Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 12 lipca 2025 10:09
  • Data zakończenia: 12 lipca 2025 10:25

Egzamin zdany!

Wynik: 29/40 punktów (72,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Dokument, który definiuje przebieg działań w czasie oraz ich sekwencję, to

A. harmonogram robót
B. kosztorys dla inwestora
C. lista robót
D. harmonogram wydarzeń
Harmonogram robót to dokument, który precyzyjnie określa przebieg czynności oraz ich kolejność w ramach projektu budowlanego. Jest kluczowym narzędziem zarządzania projektami, ponieważ pozwala na efektywne planowanie, monitorowanie i kontrolowanie postępu prac. Harmonogram powinien zawierać wszystkie istotne informacje dotyczące poszczególnych etapów robót, w tym daty rozpoczęcia i zakończenia, a także czas trwania poszczególnych zadań. W praktyce, harmonogram robót jest często tworzony w formie wykresu Gantta, co ułatwia wizualizację i śledzenie postępu. Przygotowanie harmonogramu według standardów PMI (Project Management Institute) lub metodyki PRINCE2 (Projects in Controlled Environments) zapewnia, że wszystkie kluczowe aspekty zostaną uwzględnione. Poprawnie sporządzony harmonogram robót nie tylko ułatwia zarządzanie czasem, ale również pozwala na identyfikację potencjalnych opóźnień oraz problemów, co jest niezbędne do skutecznego podejmowania działań naprawczych oraz optymalizacji procesu budowlanego. Przykładem zastosowania harmonogramu robót może być budowa nowego obiektu, gdzie wszystkie etapy, od wykopów po wykończenia, są szczegółowo zaplanowane.

Pytanie 2

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. kierownik budowy
B. inwestor
C. projektant
D. użytkownik
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 3

Jaką moc wygeneruje moduł fotowoltaiczny o parametrach znamionowych U = 30 V, I = 10 A, gdy zostanie zaciśnięty, a nasłonecznienie wyniesie Me = 1000 W/m2?

A. 1 000 W
B. 30 W
C. 0 W
D. 300 W
Odpowiedzi 30 W, 300 W i 1000 W są nietrafione, bo opierają się na błędnym rozumieniu działania paneli fotowoltaicznych. Zaczynając od 30 W, to niby rozsądne, ale ta moc zakłada, że wszystko działa jak należy - napięcie i prąd są w porządku. Ale w przypadku zwarcia napięcie spada do zera, więc nie ma mowy o jakiejkolwiek produkcji mocy. Jeśli chodzi o 300 W, to nie wygląda najgorzej przy 10 A i 30 V, ale znowu - w sytuacji zwarcia napięcia nie ma, więc moc znów wynosi 0 W. A co z 1000 W? To bardziej maksymalne osiągi przy dobrym nasłonecznieniu, a nie w przypadku zwarcia, które całkowicie blokuje produkcję energii. Kluczowe jest, by pamiętać, że moc elektryczna to wynik P = U * I, więc obie wartości muszą być obecne, żeby coś zaistniało. Inżynierowie, patrząc na problemy ze zwarciami, muszą też myśleć o temperaturze czy o tym, jak różne czynniki wpływają na systemy PV.

Pytanie 4

Pompę obiegową należy zainstalować na rurze

A. cyrkulacyjnej
B. bypassowej
C. zimnej wody użytkowej
D. ciepłej wody użytkowej
Zainstalowanie pompy obiegowej na przewodach innych niż cyrkulacyjne może prowadzić do wielu problemów. Montaż na przewodzie ciepłej wody użytkowej, na przykład, powoduje, że woda nie jest w stanie cyrkulować w sposób ciągły, co skutkuje utratą komfortu i zwiększeniem kosztów eksploatacyjnych. W systemach ciepłej wody użytkowej, gdzie nie ma odpowiedniego obiegu, woda nagrzewa się w zbiorniku, ale nie jest przetransportowywana efektywnie do punktów poboru, co prowadzi do opóźnień w dostępie do gorącej wody oraz niepotrzebnych strat energii. Bypassowy przewód, z kolei, służy do obejścia pompy, a nie do jej montażu. W przypadku jego użycia, pompa nie byłaby w stanie efektywnie zasilać systemu, ponieważ bypass kieruje część wody z dala od obiegu, co obniża wydajność całego układu. Zainstalowanie pompy na zimnej wodzie użytkowej jest również nieodpowiednie, ponieważ nie ma potrzeby cyrkulacji zimnej wody, co wprowadza potencjalne ryzyko w postaci zjawiska kondensacji oraz nieprzyjemnego zapachu. Często błędem jest także mylenie funkcji pomp w różnych systemach, co może prowadzić do złych decyzji projektowych, wpływających na efektywność energetyczną oraz komfort użytkowania instalacji.

Pytanie 5

Oznaczenie PE-HD na rurze w systemie instalacyjnym wskazuje, że rurę wyprodukowano z

A. homopolimeru polietylenu
B. polietylenu o średniej gęstości
C. polietylenu o wysokiej gęstości
D. polietylenu o niskiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, materiału powszechnie stosowanego w różnych dziedzinach przemysłu, w tym w budownictwie i infrastrukturze. Polietylen wysokiej gęstości charakteryzuje się dużą wytrzymałością, odpornością na działanie chemikaliów oraz niską absorpcją wody, co czyni go idealnym materiałem do produkcji rur do transportu wody, gazu oraz w instalacjach kanalizacyjnych. Dodatkowo, PE-HD jest materiałem ekologicznym, ponieważ można go poddawać recyklingowi, co jest zgodne z globalnymi trendami w kierunku zrównoważonego rozwoju. Rury wykonane z polietylenu wysokiej gęstości są często stosowane w systemach nawadniania, wodociągach oraz w systemach odprowadzania ścieków. Zgodnie z normami, takimi jak PN-EN 12201, rury PE-HD muszą spełniać określone wymagania dotyczące jakości, co zapewnia ich trwałość i niezawodność w użytkowaniu.

Pytanie 6

Co oznacza symbol PE-HD na rurze?

A. homopolimer polietylenu
B. polietylen o niskiej gęstości
C. polietylen o średniej gęstości
D. polietylen o wysokiej gęstości
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 7

Aby chronić turbinę wodną przed większymi zanieczyszczeniami, które mogą wpływać z wodą na wlot ujęcia do komory turbiny, powinno się zastosować

A. piaskownik
B. sito
C. kratę
D. mikrosito
Kraty to naprawdę fajny sposób na zabezpieczenie turbiny wodnej. Ich główną rolą jest ochrona przed różnymi zanieczyszczeniami, które mogą do wody wpadać. Oczywiście, kraty są tak zaprojektowane, żeby zatrzymywać większe rzeczy, jak gałęzie czy liście, bo inaczej mogą zaszkodzić wydajności turbiny. Z moich obserwacji wynika, że dzięki kratam, woda jest skutecznie filtrowana, zanim trafi do turbiny, co jest zgodne z tym, co mówi się na temat dobrej praktyki w inżynierii wodnej. Fajnie, że kratki mogą być z różnych materiałów, na przykład ze stali nierdzewnej, dzięki czemu są trwalsze i odporniejsze na korozję. Regularne sprawdzanie i konserwacja tych krat to kluczowa sprawa, żeby wszystko działało jak należy i żeby nie było zatorów, które mogłyby zmniejszyć przepływ i wydajność systemu.

