Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 8 sierpnia 2025 01:26
  • Data zakończenia: 8 sierpnia 2025 01:37

Egzamin zdany!

Wynik: 39/40 punktów (97,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Ile par połączonych ze sobą przewodów (ramek) tworzy najprostszy wirnik w trójfazowym silniku indukcyjnym?

A. Z jednej pary
B. Z sześciu par
C. Z dziewięciu par
D. Z trzech par
Najprostszy wirnik silnika indukcyjnego trójfazowego składa się z jednej pary przewodów połączonych w ramki. Ta konstrukcja jest znana jako wirnik typu klatkowego, który jest powszechnie stosowany w silnikach asynchronicznych. W jednej parze przewodów mamy dwa przewody, które są odpowiedzialne za wytwarzanie pola magnetycznego w wirniku. Zastosowanie jednej pary przewodów pozwala na efektywne generowanie momentu obrotowego przy minimalnych stratach energetycznych. W praktyce, wirnik tego typu jest bardzo wydajny i mało awaryjny, co czyni go idealnym rozwiązaniem dla wielu zastosowań przemysłowych, takich jak pompy, wentylatory czy sprężarki. Projektując silniki elektryczne, inżynierowie bazują na normach takich jak IEC 60034, które definiują wymagania dotyczące wirników oraz ogólnie silników elektrycznych. Warto zaznaczyć, że w przypadku silników wielofazowych, liczba par przewodów w wirniku wpływa na charakterystyki pracy silnika, takie jak moc, moment obrotowy i wydajność, dlatego ich odpowiedni dobór jest kluczowy w projektowaniu.

Pytanie 2

Maksymalne obciążenie prądowe wyjść cyfrowych sterownika PLC 24 V DC wynosi 0,7 A. Jaką wartość mocy może mieć odbiornik, który podłączony do wyjścia sterownika, będzie pobierał prąd niższy od dopuszczalnego?

A. 10 W
B. 20 W
C. 15 W
D. 5 W
Poprawna odpowiedź to 15 W, co wynika z obliczenia maksymalnej wartości mocy odbiornika, który można podłączyć do wyjścia cyfrowego sterownika PLC. Obciążalność prądowa wyjść wynosi 0,7 A, a napięcie zasilania to 24 V. Zatem, moc obliczamy ze wzoru: P = I × U, gdzie P to moc, I to prąd, a U to napięcie. Wstawiając wartości, otrzymujemy: 0,7 A × 24 V = 16,8 W. Jednakże, aby zapewnić bezpieczną pracę urządzenia, odbiornik musi pobierać mniej prądu niż maksymalne dopuszczalne, co oznacza, że 15 W to wartość bezpieczna. W praktyce oznacza to, że do wyjścia PLC możemy podłączyć urządzenia, których moc znamionowa nie przekracza 15 W. Zastosowanie takiego podejścia jest kluczowe w projektowaniu układów automatyki, aby uniknąć uszkodzeń komponentów i zapewnić ich niezawodność. Ta zasada jest zgodna z normami IEC 61131 dotyczącymi programowalnych sterowników logicznych, które podkreślają znaczenie bezpieczeństwa i efektywności w systemach automatyki.

Pytanie 3

Jakiego rodzaju silnik elektryczny powinno się wykorzystać do zasilania taśmociągu, jeśli dostępne jest tylko napięcie 400 V, 50 Hz?

A. Szeregowy
B. Bocznikowy
C. Obcowzbudny
D. Klatkowy
Klatkowy silnik elektryczny, znany także jako silnik asynchroniczny, jest idealnym rozwiązaniem do napędu taśmociągu przy zasilaniu 400 V, 50 Hz. Jego działanie opiera się na różnicy prędkości między polem magnetycznym a wirnikiem, co pozwala na uzyskanie wysokiej efektywności energetycznej. W praktyce, silniki klatkowe charakteryzują się niskimi kosztami eksploatacji, łatwością wmontowania oraz niskimi wymaganiami konserwacyjnymi. Stosuje się je powszechnie w różnych aplikacjach przemysłowych, takich jak transport materiałów, ponieważ potrafią pracować z dużymi obciążeniami i są odporne na przeciążenia. W przypadku taśmociągów, kluczowe jest, aby silnik zapewniał stałą prędkość obrotową i był w stanie sprostać zmiennym warunkom operacyjnym, co silnik klatkowy realizuje w sposób optymalny, zgodnie z normami IEC 60034 dotyczącymi maszyn elektrycznych. Dodatkowo, ich konstrukcja jest prosta, co minimalizuje ryzyko awarii, co czyni je standardem w branży.

Pytanie 4

W programie PLC sygnały niskie lub wysokie przypisane m.in. do wejść i wyjść dyskretnych powinny być definiowane jako zmienne w formacie

A. b
B. W
C. D
D. B
Odpowiedź 'b' jest poprawna, ponieważ odnosi się do formatu bitowego, który jest najwłaściwszy do reprezentowania stanów dyskretnych w sterownikach PLC. Stany niski i wysoki są naturalnie reprezentowane przez bity, które mogą przyjmować tylko dwie wartości: 0 (niski) oraz 1 (wysoki). W kontekście programowania PLC, bity są kluczowe dla przechwytywania i przetwarzania sygnałów z dyskretnych wejść oraz sterowania wyjściami. Przy projektowaniu systemów automatyki, zgodnie z najlepszymi praktykami, zastosowanie bitów do reprezentacji prostych stanów pozwala na oszczędność pamięci oraz zwiększa efektywność obliczeniową. Warto także zwrócić uwagę, że użycie bitów jest zgodne z międzynarodowym standardem IEC 61131, który definiuje struktury danych dla systemów automatyki. W praktyce, w przypadku większych systemów, na przykład w automatyce przemysłowej, zaleca się organizowanie stanu wejść i wyjść w tablice bitowe, co upraszcza zarówno programowanie, jak i diagnostykę systemów. Przykładowo, w aplikacjach takich jak kontrola procesów, wyjścia mogą być używane do aktywacji przekaźników na podstawie odczytów z czujników, a stosowanie bitów zapewnia bezproblemowe zarządzanie tymi stanami.

Pytanie 5

W systemie Komputerowo Zintegrowanego Wytwarzania (CIM) za co odpowiada moduł RDP?

A. organizowanie i zarządzanie produkcją
B. rejestrowanie danych procesowych
C. komputerowe wspomaganie produkcji
D. komputerowo wspomagane projektowanie
Moduł RDP (Rejestracja Danych Procesowych) w Komputerowo Zintegrowanym Wytwarzaniu (CIM) odgrywa kluczową rolę w zbieraniu i rejestracji danych dotyczących procesów produkcyjnych. Jego głównym zadaniem jest monitorowanie kluczowych parametrów, takich jak czas obróbki, zużycie narzędzi, a także inne istotne dane, które umożliwiają analizę efektywności produkcji. Zbierane informacje są niezbędne do optymalizacji procesów, co przekłada się na zwiększenie wydajności oraz redukcję kosztów. Na przykład, analiza zebranych danych może wskazać, czy dany proces wymaga modyfikacji, aby zmniejszyć czas przestoju lub zwiększyć jakość produkcji. Zgodnie z najlepszymi praktykami w branży, regularne monitorowanie tych danych pozwala na wprowadzenie usprawnień oraz szybką reakcję na ewentualne problemy, co jest kluczowe w środowisku produkcyjnym. Wykorzystując moduł RDP, przedsiębiorstwa mogą zastosować metody ciągłego doskonalenia, takie jak Six Sigma czy Lean Manufacturing, co prowadzi do długotrwałego wzrostu konkurencyjności na rynku.

