danych.