Pytanie 8

W pompach ciepła z bezpośrednim odparowaniem, jakie zadanie pełni wymiennik gruntowy?

A. skraplacza
B. zaworu odcinającego
C. zaworu rozprężnego
D. parownika
W pompach ciepła z bezpośrednim odparowaniem, wymiennik gruntowy pełni rolę parownika, co oznacza, że absorbuje ciepło z gruntu, które następnie jest wykorzystywane do odparowania czynnika chłodniczego. Proces ten umożliwia efektywne ogrzewanie budynków w zimie oraz chłodzenie latem. W praktyce, wymienniki gruntowe mogą być wykonane w różnych konfiguracjach, takich jak pionowe lub poziome kolektory, w zależności od warunków geologicznych i potrzeb energetycznych obiektu. Zastosowanie technologii gruntowych pozwala na wykorzystanie stabilnej temperatury gruntu, co znacząco zwiększa efektywność energetyczną systemu. Standardy branżowe, takie jak normy EN 14511 dotyczące pomp ciepła, podkreślają znaczenie optymalizacji wymienników ciepła, co wpisuje się w działania mające na celu zwiększenie efektywności energetycznej budynków oraz redukcję emisji CO2. W praktycznych zastosowaniach, właściwie zaprojektowany i zainstalowany wymiennik gruntowy może zapewnić znaczące oszczędności w kosztach ogrzewania i chłodzenia, a także przyczynić się do zrównoważonego rozwoju poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 9

Do pomiaru mocy wyjściowej baterii słonecznej, o parametrach podanych w przedstawionej tabeli, należy zastosować

Parametry baterii słonecznej
Moc maksymalna, P max1951 V
Napięcie maksymalne (jałowe), Uoc45,5 V
Napięcie w punkcie mocy maksymalnej, Um36,9 V
Prąd zwarcia, Isc5,63 A
Prąd w punkcie mocy maksymalnej, Im5,37 A
A. mostek Graetza.
B. amperomierz i woltomierz.
C. miernik mocy promieniowania słonecznego.
D. miernik natężenia oświetlenia.
Odpowiedź "amperomierz i woltomierz" jest poprawna, ponieważ do pomiaru mocy wyjściowej baterii słonecznej kluczowe jest zmierzenie zarówno prądu, jak i napięcia w punkcie pracy systemu. Moc elektryczna jest definiowana jako iloczyn prądu (I) i napięcia (V), zgodnie ze wzorem P = I * V. Amperomierz, stosowany do pomiaru natężenia prądu, dostarcza informacji na temat ilości elektronów przepływających przez obwód, co jest kluczowe w kontekście wydajności baterii słonecznych. Z kolei woltomierz mierzy napięcie, które jest istotne dla określenia potencjału elektrycznego w obwodzie. Poprawne korzystanie z tych narzędzi pozwala nie tylko na określenie mocy wyjściowej, ale również na optymalizację pracy systemu fotowoltaicznego, co jest zgodne z najlepszymi praktykami w branży energetycznej. Użycie amperomierza i woltomierza umożliwia także monitorowanie parametrów pracy baterii w czasie rzeczywistym, co jest istotne dla zapewnienia ich długotrwałej efektywności.

Pytanie 10

Do struktur piętrzących należy zaliczyć

A. ujęcia wody
B. przepławki dla ryb
C. śluzy
D. zapory
Zapory są kluczowymi budowlami piętrzącymi, które służą do gromadzenia wody w zbiornikach, co umożliwia jej efektywne wykorzystanie w różnych zastosowaniach, takich jak produkcja energii elektrycznej, nawadnianie pól uprawnych oraz regulacja przepływu wód w rzekach. Budowle te są projektowane zgodnie z rygorystycznymi normami inżynieryjnymi, aby zapewnić ich stabilność i bezpieczeństwo. Przykładowo, w Polsce wiele zapór, takich jak zapora w Solinie, odgrywa istotną rolę w zarządzaniu wodami oraz w ochronie przed powodziami. Dobrze zaprojektowane zapory są również istotne dla ochrony ekosystemów wodnych, ponieważ mogą tworzyć siedliska dla wielu gatunków ryb i innych organizmów wodnych. W procesie projektowania zapór uwzględnia się także aspekty związane z ochroną środowiska oraz zrównoważonym rozwojem, co czyni je nie tylko funkcjonalnymi, ale i odpowiedzialnymi ekologicznie obiektami.

Pytanie 11

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 10,80 m³
B. 32,40 m³
C. 21,60 m³
D. 6,00 m³
Niepoprawne odpowiedzi 6,00 m³, 10,80 m³ oraz 32,40 m³ wynikają z błędnych interpretacji danych dotyczących wydajności stacji napełniającej oraz czasu jej pracy. Przykładem błędnego myślenia jest przyjęcie, że stacja napełniająca, pracując z wydajnością 3 dm³/s, mogłaby napełnić instalację w sposób, który nie uwzględnia rzeczywistego czasu pracy. Odpowiedzi te mogą sugerować, że użytkownik nie zrozumiał, jak przeliczać jednostki objętości lub pomylił jednostki miary. Na przykład, w przypadku odpowiedzi 6,00 m³, użytkownik mógł pomylić jednostki decymetrów sześciennych z metrami sześciennymi, co prowadzi do drastycznie zaniżonego wyniku. Odpowiedź 10,80 m³ może wynikać z błędnego obliczenia czasu pracy systemu; użytkownik mógł zakładać, że czas ten wynosił jedynie 3600 sekund, co jest jedną godziną. Wreszcie, odpowiedź 32,40 m³ sugeruje, że użytkownik zinterpretował wydajność jako dłuższą niż 2 godziny, co jest również błędnym założeniem. Te błędy pokazują, jak ważne jest dokładne rozumienie zarówno jednostek miary, jak i zasad obliczeń w inżynierii, a także potwierdzają potrzebę kształcenia w zakresie przeliczania jednostek oraz umiejętności praktycznych przy rozwiązywaniu rzeczywistych problemów inżynieryjnych.

Pytanie 12

Jaki maksymalny roczny poziom wydajności jednostkowej może uzyskać instalacja solarna z powierzchnią absorberów kolektorów słonecznych równą 15 m2, zaplanowana do podgrzewania wody użytkowej przy dobowym zapotrzebowaniu wynoszącym 500 dm3?