Pytanie 6

Na podstawie tabeli z dokumentacji techniczno-ruchowej przekładni napędu wskaż wszystkie czynności konserwacyjne, które należy przeprowadzić po upływie 4 lat i 3 miesięcy od przyjęcia jednostki napędowej do eksploatacji.

Lp.CzynnośćOdstępy czasu
1Sprawdzenie odgłosów z kół zębatych, łożyskco 1 miesiąc
2Sprawdzenie temperatury obudowy (maksymalna 90°C)
3Wizualne sprawdzenie uszczelnień
4Usunięcie kurzu, pyłu z powierzchni napędu
5Oczyszczenie korka odpowietrzającego i jego bezpośredniego otoczeniaco 3 miesiące
6Sprawdzenie śrub montażowych korpusu napęduco 6 miesięcy
7Sprawdzenie amortyzatorów gumowychco 48 miesięcy
8Wizualne sprawdzenie uszczelnień wału i ewentualnie wymiana
A. 5, 8
B. 1, 2, 3, 4, 5
C. 1, 2, 3, 4, 5, 6, 7
D. 1, 2, 3, 4, 5, 8
Odpowiedź 1, 2, 3, 4, 5 jest poprawna, ponieważ obejmuje wszystkie kluczowe czynności konserwacyjne wymagane po upływie 4 lat i 3 miesięcy eksploatacji jednostki napędowej. Regularna konserwacja jest niezbędna dla zapewnienia niezawodności systemów napędowych, a jej celem jest zapobieganie awariom i wydłużenie żywotności urządzeń. Przykładowo, czynności takie jak wymiana oleju, kontrola stanu uszczelek oraz sprawdzenie poziomu płynów eksploatacyjnych wpływają na efektywność pracy przekładni oraz minimalizują ryzyko uszkodzeń. Dobre praktyki branżowe sugerują, że takie przeglądy powinny być dokumentowane w systemie zarządzania utrzymaniem ruchu, co pozwala na śledzenie historii konserwacji i planowanie przyszłych działań. Biorąc pod uwagę znaczenie regularnej konserwacji, odpowiedzi 1, 2, 3, 4, 5 są zgodne z normami ISO 9001 dotyczącymi zarządzania jakością, które kładą nacisk na systematyczne podejście do utrzymania i poprawy efektywności operacyjnej.

Pytanie 7

Którego modułu funkcjonalnego powinno się użyć w programie, gdy konieczne jest zarejestrowanie momentu, w którym nastąpiło przerwanie sygnału na wejściu aktywującym timer?

A. TP
B. TOF
C. TON
D. TONR
Blok funkcjonalny TONR, czyli Timer On Delay Retentive, odpowiada za pamiętanie czasu, w którym sygnał na wejściu został przerwany. Dzięki tej funkcji retencyjnej, czas zostaje zachowany nawet, gdy sygnał już nie działa – to jest mega ważne, gdy trzeba zarejestrować moment wystąpienia zdarzenia i potem dalej to monitorować. Na przykład w automatyce przemysłowej, gdzie czasy cykli produkcyjnych są kluczowe, TONR pozwala na zapisanie momentu, kiedy cykl się zaczyna, a potem analizowanie tych danych po zakończeniu. Zgodnie z normą IEC 61131-3, korzystanie z takich bloków jak TONR przy programowaniu PLC jest naprawdę istotne, bo ułatwia tworzenie programów, które są niezawodne i łatwe do diagnozowania. Dodatkowo, użycie tych bloków poprawia czytelność kodu i sprawia, że łatwiej wprowadzać w nim zmiany czy rozbudowywać aplikację.

Pytanie 8

Jaką metodę czyszczenia powinno się zastosować podczas montażu elementów hydraulicznych na końcowym etapie?

A. Osuszenia w wysokiej temperaturze
B. Przemycia wodą
C. Przedmuchania sprężonym powietrzem
D. Przetarcia rozpuszczalnikiem
Metoda przedmuchania sprężonym powietrzem jest kluczowym etapem w montażu elementów hydraulicznych, ponieważ pozwala na skuteczne usunięcie wszelkich drobnych zanieczyszczeń, które mogłyby wpłynąć na prawidłowe funkcjonowanie systemu. Zastosowanie sprężonego powietrza umożliwia dotarcie do trudno dostępnych miejsc, gdzie mogą gromadzić się pyły i cząstki stałe. Dobrą praktyką w branży hydraulicznej jest wykonywanie przedmuchania na zakończenie montażu, aby upewnić się, że wszystkie elementy są wolne od zanieczyszczeń przed ich uruchomieniem. W wielu przypadkach, zanieczyszczenia mogą prowadzić do awarii systemu, co z kolei może generować niepotrzebne koszty związane z naprawą i przestojem. Warto również pamiętać, że przedmuchanie sprężonym powietrzem powinno być przeprowadzane zgodnie z odpowiednimi normami BHP, aby zminimalizować ryzyko wystąpienia niebezpiecznych sytuacji. Ponadto, technika ta jest często stosowana w połączeniu z innymi metodami oczyszczania, co pozwala na uzyskanie jeszcze lepszych rezultatów, zapewniając długowieczność i niezawodność systemów hydraulicznych.

Pytanie 9

Ręczne sterowanie prasą hydrauliczną postanowiono zastąpić automatycznym zarządzaniem przy pomocy sterownika PLC. Parametry technologiczne prasy pozostają bez zmian. Jakie elementy powinien uwzględniać projekt modernizacji prasy?

A. Określenie parametrów wytrzymałościowych mechanizmów i sprawdzenie zabezpieczeń
B. Przygotowanie schematów układu sterowania oraz opracowanie programu
C. Obliczenie parametrów elementów prasy oraz stworzenie programu
D. Obliczenie parametrów mediów zasilających prasę oraz zaprojektowanie zabezpieczeń
Sporządzenie schematów układu sterowania oraz opracowanie programu jest kluczowym krokiem w procesie modernizacji prasy hydraulicznej. Przeniesienie ręcznego sterowania na automatyczne za pomocą sterownika PLC wymaga precyzyjnego zaplanowania architektury układu sterowania, co obejmuje zarówno schematy ideowe, jak i szczegółowe. Schematy te powinny zawierać wszystkie elementy systemu, takie jak czujniki, wykonawcze elementy hydrauliczne oraz interfejsy komunikacyjne. Opracowanie programu sterującego jest równie istotne, gdyż to właśnie on definiuje logikę działania urządzenia, umożliwiając precyzyjne kontrolowanie procesu w czasie rzeczywistym. W praktyce, zastosowanie standardów takich jak IEC 61131-3 pozwala na tworzenie programów w sposób modularny, co ułatwia ich późniejszą modyfikację i konserwację. Dodatkowo, przy projektowaniu układu sterowania warto uwzględnić protokoły komunikacyjne, co pozwoli na integrację prasy z innymi elementami linii produkcyjnej, zapewniając większą elastyczność i efektywność w procesie produkcji.

Pytanie 10

Aby otrzymać poprawny wynik pomiaru temperatury przy użyciu czujnika termoelektrycznego, należy zagwarantować

A. kompensację zmian temperatury, która jest mierzona
B. odpowiednią polaryzację napięcia zasilającego czujnik
C. odpowiednią wartość napięcia zasilającego czujnik
D. kompensację zmian temperatury odniesienia
Kompensacja zmian temperatury odniesienia jest kluczowym aspektem w pomiarach temperatury z wykorzystaniem czujników termoelektrycznych, takich jak termopary. Wynika to z faktu, że różnica temperatury między punktem pomiaru a punktem odniesienia ma istotny wpływ na dokładność uzyskiwanych wyników. W praktyce oznacza to, że aby uzyskać wiarygodne odczyty, konieczne jest zapewnienie stabilnych warunków otoczenia, w których czujnik termoelektryczny jest zainstalowany. Dobre praktyki w branży zakładają stosowanie kompensacji poprzez zastosowanie czujników referencyjnych, które pozwalają na automatyczne korekty wyników pomiarów. Ponadto, w kontekście norm międzynarodowych, takich jak IEC 584, istotne jest, aby czujniki były montowane i eksploatowane zgodnie z zaleceniami producenta. Takie podejście nie tylko zwiększa dokładność pomiarów, ale także wydłuża żywotność czujników. Przykładem zastosowania kompensacji zmian temperatury odniesienia jest przemysł petrochemiczny, gdzie precyzyjne pomiary temperatury są kluczowe dla zapewnienia bezpieczeństwa i efektywności procesów technologicznych.

Pytanie 11

Obniżenie błędu statycznego, skrócenie czasu odpowiedzi, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów z przetwornika pomiarowego charakteryzuje działanie regulatora

A. P
B. PID
C. PD
D. I
Regulator PD (proporcjonalno-derywacyjny) jest stosowany w systemach regulacji, gdzie kluczowe znaczenie ma szybka reakcja na zmiany w wartościach regulowanych. Jego działanie polega na ograniczeniu błędu statycznego oraz skróceniu czasu reakcji, co czyni go idealnym rozwiązaniem w aplikacjach wymagających dynamicznej regulacji. Przykładami zastosowania regulatora PD są systemy automatyki przemysłowej, gdzie szybkie dostosowanie parametrów, takich jak temperatura czy ciśnienie, jest niezbędne dla zachowania efektywności procesów produkcyjnych. W praktyce, zastosowanie regulatora PD może prowadzić do znacznego zmniejszenia czasu potrzebnego na osiągnięcie wartości docelowej, co jest zgodne z najlepszymi praktykami inżynieryjnymi. Jednakże, należy pamiętać, że przy niższych częstotliwościach może dojść do pogorszenia jakości regulacji, co jest istotnym czynnikiem, który warto uwzględnić podczas projektowania systemu regulacji.

Pytanie 12

Jakim napięciem powinien być zasilany cyfrowy mikroprocesorowy regulator DCRK 12 przeznaczony do kompensacji współczynnikamocy w układach napędów elektrycznych, o danych znamionowychzamieszczonych w tabeli?

Ilość stopni regulacji12
Regulacja współczynnika mocy0,8 ind. – 0,8 pojem.
Napięcie zasilania i kontroli Ue380...415V, 50/60Hz
Roboczy zakres działania Ue- 15% ... +10% Ue
Wejście pomiarowe prądu5 A
Typ pomiaru napięcia i prąduRMS
Ilość wyjść przekaźnikowych12
Maksymalny prąd załączenia12 A
A. 230 V DC
B. 400 V DC
C. 230 V AC
D. 400 V AC
Odpowiedź "400 V AC" jest poprawna, ponieważ zgodnie z danymi znamionowymi mikroprocesorowego regulatora DCRK 12, wymagane napięcie zasilania wynosi 380...415 V w zakresie 50/60 Hz. Napięcie 400 V AC odpowiada standardowym wartościom w sieciach przemysłowych, co czyni je idealnym do zastosowań w układach napędów elektrycznych. W praktyce, regulator DCRK 12 jest często wykorzystywany w systemach kompensacji współczynnika mocy, co przyczynia się do poprawy efektywności energetycznej i stabilizacji napięcia w instalacjach przemysłowych. Przy niewłaściwym napięciu zasilania, można doświadczyć uszkodzenia sprzętu lub nieprawidłowego działania regulatora, co podkreśla znaczenie właściwego doboru napięcia. W branży energetycznej, stosowanie regulatorów z odpowiednimi parametrami zasilania jest kluczowe dla zapewnienia efektywności operacyjnej i minimalizacji strat energetycznych.

Pytanie 13

Która z technik identyfikacji miejsca nieszczelności w systemach pneumatycznych jest najczęściej używana?

A. Nasłuchiwanie źródła specyficznego dźwięku
B. Obserwacja obszaru, z którego uchodzi powietrze
C. Pomiar ciśnienia w różnych punktach systemu
D. Wykrywanie źródła charakterystycznego zapachu
Nasłuchiwanie źródła charakterystycznego dźwięku jest jedną z najskuteczniejszych metod lokalizacji nieszczelności w układach pneumatycznych. Nieszczelności te generują dźwięki, które mają specyficzny charakter, co umożliwia ich identyfikację. W praktyce, technicy często wykorzystują proste narzędzia, takie jak stethoskop pneumatyczny lub nawet standardowe słuchawki, aby wyłapać dźwięki wydobywające się z miejsca nieszczelności. Dzięki tej metodzie można szybko i efektywnie zlokalizować problem, co ogranicza czas przestoju urządzeń. Nasłuchiwanie jest zgodne z dobrymi praktykami branżowymi, które zalecają regularne przeglądy układów pneumatycznych i monitorowanie ich stanu operacyjnego. Przykładem zastosowania tej metody może być diagnostyka nieszczelności w instalacjach przemysłowych, gdzie każdy wyciek powietrza może prowadzić do znacznych strat energetycznych. Umożliwia to także wczesne wykrywanie potencjalnych awarii, co jest kluczowe dla utrzymania ciągłości produkcji oraz bezpieczeństwa pracy.

Pytanie 14

Na podstawie przedstawionych danych katalogowych narzędzia skrawającego wskaż wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej.