A. 100 ÷ 200 kWh/m2/rok
B. 1000 ÷ 1100 kWh/m2/rok
C. 700 ÷ 800 kWh/m2/rok
D. 400 ÷ 500 kWh/m2/rok
Wartości wydajności jednostkowej dla instalacji solarnej są kluczowe do zrozumienia jej efektywności energetycznej, a nieprawidłowe szacowanie tych wartości prowadzi do mylnych wniosków. Odpowiedzi wskazujące na zakres 100 ÷ 200 kWh/m²/rok oraz 1000 ÷ 1100 kWh/m²/rok nie uwzględniają typowych parametrów dla systemów solarnych, zwłaszcza w kontekście podgrzewania wody użytkowej. Wydajność w przedziale 100 ÷ 200 kWh/m²/rok jest zbyt niska w porównaniu do standardów branżowych, ponieważ nowoczesne kolektory słoneczne, w zależności od lokalnych warunków, powinny osiągać znacznie wyższe wyniki. Z drugiej strony, wysokie wartości w zakresie 1000 ÷ 1100 kWh/m²/rok są wysoce nierealistyczne i wykraczają poza typowe osiągi kolektorów słonecznych, które w rzeczywistości nie są w stanie przetworzyć tak dużej ilości energii w ciągu roku. Błędne podejścia do oceny wydajności mogą wynikać z ignorowania wpływu czynników środowiskowych, takich jak kąt nachylenia kolektorów, ich orientacja oraz lokalne warunki atmosferyczne, które są niezbędne do uzyskania dokładnych szacunków. Ponadto, brak uwzględnienia standardów branżowych, takich jak normy EN 12975, które regulują efektywność kolektorów słonecznych, prowadzi do błędnych ocen ich możliwości. Zrozumienie tych parametrów jest kluczowe dla skutecznego projektowania systemów solarnych, które spełniają wymagania użytkowników.

Pytanie 13

W dokumentacji dotyczącej montażu zasobnika c.w.u. wskazano, że należy go zainstalować w sposób, który pozwala na jego odłączenie. Zasobnik wyposażony jest w króćce z gwintem wewnętrznym. Do realizacji takiego połączenia trzeba zastosować

A. złączkę prostą z gwintem wewnętrznym
B. śrubunek
C. nypla
D. złączkę prostą z gwintem zewnętrznym
Wybór śrubunku jako odpowiedzi jest poprawny, ponieważ jest to element, który umożliwia połączenie dwóch rur w sposób, który jednocześnie pozwala na ich rozłączenie i ponowne podłączenie. Śrubunek składa się z dwóch części: nakrętki i złączki, które mogą być łatwo odkręcone, co ułatwia konserwację i naprawy instalacji. Dodatkowo, śrubunki są powszechnie stosowane w instalacjach wodociągowych oraz grzewczych, gdzie wymagane jest elastyczne podejście do montażu i demontażu. W praktyce, zastosowanie śrubunków pozwala na łatwą wymianę zasobników c.w.u. w przypadku ich awarii lub modernizacji systemu. Warto również zaznaczyć, że stosowanie odpowiednich materiałów i standardów (np. PN-EN 10088-1) przy produkcji śrubunków zapewnia ich trwałość i niezawodność, co przekłada się na bezpieczeństwo eksploatacji instalacji.

Pytanie 14

Najlepszym surowcem, z którego powinny być zrobione łopaty wirnika turbiny wiatrowej o mocy 2 MW, jest

A. stal
B. miedź
C. aluminium
D. włókna szklane
Włókna szklane są materiałem o doskonałych właściwościach mechanicznych i niskiej masie, co czyni je idealnym wyborem do produkcji łopat wirników turbin wiatrowych o mocy 2 MW. Ich wysoka wytrzymałość na rozciąganie oraz odporność na działanie warunków atmosferycznych, w tym korozji, sprawiają, że są one bardziej trwałe w porównaniu do innych materiałów, takich jak stal czy aluminium. Wykorzystanie włókien szklanych w konstrukcji łopat pozwala na osiągnięcie większej efektywności energetycznej, ponieważ umożliwia produkcję dłuższych i lżejszych łopat, co z kolei zwiększa powierzchnię do chwytania wiatru. Przykładem zastosowania tego materiału mogą być nowoczesne turbiny wiatrowe, które korzystają z kompozytów z włókien szklanych w połączeniu z żywicami epoksydowymi, co pozwala na osiągnięcie wysokiej wydajności i długowieczności. Standardy branżowe, takie jak IEC 61400, zalecają stosowanie materiałów kompozytowych w konstrukcji łopat, co potwierdza ich przewagę nad innymi materiałami.

Pytanie 15

W jakiej temperaturze, zgodnie z normami STC, dokonuje się oceny parametrów paneli fotowoltaicznych?

A. 20°C
B. 30°C
C. 25°C
D. 15°C
Właściwości paneli fotowoltaicznych według warunków STC (Standard Test Conditions) są sprawdzane w temperaturze 25°C. Jest to kluczowa informacja, ponieważ STC stanowią bazę odniesienia dla producentów i instalatorów systemów fotowoltaicznych, umożliwiając porównywanie wydajności różnych paneli w jednakowych warunkach. Warto zaznaczyć, że temperatura ma istotny wpływ na wydajność ogniw fotowoltaicznych; wyższe temperatury często prowadzą do spadku efektywności. Przykładowo, przy temperaturze wynoszącej 40°C, wydajność paneli może zmniejszyć się o kilka procent w porównaniu do warunków STC. Dobre praktyki branżowe zalecają, aby podczas projektowania instalacji fotowoltaicznych brać pod uwagę lokalne warunki klimatyczne, aby przewidzieć rzeczywistą wydajność systemu, a także odpowiednio dostosować rozwiązania inżynieryjne. Zrozumienie STC jest kluczowe dla osób zajmujących się projektowaniem i instalacją systemów PV, a także dla inwestorów, którzy chcą ocenić opłacalność takich inwestycji.

Pytanie 16

Zgodnie z obowiązującymi regulacjami, jaka powinna być minimalna odległość między budynkiem mieszkalnym a elektrownią wiatrową, której maksymalna wysokość wieży razem z promieniem skrzydeł wynosi 150 m?

A. 1500 m
B. 500 m
C. 2000 m
D. 1000 m
Odległość elektrowni wiatrowej od budynków mieszkalnych, która wynosi 1500 m, jest zgodna z przepisami, które mają na celu ochronę zdrowia ludzi i polepszenie komfortu życia. Wysokie wieże i duże skrzydła generują hałas i mogą powodować cieniowanie, co wpływa na mieszkańców. Taka odległość została ustalona na podstawie badań, które pokazują, jak elektrownie wiatrowe oddziałują na pobliską zabudowę, a zasady dobrego sąsiedztwa mówią, że im dalej od budynków, tym mniejsze ryzyko negatywnych skutków. W krajach jak Niemcy czy Dania, gdzie elektrownie wiatrowe są szeroko stosowane, wprowadzone regulacje dotyczące tych odległości pomogły w akceptacji energii odnawialnej. Trzeba też pamiętać, że każda lokalizacja musi brać pod uwagę specyfikę terenu, co może wpłynąć na decyzje dotyczące ustawienia turbin.

Pytanie 17

Koszt materiałów do instalacji paneli słonecznych w domu jednorodzinnym wynosi 9 000 zł. Aby zamontować system na płaskim dachu, potrzeba 16 godzin pracy dwóch wykwalifikowanych pracowników, których stawka za godzinę wynosi 25,00 zł. Firma instalacyjna dolicza narzut na materiały w wysokości 20%. Jaki jest łączny koszt zamontowania systemu solarnego?

A. 12 600 zł
B. 11 600 zł
C. 9 800 zł
D. 10 800 zł
W przypadku błędnych odpowiedzi, najczęściej pojawiają się nieporozumienia związane z obliczeniami kosztów materiałów oraz pracy. Często myli się pojęcie narzutu, który w tym przypadku wynosi 20%. Niektóre osoby mogą pomylić obliczenia i przyjąć, że narzut jest obliczany od całkowitych kosztów, a nie tylko od kosztów materiałów, co prowadzi do zawyżenia tych wydatków. Kolejnym typowym błędem jest nieuwzględnienie kosztu pracy w całkowitym rachunku. Pracownicy są kluczowym elementem kosztów montażu, a ich wynagrodzenie należy brać pod uwagę w całkowitym koszcie instalacji. Inny problem to zbyt niski lub zbyt wysoki koszt roboczogodziny, co może wynikać z nieaktualnych stawek rynkowych w branży. Ważne jest, aby przed przystąpieniem do obliczeń zaktualizować informacje dotyczące stawek wynagrodzeń i narzutów w firmach instalacyjnych. Aby uniknąć tych pułapek, warto korzystać z dokładnych danych oraz standardów branżowych, które zalecają dokładne kalkulacje wycen w oparciu o rzeczywiste koszty materiałów i wynagrodzeń.

Pytanie 18

Podczas szeregowego łączenia paneli fotowoltaicznych należy uwzględnić

A. moc akumulatora
B. zakres napięcia regulatora ładowania
C. napięcie w instalacji elektrycznej
D. częstotliwość prądu w instalacji elektrycznej
Wybór napięcia w sieci elektrycznej jako kluczowego czynnika przy łączeniu szeregowo paneli fotowoltaicznych jest nieprawidłowy, ponieważ napięcie w sieci nie ma bezpośredniego wpływu na konfigurację systemu paneli. Napięcie w sieci odnosi się do systemu energetycznego, który nie jest związany z działaniem systemu fotowoltaicznego. Częstotliwość prądu w sieci elektrycznej, tak samo jak napięcie w sieci, nie ma znaczenia w kontekście łączenia paneli. W rzeczywistości, te parametry dotyczą głównie prądu przemiennego (AC), podczas gdy panele fotowoltaiczne generują prąd stały (DC). Kolejnym błędnym rozumowaniem jest powiązanie mocy akumulatora z połączeniem szeregowy paneli. Moc akumulatora, owszem, ma znaczenie, ale w kontekście pojemności i czasu pracy, a nie wpływu na bezpośrednie łączenie paneli. Ważne jest, aby zrozumieć, że regulator ładowania musi być dopasowany do napięcia wyjściowego paneli, aby zapewnić odpowiednie warunki ładowania akumulatorów. Typowe błędy myślowe, takie jak pomijanie różnicy między napięciem generowanym przez panele a napięciem w sieci, mogą prowadzić do nieefektywności systemu oraz jego uszkodzenia. Dlatego kluczowe jest zrozumienie, że serce każdego systemu fotowoltaicznego to nie tylko panele, ale także odpowiednie zarządzanie napięciem i prądem przez regulator ładowania.

Pytanie 19

Umiejscowienie kolektorów gruntowych należy realizować

A. na obszarze pokrytym drzewami iglastymi
B. na obszarze pokrytym drzewami liściastymi
C. na obszarze osłoniętym wysokimi krzewami
D. na obszarze nieosłoniętym przez budynki, drzewa i krzewy
Dobra odpowiedź! Ustawienie kolektorów gruntowych w miejscach, gdzie nie ma żadnych przeszkód, jak budynki czy drzewa, jest mega ważne dla działania systemów geotermalnych. Te kolektory czerpią ciepło z ziemi i ich wydajność mocno zależy od tego, jak dużo słońca do nich dociera oraz jak dobrze krąży powietrze wokół nich. Jak są osłonięte, to ciepło może być trudniej dostępne, a system mniej efektywny. Dla przykładu, w domach jednorodzinnych, jak kolektory są w odpowiednim miejscu, są w stanie super wspierać ogrzewanie, co przekłada się na niższe rachunki. W branży geotermalnej działamy według zasad, które mówią, żeby stawiać kolektory tam, gdzie słońce grzeje najlepiej, a otoczenie nie przeszkadza. Taki sposób działania jest zgodny z zaleceniami branżowymi, które kierują się maksymalizowaniem efektywności energetycznej systemów.

Pytanie 20

Czujnik termostatyczny systemu "strażak" używany do ochrony kotłów na biomasę powinien być zamontowany

A. w komorze paleniskowej
B. na obudowie podajnika
C. w czopuchu kotła
D. w podajniku ślimakowym
Czujnik termostatyczny systemu "strażak" jest kluczowym elementem zabezpieczającym kotły na biomasę, a jego prawidłowy montaż ma istotne znaczenie dla efektywności systemu. Montaż czujnika na obudowie podajnika zapewnia optymalne warunki do monitorowania temperatury materiału opałowego, co jest niezbędne do zapobiegania przegrzewaniu się i ewentualnym uszkodzeniom. Tego rodzaju umiejscowienie czujnika pozwala na szybkie reagowanie na zmiany temperatury, co jest fundamentalne w kontekście zapewnienia bezpieczeństwa systemu grzewczego. W praktyce, stosowanie czujników termostatycznych w podajnikach podnosi efektywność energetyczną, ponieważ umożliwia precyzyjne dostosowanie pracy kotła do aktualnych potrzeb cieplnych budynku. W przypadku awarii czujnika, system zabezpieczeń może zareagować, co minimalizuje ryzyko pożaru, a także chroni komponenty kotła przed uszkodzeniem. Zgodnie z normami branżowymi, takie jak PN-EN 303-5, prawidłowy montaż czujników jest kluczowym elementem w projektowaniu nowoczesnych systemów grzewczych, co potwierdza znaczenie prawidłowej lokalizacji czujnika w kontekście bezpieczeństwa oraz efektywności operacyjnej.