Rodzaj obróbkiDokładność obróbkiChropowatość powierzchni
(Ra) μm
Zakres posuwów
mm/obr
Zakres
głębokości
mm
Obróbka dokładnaIT6-IT90,32÷1,250,05÷0,30,5÷2
Obróbka średniodokładnaIT9-IT112,5÷50,2÷0,52÷4
Obróbka zgrubnaIT12-IT1410÷40≥0,4≥4
A. 0,5 mm
B. 0,8 mm
C. 5,0 mm
D. 2,0 mm
Wartość głębokości warstwy skrawanej, którą należy ustawić w obrabiarce CNC dla obróbki zgrubnej, wynosi 5,0 mm. Zgodnie z danymi katalogowymi, podczas obróbki zgrubnej zaleca się głębokości skrawania wynoszące co najmniej 4 mm, co czyni tę odpowiedź poprawną. Ustalenie optymalnej głębokości skrawania jest kluczowe dla efektywności procesu obróbczy. Zbyt mała głębokość może prowadzić do wydłużenia czasu obróbki oraz niższej efektywności materiałowej, podczas gdy zbyt duża głębokość może powodować nadmierne obciążenie narzędzia, co w skrajnych przypadkach prowadzi do jego uszkodzenia. W praktyce, głębokość skrawania powinna być dostosowywana do rodzaju materiału oraz rodzaju narzędzia. Przykładowo, w obróbce stali narzędziowej często stosuje się głębokości skrawania w zakresie 5-10 mm, co zwiększa wydajność procesu i zmniejsza ryzyko przegrzania narzędzi. Dla zachowania wysokiej jakości obróbki, warto również monitorować stan narzędzia podczas pracy oraz stosować odpowiednie chłodziwa, co wpływa na jego trwałość i efektywność skrawania.

Pytanie 15

Jakim symbolem literowym jest oznaczane na schemacie układu hydraulicznego przyłącze przewodu ciśnieniowego?

A. Symbolem T
B. Symbolem P
C. Symbolem A
D. Symbolem B
Odpowiedź "Symbolem P" jest poprawna, ponieważ w schematach układów hydraulicznych standardowe oznaczenia literowe mają kluczowe znaczenie dla prawidłowego montażu i serwisowania. Symbol P oznacza przyłącze przewodu tłocznego, co jest istotne, ponieważ to właśnie przez ten przewód płyn hydrauliczny jest dostarczany do systemu pod wysokim ciśnieniem. Oznaczenie to wywodzi się od angielskiego słowa "Pressure", co podkreśla jego związek z ciśnieniem. W praktyce, zrozumienie i poprawne odczytywanie tych symboli jest niezbędne, aby uniknąć błędów, które mogą prowadzić do awarii systemu hydraulicznego. Na przykład, nieprawidłowe podłączenie przewodów tłocznych może skutkować wyciekiem płynów, co z kolei wpłynie na efektywność układu oraz może prowadzić do kosztownych napraw. Dlatego znajomość standardów i dobrych praktyk dotyczących oznaczeń hydraulicznych jest kluczowa dla inżynierów i techników w tej dziedzinie, a symbol P stanowi fundament w rozumieniu schematów hydraulicznych.

Pytanie 16

Młot pneumatyczny, który jest częścią robota frezarskiego, ma zamontowane urządzenie do smarowania. Jakie z zaleceń dotyczących uzupełnienia oleju, jeśli nie zostanie spełnione, może prowadzić do obrażeń pracownika obsługującego?

A. Warto sprawdzić, czy wąż doprowadzający sprężone powietrze oraz jego złącza są w dobrym stanie, a także upewnić się, że wszystkie połączenia zostały wykonane prawidłowo.
B. Należy wlać do młota zalecaną ilość oleju, tak aby poziom oleju nie przekraczał najniższego zwoju gwintu, a następnie umieścić korek wlewu oleju i dokręcić go.
C. Przed odkręceniem korka wlewu oleju konieczne jest odcięcie dopływu sprężonego powietrza oraz spuścić powietrze z wnętrza młota.
D. Najpierw należy oczyścić powierzchnię wokół korka wlewu oleju, a następnie przystąpić do jego odkręcania.
Odpowiedź jest poprawna, ponieważ odcięcie dopływu sprężonego powietrza oraz spuszczenie powietrza z wnętrza młota pneumatycznego to kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa podczas uzupełniania oleju. W przypadku braku tych działań, ciśnienie wewnętrzne może spowodować nagłe uwolnienie, co prowadzi do potencjalnie niebezpiecznych sytuacji, takich jak wyrzucenie korka z dużą siłą, co może narażać obsługującego na poważne obrażenia. Przykład praktyczny: w standardach BHP oraz przy użytkowaniu narzędzi pneumatycznych, zawsze przed jakąkolwiek interwencją serwisową należy zadbać o bezpieczeństwo, co obejmuje również sprawdzenie, czy nie ma ciśnienia w systemie. Dobre praktyki branżowe zalecają stosowanie etykiet informujących o konieczności wyłączenia sprężarki oraz spuszczenia powietrza z urządzeń przed ich serwisowaniem, co ma na celu minimalizację ryzyka wystąpienia wypadków.

Pytanie 17

Które polecenie umożliwi przeniesienie programu z komputera do sterownika PLC?

A. Erase Memory
B. Download
C. Write
D. Upload
Operacja 'Download' jest kluczowym procesem w programowaniu sterowników PLC, ponieważ umożliwia przesłanie zdefiniowanego programu z komputera do pamięci sterownika. W kontekście automatyki przemysłowej, połączenie komputera z PLC zazwyczaj odbywa się za pomocą interfejsów komunikacyjnych, takich jak Ethernet, RS-232 czy USB. Proces ten może obejmować różne etapy, w tym kompilację kodu źródłowego w programie inżynierskim, co jest standardową praktyką. Operatorzy muszą być świadomi, że po zakończeniu programowania i przetestowaniu logiki na symulatorze, bezpośrednie przesłanie programu do PLC jest kluczowe do wdrożenia rozwiązań automatyzacyjnych w rzeczywistym środowisku. Dobry program inżynierski będzie zawierał również funkcje walidacji, aby upewnić się, że przesyłany kod jest zgodny z wymaganiami systemu. Warto również dodać, że po dokonaniu operacji 'Download', użytkownik powinien monitorować działanie PLC, aby upewnić się, że program działa zgodnie z założeniami operacyjnymi. Zrozumienie tego procesu to fundament skutecznego zarządzania systemami automatyzacji.

Pytanie 18

Jakie powinno być ciśnienie powietrza zasilającego siłownik, którego powierzchnia tłoka wynosi S = 0,003 m2, aby uzyskać siłę F = 1,5 kN?

A. 50,0 hPa
B. 0,5 MPa
C. 50,0 kPa
D. 5,0 MPa
Poprawna odpowiedź to 0,5 MPa, co odpowiada wartości ciśnienia powietrza zasilającego siłownik w tej konkretnej sytuacji. Siła oddziaływania F, która wynosi 1,5 kN, jest związana z ciśnieniem p oraz powierzchnią czynna tłoka S poprzez równanie F = p * S. Wstawiając dane: 1,5 kN = 0,5 MPa * 0,003 m², otrzymujemy poprawne równanie. W praktyce, odpowiednie ciśnienie zasilające jest kluczowe dla zapewnienia efektywności i bezpieczeństwa w systemach pneumatycznych. Na przykład, w automatyce przemysłowej, zastosowanie odpowiedniego ciśnienia powietrza wpływa na precyzyjność oraz siłę działań siłowników, co jest istotne przy precyzyjnych procesach montażowych. Dobre praktyki wskazują, że ciśnienie powinno być monitorowane, aby uniknąć zarówno niedociśnienia, jak i nadciśnienia, które mogą prowadzić do uszkodzeń lub nieszczelności w systemie.

Pytanie 19

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Grubą kreską.
B. Grubą linią punktową.
C. Cienką ciągłą linią zygzakową.
D. Cienką z długą kreską oraz kropką.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 20

Która z podanych kategorii regulatorów powinna być brana pod uwagę w projekcie systemu mechatronicznego o nieciągłej regulacji temperatury?

A. Proporcjonalny
B. Dwustawny
C. Różniczkujący
D. Całkujący
Odpowiedź "dwustawny" jest prawidłowa, ponieważ regulator dwustawny jest idealnym rozwiązaniem w systemach mechatronicznych, które wymagają nieciągłej regulacji temperatury. Tego typu regulator działa na zasadzie włączania i wyłączania elementu wykonawczego, takiego jak grzałka, w zależności od aktualnej temperatury w stosunku do zadanej wartości. Przykładowo, w systemach ogrzewania, gdy temperatura spada poniżej progu, regulator włącza grzałkę, a gdy temperatura osiąga wartość docelową, grzałka jest wyłączana. Taka strategia regulacji jest nie tylko energooszczędna, ale także prosta w implementacji. Zastosowanie regulatora dwustawnego jest zgodne z dobrymi praktykami w projektowaniu systemów automatyki, gdzie kluczowe jest zapewnienie stabilności i efektywności energetycznej. Standardy takie jak IEC 61131 w kontekście programowania sterowników PLC również podkreślają użycie regulatorów, które najlepiej pasują do charakterystyki danego procesu, co potwierdza wybór regulatora dwustawnego w tym przypadku.

Pytanie 21

Jakie rodzaje środków ochrony osobistej powinny być używane podczas pracy z tokarką CNC?

A. Rękawice elektroizolacyjne
B. Kamizelka odblaskowa
C. Ubranie robocze przylegające do ciała
D. Kask ochronny
Przylegające do ciała ubranie robocze to kluczowy element ochrony osobistej podczas obsługi tokarki CNC. Tego rodzaju odzież minimalizuje ryzyko wciągnięcia luźnych materiałów w ruchome elementy maszyny, co może prowadzić do poważnych obrażeń. W branży obróbczej, zgodnie z normami BHP, zaleca się stosowanie odzieży roboczej o właściwych właściwościach, która nie tylko zapewnia bezpieczeństwo, ale również komfort. Przykładowo, specjalistyczne ubrania wykonane z materiałów odpornych na działanie olejów i smarów, a także z odpowiednich tkanin, mogą zwiększyć ochronę. Dodatkowo, zastosowanie takiej odzieży wspiera zachowanie ergonomii pracy, co ma kluczowe znaczenie w kontekście długotrwałej obsługi maszyn. Obowiązujące wytyczne dotyczące BHP podkreślają znaczenie świadomości zagrożeń oraz stosowania odpowiednich środków ochrony indywidualnej, co jest fundamentem odpowiedzialnego zachowania w miejscu pracy.

Pytanie 22

Jakie symptomy pracy jednofazowego silnika klatkowego mogą wskazywać na uszkodzenie kondensatora?

A. Brak jakiejkolwiek reakcji po włączeniu zasilania
B. Zmiana kierunku obrotu wirnika
C. Trudności z uruchomieniem silnika
D. Skłonności do samoczynnego rozbiegnięcia się wirnika
Trudności z rozruchem silnika w silniku klatkowym jednofazowym są kluczowym objawem uszkodzenia kondensatora. Kondensator pełni fundamentalną rolę w procesie rozruchu, ponieważ generuje dodatkową fazę niezbędną do rozpoczęcia pracy silnika. W przypadku awarii kondensatora, moment startowy silnika jest znacznie osłabiony, co skutkuje jego niemożnością osiągnięcia pełnych obrotów. W praktyce, silniki te wymagają odpowiednich kondensatorów, dostosowanych do ich parametrów, aby zapewnić prawidłowe działanie. W przypadku stwierdzenia trudności w rozruchu, warto sprawdzić kondensator, a także inne elementy, takie jak uzwojenia, które mogą również wpływać na wydajność silnika. Standardy branżowe zalecają regularne przeglądy kondensatorów, aby zminimalizować ryzyko awarii i zapewnić długotrwałą, stabilną pracę silnika. Wiedza o roli kondensatora i umiejętność jego diagnostyki są istotnymi umiejętnościami dla specjalistów zajmujących się naprawą i konserwacją silników elektrycznych.

Pytanie 23

Jakie substancje należy zgromadzić, zanim przystąpimy do czyszczenia łożysk tocznych oraz ich ponownego nasmarowania?

A. Ciepłą wodę z detergentem oraz dowolny smar do łożysk tocznych
B. Benzynę oraz ten sam rodzaj smaru, jaki został użyty wcześniej
C. Ciepłą wodę z detergentem oraz ten sam typ smaru, który był wcześniej użyty
D. Destylowaną wodę oraz dowolny smar do łożysk tocznych
Poprawna odpowiedź, czyli użycie benzyny oraz takiego samego rodzaju smaru, jaki był wcześniej stosowany, wynika z potrzeby skutecznego czyszczenia łożysk tocznych. Benzyna jest rozpuszczalnikiem, który skutecznie usuwa stare zanieczyszczenia i smar, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania łożysk. Przed ponownym nałożeniem smaru należy upewnić się, że powierzchnie są całkowicie czyste, aby uniknąć mieszania się starych i nowych substancji smarnych, co mogłoby prowadzić do degradacji ich właściwości. Dobrym praktykiem jest także zastosowanie smaru tej samej marki i typu, jaki był wcześniej używany, ponieważ różne smary mogą mieć różne składniki chemiczne, co może prowadzić do niekompatybilności i obniżenia efektywności smarowania. W przypadku łożysk tocznych, które są kluczowe dla wielu mechanizmów w maszynach, przestrzeganie tych zasad jest niezbędne dla ich długotrwałej wydajności oraz bezpieczeństwa operacyjnego.