Pytanie 21

W systemach pomp ciepła typu split czynnościom serwisowym nie podlega

A. obudowa pompy ciepła
B. filtr w układzie wodnym
C. parownik
D. tacka skroplin
Obudowa pompy ciepła jest elementem konstrukcyjnym, który nie wymaga regularnych czynności konserwacyjnych w takiej samej mierze jak inne komponenty systemu. Jej główną funkcją jest ochrona wewnętrznych mechanizmów przed niekorzystnymi warunkami atmosferycznymi oraz zapewnienie estetycznego wyglądu urządzenia. W praktyce, konserwacja obudowy pompy ciepła ogranicza się zazwyczaj do sporadycznego czyszczenia z zewnątrz oraz sprawdzania stanu ogólnego. W odróżnieniu od filtrów czy parownika, które wymagają cyklicznej wymiany lub czyszczenia, obudowa nie jest elementem, który ulega zużyciu w wyniku działania cieplno-chłodniczego. Implementacja regularnej konserwacji innych elementów, takich jak tacka skroplin, jest kluczowa dla zapewnienia efektywności energetycznej oraz prawidłowego działania całego systemu. Zgodnie z najlepszymi praktykami branżowymi, zaleca się dokumentowanie przeprowadzonych przeglądów i konserwacji, co przyczynia się do wydłużenia żywotności urządzenia.

Pytanie 22

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. wliczając armaturę z kołnierzami
B. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
C. z wyłączeniem długości łączników oraz armatury
D. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody
W przypadku przedmiaru robót dla instalacji wodociągowych istotne jest zrozumienie, że długość rurociągów powinna być mierzona zgodnie z ustalonymi normami i praktykami branżowymi. Nieprawidłowe podejście do obliczeń, takie jak uwzględnianie długości łączników oraz armatury, prowadzi do nieprawidłowych wyników i zaburzenia całego procesu planowania materiałowego. Podejście, które polega na ustalaniu ilości podejść dla wody zimnej i ciepłej razem, pomija różnice w wymaganiach instalacyjnych oraz charakterystykach materiałowych obu systemów. Każdy system wodociągowy ma swoje unikalne cechy, które powinny być analizowane oddzielnie, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, wliczanie armatury kołnierzowej w długość rurociągu jest również błędnym podejściem, gdyż armatura ta często nie jest integralną częścią systemu rurociągów, a jedynie jego uzupełnieniem. W praktyce, przy obliczaniu długości dla projektów hydraulicznych, należy brać pod uwagę jedynie odcinki rur, aby uniknąć nieścisłości i zapewnić prawidłowe wykonanie instalacji. Takie błędy mogą prowadzić do nieefektywności w wykorzystaniu materiałów oraz problemów z późniejszym użytkowaniem instalacji, co jest sprzeczne z zasadami efektywności i trwałości projektów budowlanych.

Pytanie 23

Aby chronić instalację centralnego ogrzewania przed nadmiernym wzrostem ciśnienia czynnika grzewczego spowodowanym temperaturą i związanym ze wzrostem objętości, należy zastosować

A. zawór zwrotny
B. naczynie wzbiorcze
C. zawór bezpieczeństwa
D. grupę pompową
Zawór zwrotny to już zupełnie inna bajka w systemach grzewczych. Jego rola to zapobieganie cofaniu się czynnika grzewczego, czyli tak naprawdę dba o to, by płynął w jednym kierunku. To ważne dla działania pomp, bo jak nie, to mogą się pojawić różne nieprzyjemne zjawiska, takie jak problemy hydrauliczne, które mogą prowadzić do uszkodzeń. Tylko, że zawór zwrotny nie ma wpływu na kontrolę ciśnienia instalacji, co w kontekście wzrostu objętości wody przy podwyższonej temperaturze jest kluczowe. Grupa pompową z kolei odpowiada za to, żeby zapewnić odpowiedni przepływ czynnika grzewczego, i może coś tam regulować ciśnienie, ale sama w sobie nie zapobiegnie jego wzrostowi w sytuacjach awaryjnych. Zawór bezpieczeństwa to już inna sprawa – on działa, żeby chronić instalację przed zbyt dużym ciśnieniem, ale jego rola to spuszczenie nadmiaru, a nie kontrolowanie tego ciśnienia. Dlatego ważne jest, żeby zrozumieć, że te różne elementy mają swoje unikalne funkcje, ale żadne z nich nie zastąpi kluczowej roli naczynia wzbiorczego w zabezpieczaniu instalacji przed skutkami termicznej ekspansji czynnika grzewczego. Po prostu, żeby mieć pewność, że wszystko działa bezpiecznie i efektywnie, trzeba stosować naczynie wzbiorcze zgodnie z aktualnymi standardami i dobrymi praktykami w branży.

Pytanie 24

Jakim symbolem oznaczane są złączki fotowoltaiczne?

A. IP54
B. PV3
C. ZF1
D. MC4
Złączki fotowoltaiczne typu MC4 są powszechnie stosowane w instalacjach systemów energii odnawialnej, szczególnie w panelach słonecznych. Symbol MC4 oznacza 'Multi-Contact 4 mm', co odnosi się do konstrukcji złączki, która jest zaprojektowana do bezpiecznego i niezawodnego połączenia przewodów o średnicy 4 mm. Złącza te charakteryzują się wysoką odpornością na warunki atmosferyczne, co czyni je idealnym wyborem do zastosowań zewnętrznych, takich jak instalacje na dachach. Dzięki swojej budowie, złączki MC4 zapewniają wyjątkową szczelność i są w stanie wytrzymać wysokie napięcia oraz prądy, co jest kluczowe w systemach PV. Przykładowo, podczas montażu instalacji fotowoltaicznej, złącza te umożliwiają prostą i szybką konfigurację układów szeregowych oraz równoległych paneli, co znacząco przyspiesza czas pracy. Standardy branżowe, takie jak IEC 62852, dotyczące złączy w systemach fotowoltaicznych, podkreślają znaczenie MC4 jako normy dla efektywności i bezpieczeństwa. W praktyce, stosowanie złączek MC4 w instalacjach solarnych nie tylko maksymalizuje efektywność energetyczną, ale także zapewnia długoterminową niezawodność systemu.

Pytanie 25

Rekuperator to urządzenie służące do odzyskiwania energii cieplnej z

A. gazów
B. ścieków
C. gruntu
D. ciepłej wody użytkowej
Rekuperator to fajne urządzenie, które naprawdę dobrze odzyskuje ciepło z powietrza wydobywającego się z budynków. W skrócie, działa to tak, że ciepło z powietrza, które wychodzi, przenika do świeżego powietrza, które jest wprowadzane do środka. Dzięki temu, budynki mogą lepiej wykorzystywać energię, co z kolei obniża rachunki za ogrzewanie i chłodzenie. W praktyce, rekuperatory są super w budynkach pasywnych i energooszczędnych, bo tam liczy się każde ciepło. No i co ważne, są zgodne z różnymi normami efektywności energetycznej, jak ISO 50001, więc są po prostu nowoczesnym rozwiązaniem w wentylacji.

Pytanie 26

Jak nazywa się jednostka określająca zużycie energii elektrycznej?

A. kWh
B. kW
C. h/kW
D. KW/h
Poprawna odpowiedź to kWh, czyli kilowatogodzina, która jest standardową jednostką stosowaną do pomiaru zużycia energii elektrycznej. Jednostka ta wskazuje, ile energii zużywa urządzenie o mocy jednego kilowata przez jedną godzinę. Przykładowo, jeśli żarówka o mocy 100 W działa przez 10 godzin, zużyje 1 kWh energii (100 W * 10 h = 1000 W = 1 kWh). W praktyce, wiedza na temat zużycia energii elektrycznej jest kluczowa dla efektywnego zarządzania energią zarówno w domach, jak i w przedsiębiorstwach. Umożliwia to nie tylko lepsze planowanie budżetu na energię, ale także identyfikację możliwości oszczędności. W branży energetycznej, przy pomiarach zużycia energii, kWh jest uznawana za normę, co jest potwierdzone m.in. przez Międzynarodową Organizację Normalizacyjną (ISO). Warto również zwrócić uwagę, że zrozumienie jednostek zużycia energii jest istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 27

Na podstawie danych zawartych w tabeli oblicz koszt materiałów niezbędnych do wymiany 50 metrów sieci biogazu uzbrojonej w 3 zasuwy i 2 trójniki.

Nazwa urządzeniaJednostka miaryCena jednostkowa (zł)
Rura PEm30,00
Zasuwaszt.300,00
Trójnikszt.250,00
A. 500 zł
B. 900 zł
C. 1 500 zł
D. 2 900 zł
Poprawna odpowiedź to 2900 zł, co zostało obliczone na podstawie dokładnej analizy kosztów materiałów do wymiany sieci biogazu. W przypadku takich projektów kluczowe jest precyzyjne określenie ilości oraz cen jednostkowych materiałów, co pozwala na dokładne oszacowanie całkowitych kosztów. W tym przypadku, 50 metrów sieci biogazu wymagało zakupu rur, zasuw oraz trójników. Zastosowanie zasuw umożliwia kontrolowanie przepływu biogazu, co jest niezbędne w wielu instalacjach biogazowych. Z kolei trójniki są istotne, gdyż pozwalają na rozgałęzianie instalacji, co jest często wymagane w praktycznych zastosowaniach. Przy planowaniu takich projektów warto zwrócić uwagę na standardy branżowe, takie jak normy dotyczące jakości materiałów oraz ich zgodności z przepisami budowlanymi. Dobre praktyki obejmują także uwzględnienie potencjalnych kosztów serwisowania i konserwacji, co może wpłynąć na całkowity budżet projektu.

Pytanie 28

Warunkiem, który nie wpływa na ważność gwarancji na system solarny, jest

A. złożony protokół uruchomienia
B. dokumentacja fotograficzna instalacji
C. właściwie uzupełniona karta gwarancyjna
D. rachunek za zrealizowaną instalację
Dokumentacja fotograficzna instalacji nie jest warunkiem obowiązywania gwarancji na instalację solarną, ponieważ nie stanowi formalnego dowodu wykonania usługi ani nie potwierdza spełnienia wymogów technicznych. W przypadku gwarancji kluczowe jest posiadanie prawidłowo wypełnionej karty gwarancyjnej, która zawiera informacje o wykonawcy oraz szczegóły dotyczące samej instalacji. Ponadto, wypełniony protokół uruchomienia dokumentuje, że system został poprawnie uruchomiony i działa zgodnie z zaleceniami producenta. Faktura za wykonaną instalację jest niezbędnym dowodem zakupu, który potwierdza wykonanie usługi i stanowi podstawę do roszczeń gwarancyjnych. Przykładowo, brak odpowiedniej dokumentacji może prowadzić do odrzucenia reklamacji, dlatego tak ważne jest, aby inwestorzy byli świadomi wymogów dotyczących gwarancji i dokładnie przestrzegali standardów branżowych.

Pytanie 29

Aby zapewnić jednostronny przepływ czynnika grzewczego, należy zainstalować zawór

A. czerpalny
B. zwrotny
C. bezpieczeństwa
D. spustowy
Zawór zwrotny to urządzenie stosowane w systemach hydraulicznych i grzewczych, które zapewnia przepływ czynnika grzewczego tylko w jednym kierunku, zapobiegając cofaniu się płynu. Jego działanie opiera się na zasadzie wykorzystania ciśnienia różnicowego, które otwiera zawór w kierunku przepływu, a zamyka go w przeciwnym. Zawory te są kluczowe w instalacjach grzewczych, gdzie niekontrolowany przepływ może prowadzić do strat ciepła i obniżenia efektywności systemu. Na przykład, w instalacjach centralnego ogrzewania, stosowanie zaworów zwrotnych zapewnia, że gorąca woda z kotła nie wraca do niego, co mogłoby prowadzić do uszkodzenia sprzętu oraz obniżenia komfortu grzewczego. W praktyce, zawory zwrotne są często instalowane w pobliżu kotłów oraz na zasilaniu i powrocie do grzejników, co minimalizuje ryzyko niepożądanych zjawisk. Warto także zwrócić uwagę na standardy branżowe, takie jak normy PN-EN dotyczące instalacji, które zalecają stosowanie zaworów zwrotnych w odpowiednich miejscach, aby zapewnić bezpieczeństwo i efektywność systemów grzewczych.

Pytanie 30

Aby oszacować koszty realizacji instalacji fotowoltaicznej na etapie planowania, właściciel nieruchomości powinien otrzymać kosztorys

A. ofertowy
B. inwestorski
C. powykonawczy
D. końcowy
Kosztorys ofertowy jest kluczowym dokumentem w procesie planowania inwestycji, takiej jak instalacja fotowoltaiczna. Obejmuje on szczegółowe zestawienie kosztów poszczególnych elementów projektu, co pozwala właścicielowi domu na dokonanie świadomego wyboru. Kosztorys ofertowy przedstawia zarówno koszty materiałów, jak i robocizny, co jest niezbędne do oceny opłacalności inwestycji. W praktyce, kosztorys ten jest podstawą do negocjacji z wykonawcą i może być użyty w celu uzyskania finansowania zewnętrznego, na przykład kredytu na instalację OZE. Warto również zauważyć, że standardy branżowe, takie jak normy PN-ISO 9001, zalecają prowadzenie kosztorysów na etapie planowania jako elementu zapewnienia jakości. Dzięki temu właściciele domów mogą lepiej przygotować się do potencjalnych wydatków i uniknąć nieprzewidzianych kosztów podczas realizacji projektu. Przygotowując kosztorys ofertowy, warto współpracować z doświadczonymi specjalistami, co zwiększa szanse na uzyskanie rzetelnych i konkurencyjnych ofert.