Pytanie 24

Selsyn trygonometryczny (resolver) wykorzystywany w serwomechanizmach ma na celu pomiar

A. szybkości kątowej
B. przemieszczeń liniowych
C. przemieszczeń kątowych
D. szybkości liniowej
Selsyn trygonometryczny, znany również jako resolver, jest kluczowym elementem w serwomechanizmach, który służy do pomiaru przemieszczeń kątowych. Jego działanie opiera się na przekształceniu ruchu obrotowego na sygnał elektryczny, co pozwala na dokładne określenie kąta obrotu wału. Przykładowo, w automatycznych systemach sterowania, takich jak roboty przemysłowe czy systemy CNC, selsyny są używane do monitorowania pozycji narzędzi i ich precyzyjnego ustalania. Zastosowanie selsynów w takich aplikacjach jest zgodne z najlepszymi praktykami w zakresie automatyzacji, zapewniając nieprzerwaną i dokładną informację zwrotną o położeniu. Z perspektywy inżynieryjnej, pomiar przemieszczeń kątowych jest niezbędny do precyzyjnego sterowania ruchem, co wpływa na efektywność i jakość produkcji. Warto zaznaczyć, że standardy branżowe, takie jak ISO 9409, definiują wymagania dotyczące takich systemów, co świadczy o ich znaczeniu w nowoczesnych technologiach automatyzacji.

Pytanie 25

Aby zweryfikować, czy w uzwojeniu cewki nie wystąpiła przerwa, należy przeprowadzić pomiar

A. rezystancji izolacji cewki
B. dobroci cewki
C. napięcia na zaciskach cewki
D. rezystancji uzwojenia cewki
Pomiar rezystancji w cewce to naprawdę ważna sprawa, jeśli chodzi o sprawdzanie, w jakim stanie ona jest. Kiedy cewka działa jak powinna, to rezystancja uzwojenia powinna pokazywać określoną wartość, zgodną z tym, co podaje producent. Jeśli natomiast cewka ma przerwę, to ta rezystancja może być bliska zeru albo nawet bardzo niska, co oznacza, że coś jest nie tak z obwodem. Z mojego doświadczenia, technicy często robią takie pomiary w trakcie rutynowych kontroli, żeby mieć pewność, że wszystko działa jak należy, zanim się zacznie używać cewki. Normy branżowe, jak IEC 60076, sugerują, że testowanie rezystancji uzwojenia powinno być stałym punktem w procedurach konserwacyjnych sprzętu elektrycznego. Te działania naprawdę mogą pomóc uniknąć poważniejszych problemów, które mogłyby prowadzić do awarii i kosztownych przestojów w pracy.

Pytanie 26

Wymiana danych pomiędzy urządzeniami w sieci komunikacyjnej o danej topologii wymaga zaangażowania wszystkich urządzeń sieciowych.

A. drzewa
B. magistrali
C. pierścienia
D. gwiazdy
Odpowiedź "pierścienia" jest poprawna, ponieważ w topologii sieciowej pierścienia każde urządzenie jest bezpośrednio połączone z dwoma innymi, tworząc zamknięty obwód. To oznacza, że w celu przesyłania informacji każde urządzenie musi odbierać dane od swojego sąsiada i przekazywać je dalej. W praktyce to podejście zapewnia, że wszystkie urządzenia są zaangażowane w proces wymiany informacji, co przyczynia się do efektywności komunikacji. Przykładem zastosowania takiej topologii jest sieć Token Ring, która była powszechnie używana w latach 80. i 90. XX wieku. W sytuacjach, gdy jedno z urządzeń ulegnie awarii, przekazywanie danych może zostać przerwane, co pokazuje, jak istotna jest współpraca wszystkich urządzeń w pierścieniu. Zgodnie z dobrymi praktykami projektowania sieci, zrozumienie topologii i jej implikacji dla wymiany informacji pozwala na lepsze planowanie i optymalizację zasobów sieciowych, co jest kluczowe w kontekście zarządzania dużymi infrastrukturami IT.

Pytanie 27

Wskaż system sieciowy, który korzysta z topologii w kształcie pierścienia?

A. InterBus
B. Modbus
C. Profibus DPInterBus-S
D. LonWorks
Wybór odpowiedzi, które nie wskazują na InterBus, może prowadzić do mylnych wniosków dotyczących typów topologii sieci przemysłowych. LonWorks, Profibus DP oraz Modbus nie są zbudowane na zasadzie pierścieniowej. LonWorks jest siecią, która zazwyczaj wykorzystuje topologię gwiazdy lub szyny, w zależności od konfiguracji systemu. Tego rodzaju topologia umożliwia elastyczność w projektowaniu, ale nie zapewnia cyklicznego przesyłania danych jak w przypadku pierścienia. Profibus DP również opiera się na topologii szyny, co ułatwia podłączenie wielu urządzeń, ale wprowadza ryzyko kolizji w przypadku równoczesnych transmisji. Modbus, z kolei, to protokół komunikacyjny, który zazwyczaj operuje w topologii szeregowej, co ogranicza prędkość transmisji i zwiększa czas potrzebny na przesyłanie danych. Myślenie o tych sieciach jako o rozwiązaniach pierścieniowych może prowadzić do błędnych wyborów przy projektowaniu systemów automatyki, co z kolei może skutkować obniżeniem efektywności komunikacji. Dobrą praktyką jest zawsze zwracanie uwagi na właściwy dobór topologii sieci w zależności od wymagań danego zastosowania, aby zapewnić niezawodność i odpowiednie parametry działania.

Pytanie 28

W jakim silniku uzwojenie stojana jest połączone w sposób równoległy z uzwojeniem wirnika?

A. Obcowzbudnym
B. Asynchronicznym
C. Synchronicznym
D. Bocznikowym
Silnik bocznikowy to rodzaj silnika prądu stałego, w którym uzwojenie stojana jest połączone równolegle z uzwojeniem wirnika. To połączenie umożliwia niezależne sterowanie prądem w uzwojeniu wirnika i stojana, co w praktyce pozwala na łatwe regulowanie prędkości obrotowej oraz momentu obrotowego. W przypadku silników bocznikowych, zmiana wartości prądu w uzwojeniu stojana prowadzi do zmiany prądu w uzwojeniu wirnika, a tym samym do zmiany prędkości obrotowej silnika. Dzięki temu, silniki te znajdują zastosowanie w różnych aplikacjach wymagających precyzyjnego sterowania, takich jak dźwigi, wciągarki czy maszyny CNC. W kontekście standardów branżowych, silniki bocznikowe są często wykorzystywane w instalacjach wymagających dużej elastyczności w regulacji pracy, co zostało potwierdzone w dokumentacji norm IEC dotyczących silników elektrycznych. Dodatkowo, ich konstrukcja pozwala na łatwą konserwację i naprawy, co czyni je popularnym wyborem w przemyśle.

Pytanie 29

Zmierzyliśmy rezystancję pomiędzy czterema końcówkami 1, 2, 3, 4 uzwojeń transformatora napięcia 230 V/24 V i otrzymaliśmy następujące wartości: R12 = ∞, R13 = 0,05 Ω, R14 = ∞, R23 = ∞, R24 = 0,85 Ω, R34 = ∞. Które końcówki powinny być użyte do podłączenia napięcia 230 V?