Pytanie 31

Materiał o najwyższym współczynniku absorpcji spośród wymienionych to

A. czarna farba
B. czarny chrom
C. blacha aluminiowa
D. blacha miedziana
Czarny chrom to naprawdę ciekawy materiał, bo ma super wysoką zdolność do pochłaniania światła. Dlatego świetnie sprawdza się wszędzie tam, gdzie potrzebujemy zminimalizować odbicie. Jak pomyślisz o optyce, to czarny chrom często trafia do filtrów optycznych czy różnych części aparatów fotograficznych. W porównaniu do czarnej farby, która też jest dobra, czarny chrom radzi sobie znacznie lepiej, jeśli chodzi o efektywność absorpcji. To dlatego w przemyśle często sięga się po czarny chrom, zwłaszcza w projektach, które wymagają precyzyjnego działania. W instrumentach naukowych i technologicznych jego jakość i działanie są naprawdę kluczowe.

Pytanie 32

Jakie narzędzie należy wykorzystać do łączenia rur miedzianych w systemie biogazowym, w obiekcie, gdzie nie można stosować technologii termicznych?

A. palnika gazowego
B. zaciskarki promieniowej
C. zaciskarki osiowej
D. zgrzewarki elektrooporowej
Zastosowanie zaciskarki promieniowej do łączenia rur miedzianych w instalacjach biogazowych jest zgodne z wymaganiami dotyczącymi unikania technologii termicznych. Zaciskarki promieniowe działają na zasadzie mechaniczną, co eliminuje potrzebę stosowania wysokotemperaturowych procesów, takich jak zgrzewanie czy lutowanie. Ta technologia zapewnia nie tylko wysoką jakość połączenia, ale także bezpieczeństwo, co ma kluczowe znaczenie w kontekście instalacji biogazowych, gdzie wytrzymałość na ciśnienie i szczelność są priorytetowe. Przykładowo, w systemach biogazowych, gdzie mogą występować zmienne ciśnienia i agresywne chemicznie składniki, połączenia uzyskane za pomocą zaciskarki promieniowej są znacznie bardziej niezawodne. Dodatkowo, wykorzystanie tego typu narzędzia minimalizuje ryzyko uszkodzenia materiału rurociągu, co może się zdarzyć w przypadku stosowania palników gazowych, które mogą wprowadzać dodatkowe naprężenia termiczne. W praktyce, zastosowanie zaciskarki promieniowej w instalacjach biogazowych jest zgodne z normami branżowymi, takimi jak PN-EN 1057 dotycząca rur miedzianych, co zapewnia ich wysoką jakość i trwałość.

Pytanie 33

Pompa ciepła przez 20 dni dostarczała do domu jednorodzinnego energię równą 2 040 kWh. Jaki jest wskaźnik efektywności energetycznej, jeśli średnia moc pobrana wynosi 2,5 kW?

A. 1,70
B. 17,00
C. 4,08
D. 40,80
Czasem zdarza się, że pojawiają się błędy w obliczeniach wskaźnika efektywności energetycznej pompy ciepła. Jak ktoś nie rozumie, jak właściwie obliczać COP, to może skończyć z błędnymi wynikami. Na przykład, jeśli ktoś myśli, że wystarczy podzielić dostarczoną energię przez moc pompy i zapomni o czasie, to może dojść do złych wniosków. Często myli się też jednostki energii z mocą, co może wprowadzić w błąd. Ktoś może pomylić kWh z kW, a to już problem. Żeby dobrze ocenić efektywność energetyczną, trzeba zawsze znać całkowity czas pracy i moc systemu. Warto też mieć na uwadze rzeczywiste warunki, w jakich pompa pracuje, jak temperatura zewnętrzna, bo to wszystko wpływa na efektywność. W tym pytaniu kluczem jest zrozumienie, że moc pompy ciepła (2,5 kW) przez 20 dni równa się 1 200 kWh zużycia energii, co jest istotne, żeby dobrze obliczyć COP.

Pytanie 34

Pompa ciepła typu sprężarkowego określana jest jako rewersyjna, gdy jest zainstalowana w obiekcie

A. ma sprężarkę umieszczoną na zewnątrz budynku
B. może zimą pełnić funkcje grzewcze, a latem chłodnicze
C. ma modulowaną moc grzewczą sprężarki
D. ma 4 wymienniki ciepła
Sprężarkowa pompa ciepła nazywana jest rewersyjną, ponieważ może w zależności od potrzeb zmieniać kierunek przepływu czynnika chłodniczego, co pozwala jej pełnić różne funkcje: zimą jako urządzenie grzewcze, a latem jako system chłodzący. W praktyce oznacza to, że pompa ciepła może efektywnie wykorzystać energię z otoczenia do ogrzewania pomieszczeń, pobierając ciepło z powietrza, gruntu lub wody, a w okresie letnim może tę energię odprowadzać, schładzając budynek. Współczesne systemy oparte na tej technologii są zgodne z normami efektywności energetycznej, co czyni je ekologicznymi i ekonomicznymi rozwiązaniami. Przykładem zastosowania mogą być budynki mieszkalne, biura czy obiekty przemysłowe, które dzięki zastosowaniu rewersyjnych pomp ciepła mogą zredukować koszty eksploatacji oraz emisję dwutlenku węgla. Warto zauważyć, że rewersyjne pompy ciepła przyczyniają się do zrównoważonego rozwoju, co jest istotne w kontekście globalnych wyzwań związanych ze zmianami klimatycznymi.

Pytanie 35

Jaki materiał posiada najwyższy współczynnik rozszerzalności liniowej?

A. Mosiądz
B. Polipropylen
C. Miedź
D. Stal
Polipropylen to materiał termoplastyczny, który cechuje się najwyższym współczynnikiem rozszerzalności liniowej spośród wymienionych opcji. Współczynnik rozszerzalności liniowej dla polipropylenu wynosi około 100-150 x 10^-6/K, co oznacza, że pod wpływem zmian temperatury, jego długość zmienia się znacznie bardziej niż w przypadku metali, takich jak stal czy miedź. Taka właściwość polipropylenu sprawia, że jest on często wykorzystywany w aplikacjach, gdzie występują znaczące zmiany temperatur. Na przykład, w przemyśle motoryzacyjnym polipropylen jest używany do produkcji elementów wnętrz samochodów, które muszą być odporne na wysokie temperatury oraz zmiany wielkości. W konstrukcjach budowlanych polipropylen jest wykorzystywany w systemach rur, gdzie jego elastyczność i zdolność do rozszerzania się bez pękania są kluczowe. Zgodnie z normami PN-EN, materiały termoplastyczne muszą spełniać określone parametry, aby zapewnić bezpieczeństwo i trwałość w zastosowaniach przemysłowych. Polipropylen jest więc doskonałym przykładem materiału, który łączy w sobie właściwości mechaniczne i termiczne, co czyni go popularnym wyborem w wielu branżach.