A. 1, 3
B. 2, 4
C. 1, 2
D. 2, 3
Prawidłowa odpowiedź to 1, 2, ponieważ rezystancje pomiędzy końcówkami 2 i 4 oraz 1 i 3 wskazują, że te kombinacje stanowią uzwojenia, które można zasilać napięciem 230 V. Rezystancje R12 i R14 są nieskończone, co sugeruje brak połączenia między tymi końcówkami, jednak R13 wynosi 0,05 Ω, co wskazuje na bezpośrednie połączenie między końcówkami 1 i 3. Ponadto, R24 wynosi 0,85 Ω, co również sugeruje, że między końcówkami 2 i 4 istnieje niskoresystancyjne połączenie. W praktyce, aby efektywnie zasilać transformator, należy podłączyć go do końcówek, które wykazują odpowiednie połączenia niskoresystancyjne, co zminimalizuje straty energii i zapewni odpowiednie działanie transformatora. W tym przypadku, końcówki 1, 3 oraz 2, 4 są odpowiednie do podłączenia napięcia. W standardzie IEC 60076 dotyczącym transformatorów mocy, podłączenia te są kluczowe dla zapewnienia stabilności i bezpieczeństwa operacji elektrycznych.

Pytanie 30

Jaką rolę odgrywa zawór przelewowy w hydraulicznej prasie?

A. Umożliwia regulację wartości siły wytwarzanej przez prasę.
B. Filtruje zanieczyszczenia z oleju.
C. Chroni przed powrotem oleju z rozdzielacza do pompy.
D. Zrzuca olej z siłownika do zbiornika.
Zawór przelewowy odgrywa kluczową rolę w systemach hydraulicznych, w tym prasie hydraulicznej, umożliwiając regulację maksymalnej wartości siły generowanej przez urządzenie. Jego głównym zadaniem jest odprowadzanie nadmiaru ciśnienia, co pozwala uniknąć uszkodzeń komponentów hydraulicznych, a także optymalizować efektywność pracy prasy. Przykładowo, w sytuacji, gdy ciśnienie wzrasta powyżej ustalonego poziomu, zawór przelewowy otwiera się, kierując nadmiar oleju z powrotem do zbiornika, co chroni system przed nadmiernym obciążeniem. Taka regulacja jest niezwykle istotna w kontekście bezpieczeństwa i długowieczności urządzeń hydraulicznych. W praktyce, regulacje zaworu przelewowego powinny być dostosowywane zgodnie z wymaganiami konkretnego procesu, aby zapewnić optymalne parametry pracy. Zastosowanie wysokiej jakości zaworów przelewowych, zgodnych z normami branżowymi, jest kluczowe dla zapewnienia niezawodności i efektywności systemu hydraulicznego.

Pytanie 31

Który z poniższych komponentów jest używany w układach sterowania do konwersji sygnałów analogowych na cyfrowe?

A. Transformator
B. Silnik elektryczny
C. Przetwornik A/C
D. Zawór proporcjonalny
Przetwornik analogowo-cyfrowy, znany jako A/C (ang. ADC - Analog to Digital Converter), jest kluczowym elementem w systemach mechatronicznych, ponieważ pozwala na przekształcenie sygnałów analogowych na cyfrowe. W praktyce oznacza to, że sygnały, które są ciągłe w czasie i mogą przyjmować nieskończoną liczbę wartości, są zamieniane na sygnały cyfrowe, które są dyskretne i mogą być przetwarzane przez systemy cyfrowe, takie jak mikroprocesory czy sterowniki PLC. To umożliwia efektywne zarządzanie i kontrolowanie procesów przemysłowych. Przetworniki A/C znajdują zastosowanie w wielu dziedzinach, takich jak automatyka przemysłowa, robotyka oraz systemy pomiarowe. Dzięki nim możemy precyzyjnie monitorować i reagować na zmiany w układzie, co jest niezbędne w złożonych systemach mechatronicznych. Przykładem zastosowania jest odczyt wartości czujników takich jak temperatury, ciśnienia czy wilgotności, które są następnie interpretowane przez system sterujący w celu podjęcia odpowiednich działań. Standardy branżowe wymagają, by takie przetworniki charakteryzowały się wysoką dokładnością i szybkością przetwarzania, co jest kluczowe dla zachowania jakości i precyzji działania systemów.

Pytanie 32

Jakiego symbolu należy użyć, pisząc program dla sterownika PLC, gdy chcemy odwołać się do 8-bitowej komórki pamięci wewnętrznej klasy M?

A. M0.0
B. MD0
C. MV0
D. MB0
Symbol "MB" oznacza 8-bitową komórkę pamięci wewnętrznej typu M w programowaniu dla sterowników PLC. Oznaczenie to jest kluczowe dla poprawnego adresowania pamięci w systemach automatyki, ponieważ pozwala na precyzyjne odniesienie się do konkretnej komórki pamięci. W praktyce, podczas programowania sterowników, istotne jest, aby znać różne typy pamięci i ich zastosowanie. Komórki pamięci typu M są używane do przechowywania danych o krótkim czasie życia, takich jak stany przełączników, wyniki operacji logicznych lub inne dane tymczasowe. Adresując pamięć w programie, możemy np. ustawiać lub odczytywać stany urządzeń, co jest fundamentalne w procesach automatyzacji. Ważne jest także, aby stosować się do dobrych praktyk, takich jak konsekwentne nazywanie i organizowanie zmiennych, co ułatwia późniejsze utrzymanie i rozwijanie programu. Zrozumienie tej koncepcji jest niezbędne dla każdego inżyniera zajmującego się programowaniem PLC i efektywnym projektowaniem systemów automatyki.

Pytanie 33

Który zawór powinien być uwzględniony w systemie sterowania pneumatycznego, aby przyspieszyć prędkość wsuwu tłoczyska siłownika?

A. Szybkiego spustu
B. Zwrotnego, sterowanego
C. Obiegu przełączającego
D. Z podwójnym sygnałem
Zawór szybkiego spustu to naprawdę ważny element w układach pneumatycznych. Dzięki niemu można błyskawicznie obniżyć ciśnienie w siłowniku, co sprawia, że tłoczysko działa szybciej. To ma ogromne znaczenie w sytuacjach, gdzie wymagana jest szybkość działania. W praktyce, kiedy używa się zaworu szybkiego spustu, poprawia to wydajność procesów produkcyjnych, bo skraca czas cyklu. Na przykład w automatyzacji montażu, gdzie szybkość to podstawa, ten zawór pozwala lepiej reagować na zmieniające się warunki. Standardy branżowe, takie jak ISO 4414, mówią o tym, jak ważny jest dobór odpowiednich komponentów w układach pneumatycznych. Używając zaworu szybkiego spustu, możemy poprawić zarówno wydajność, jak i niezawodność całego systemu. I jeszcze jedno – to rozwiązanie zmniejsza ryzyko osadzania oleju w układzie, co jest istotne dla konserwacji i długości życia komponentów.