Pytanie 36

Za zaworem rozprężnym w układzie pompy ciepła obserwuje się następujące wartości termodynamiczne:

A. wysokie ciśnienie – wysoka temperatura
B. niskie ciśnienie – niska temperatura
C. wysokie ciśnienie – niska temperatura
D. niskie ciśnienie – wysoka temperatura
Odpowiedź "niskie ciśnienie – niska temperatura" jest poprawna, ponieważ po przejściu przez zawór rozprężny w układzie pompy ciepła następuje obniżenie ciśnienia czynnika chłodniczego, co prowadzi do jego rozprężenia i obniżenia temperatury. Zjawisko to jest zgodne z zasadą zachowania energii oraz zasadami termodynamiki, a szczególnie z równaniami stanu gazów. W praktyce, po rozprężeniu, czynnik chłodniczy w stanie niskociśnieniowym i niskotemperaturowym wchodzi do parownika, gdzie absorbuje ciepło z otoczenia. Działanie to ma kluczowe znaczenie w kontekście efektywności energetycznej systemów grzewczych. W projektowaniu instalacji, kluczowe jest zrozumienie tych procesów, aby optymalizować ich funkcjonowanie. Na przykład, w standardach ASHRAE dotyczących systemów HVAC, podkreśla się znaczenie prawidłowego doboru i ustawienia zaworu rozprężnego dla zapewnienia efektywności energetycznej oraz minimalizacji strat ciepła.

Pytanie 37

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. roztwór soli kuchennej
B. wodę z instalacji kotła centralnego ogrzewania
C. mieszaninę glikolu propylenowego i wody
D. wodę destylowaną
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."

Pytanie 38

Do przeglądu technicznego instalacji solarnej nie wlicza się

A. kontroli zabezpieczeń antykorozyjnych
B. napełniania instalacji cieczą solarną
C. weryfikacji ochrony przed zamarzaniem
D. odczytu oraz oceny wydajności solarnej
Wszystkie odpowiedzi, które dotyczą przeglądu technicznego instalacji solarnej, są istotne, z wyjątkiem napełniania instalacji cieczą solarną, ponieważ jest to proces wstępny, który ma miejsce podczas uruchamiania systemu. Kontrola ochrony antykorozyjnej jest kluczowa, ponieważ korozja może znacząco wpłynąć na trwałość i funkcjonalność elementów systemu, a jej zaniechanie może prowadzić do uszkodzeń, które będą kosztowne w naprawie. Odczyt i ocena uzysku solarnego są niezbędne dla zrozumienia efektywności systemu. Pomiar wydajności pozwala na wczesne wykrycie problemów, takich jak nieszczelności czy niedobory ciepła, które mogą wpłynąć na opłacalność inwestycji w energię słoneczną. Kontrola ochrony przed zamarzaniem jest również niezwykle ważna, szczególnie w kontekście polskiego klimatu, gdzie niskie temperatury mogą prowadzić do uszkodzenia instalacji. Wszelkie te działania mają na celu zapewnienie, że system solarny działa z maksymalną efektywnością przez cały rok. Ignorowanie tych aspektów w przeglądzie technicznym może prowadzić do poważnych problemów eksploatacyjnych i zwiększenia kosztów związanych z konserwacją lub naprawami. Dobre praktyki w zakresie przeglądów technicznych powinny koncentrować się na prewencji oraz optymalizacji wydajności systemu, co jest kluczowe w kontekście zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 39

Jakie metody łączenia stosuje się do rur miedzianych w instalacjach solarnych?

A. lutowanie twarde
B. złączki zaciskowe
C. lutowanie miękkie
D. złączki konektorowe
Lutowanie twarde to kluczowa technika stosowana w instalacjach solarnych do łączenia rur miedzianych. Proces ten polega na użyciu wysokotemperaturowego stopu lutowniczego, który wnika w szczeliny między elementami, tworząc mocne połączenie odporniejsze na wysokie ciśnienie i temperatury. Lutowanie twarde jest preferowane w instalacjach, gdzie wymagana jest wysoka wytrzymałość i szczelność, co jest szczególnie istotne w systemach solarnych, gdzie płyny robocze muszą być transportowane bez strat. Zgodnie z normami branżowymi, lutowanie twarde powinno być przeprowadzane zgodnie z wytycznymi ASME B31.9 dotyczącymi instalacji przemysłowych, co zapewnia trwałość oraz niezawodność systemów. Przykładem zastosowania lutowania twardego jest łączenie rur w systemach solarnych, gdzie narażone są one na zmienne warunki atmosferyczne oraz różnice ciśnienia. Dodatkowo, technika ta jest również stosowana w instalacjach HVAC i chłodnictwie, co podkreśla jej uniwersalność i niezawodność w różnych aplikacjach.

Pytanie 40

Aby transportować elementy siłowni wiatrowych w Polsce, konieczne jest uzyskanie zgody od GDDKiA. Jaki jest maksymalny dozwolony nacisk na jedną oś napędową pojazdu przewożącego ładunek?

A. 11,5 t
B. 9,5 t
C. 12,5 t
D. 10,5 t
Wybór odpowiedzi 12,5 t, 10,5 t, czy 9,5 t jest wynikiem nieporozumienia dotyczącego regulacji dotyczących transportu ładunków wielkogabarytowych w Polsce. Maksymalny dopuszczalny nacisk na jedną oś napędową pojazdu określony na 12,5 t jest stosunkowo rzadko spotykany i dotyczy standardowych pojazdów ciężarowych w ruchu drogowym. W kontekście transportu elementów siłowni wiatrowych, które mają większe wymiary i wagę, obowiązują specjalne przepisy. Wybór 10,5 t lub 9,5 t również nie uwzględnia aktualnych norm, które definiują maksymalne obciążenia osi w kontekście transportu nadgabarytowego. Typowe błędy myślowe obejmują mylenie standardowych nacisków osi dla pojazdów transportowych z obciążeniem specyficznym dla ładunków wielkogabarytowych. Alternatywne odpowiedzi mogą wynikać z mylnego założenia, że ogólne przepisy dotyczące transportu ciężarowego są wystarczające dla wszelkich form przewozu. W praktyce, przy planowaniu transportu komponentów siłowni wiatrowych, istotne jest konsultowanie się z odpowiednimi regulacjami prawnymi i normami, aby uniknąć problemów z przepisami oraz zapewnić bezpieczeństwo zarówno przewożonym ładunkom, jak i infrastrukturze drogowej.