Pytanie 34

W zakres czynności konserwacyjnych dla zespołu hydraulicznego, realizowanych raz w roku, nie wchodzi

A. czyszczenie filtra
B. kontrola szczelności zespołu oraz przewodów
C. wymiana płynu hydraulicznego
D. sprawdzenie wartości rezystancji uziemienia
Sprawdzanie wartości rezystancji uziemienia nie wchodzi w zakres prac konserwacyjnych zespołu hydraulicznego, ponieważ jest to zabieg rutynowy, mający na celu zapewnienie bezpieczeństwa i prawidłowego funkcjonowania instalacji elektrycznych. Uziemienie jest kluczowe dla ochrony przed przepięciami i zwarciami, lecz nie jest bezpośrednio związane z eksploatacją hydrauliki. W ramach konserwacji zespołów hydraulicznych, czynności takie jak wymiana płynu hydraulicznego, czyszczenie filtra oraz kontrola ciśnienia są niezbędne do utrzymania sprawności i efektywności systemu. Dbanie o odpowiedni stan płynów oraz filtrów wpływa na żywotność urządzeń oraz minimalizuje ryzyko awarii. W praktyce, regularne przeglądy hydrauliki powinny być prowadzone zgodnie z obowiązującymi standardami branżowymi, takimi jak PN-EN 982, które określają wymagania dotyczące bezpieczeństwa i konserwacji urządzeń hydraulicznych. Przykłady prawidłowych działań konserwacyjnych obejmują również smarowanie ruchomych części oraz monitorowanie stanu uszczelek, co przyczynia się do dłuższej eksploatacji systemów hydraulicznych.

Pytanie 35

Jakie ciśnienie powinno być zastosowane do przeprowadzenia testu szczelności systemu hydraulicznego?

A. Ciśnieniu testowemu 6 bar
B. Większym o 10% od ciśnienia roboczego
C. Maksymalnym ciśnieniu, które występuje w trakcie pracy
D. Mniejszym od maksymalnego ciśnienia, które występuje w trakcie pracy o 50%
Poprawna odpowiedź "Maksymalnym ciśnieniu, jakie występuje podczas pracy." odnosi się do kluczowego aspektu przeprowadzania prób szczelności w układach hydraulicznych. Podczas normalnej eksploatacji, układ hydrauliczny jest narażony na różne obciążenia, a maksymalne ciśnienie odzwierciedla najwyższe wartości, jakie mogą wystąpić w czasie pracy. Przeprowadzenie próby szczelności na tym poziomie ciśnienia zapewnia, że wszystkie elementy układu, takie jak przewody, złącza czy siłowniki, są w stanie wytrzymać ekstremalne warunki i nie dojdzie do wycieków. W praktyce, stosowanie maksymalnego ciśnienia jako wartości testowej jest zgodne z normami branżowymi, takimi jak ISO 4413, które podkreślają znaczenie bezpieczeństwa i niezawodności układów hydraulicznych. W przypadku wykrycia jakichkolwiek nieszczelności podczas takiej próby, można podjąć odpowiednie kroki naprawcze, zanim układ zostanie oddany do użytku, co jest kluczowe dla bezpieczeństwa operacji.

Pytanie 36

Co opisuje pojęcie 'histereza' w kontekście przetworników ciśnienia?

A. Czas reakcji przetwornika na zmianę ciśnienia
B. Maksymalne ciśnienie robocze przetwornika
C. Różnica między wartościami mierzonego sygnału przy zwiększaniu i zmniejszaniu ciśnienia
D. Minimalna wartość ciśnienia, jaką może zmierzyć przetwornik
Histereza w kontekście przetworników ciśnienia to zjawisko polegające na różnicy w wartościach sygnału wyjściowego dla tego samego ciśnienia, zależnie od tego, czy ciśnienie to zostało osiągnięte poprzez jego zwiększanie czy zmniejszanie. Jest to istotny parametr, który wpływa na dokładność pomiarów. W praktyce, gdy ciśnienie wzrasta, sygnał wyjściowy przyjmuje inną wartość niż w przypadku, gdy ciśnienie maleje do tej samej wartości. Dlatego, podczas kalibracji i eksploatacji przetworników, wartość histerezy jest uwzględniana, aby zapewnić precyzyjne odczyty. Dobre praktyki inżynierskie zalecają zwracanie uwagi na specyfikację histerezy, szczególnie w aplikacjach, gdzie dokładność jest kluczowa, jak w systemach sterowania czy monitorowania procesów. Zrozumienie histerezy pozwala lepiej dostosować systemy pomiarowe do wymagań aplikacji i zminimalizować potencjalne błędy pomiarowe wynikające z tego zjawiska.

Pytanie 37

Dane techniczne zamieszczone w tabeli dotyczą

Rodzaj cieczy hydraulicznejolej mineralny
Zakres temperatury pracy-25°C do +80°C
Standardowa filtracja cieczy hydraulicznej90 μm
Zakres lepkości cieczy hydraulicznej16 mm²/s do 200 mm²/s
Poziom głośności65 dB (A)
Napięcie zasilania silnika230 V 50 Hz, 3x400 V 50 Hz
Napięcie zasilania rozdzielaczy24 V DC, 230 V 50 Hz
Pojemność nominalna zbiornika7 dm³20 dm³
A. rozdzielacza hydraulicznego.
B. rozdzielacza pneumatycznego.
C. zasilacza hydraulicznego.
D. sprężarki powietrza.
Zasilacz hydrauliczny jest kluczowym elementem systemów hydraulicznych, który odpowiada za dostarczanie odpowiedniego ciśnienia i przepływu cieczy roboczej, co jest niezbędne do prawidłowego działania maszyn hydraulicznych. W tabeli zamieszczono dane dotyczące cieczy hydraulicznej, co jest charakterystyczne dla zasilaczy hydraulicznych, które operują na oleju mineralnym. Przykładowo, w różnych aplikacjach przemysłowych - takich jak prasy hydrauliczne czy systemy podnoszenia - zasilacze hydrauliczne muszą spełniać określone normy jakościowe, w tym normy dotyczące filtrowania cieczy hydraulicznej, aby zapewnić ich niezawodność oraz wydajność. Zastosowanie standardów, takich jak ISO 4406, pozwala na monitorowanie stopnia zanieczyszczenia oleju, co jest kluczowe dla utrzymania optymalnej pracy zasilacza. Dodatkowo, zasilacze hydrauliczne powinny być zaprojektowane z uwzględnieniem zakresów temperatur pracy, co wpływa na ich efektywność i żywotność. Właściwe parametry techniczne, takie jak pojemność zbiornika, również odgrywają istotną rolę w zapewnieniu ciągłości operacji w zastosowaniach przemysłowych.

Pytanie 38

Długotrwałe użytkowanie układu hydraulicznego z czynnikiem roboczym o innej lepkości niż ta wskazana w dokumentacji techniczno-ruchowej może prowadzić do

A. uszkodzenia pompy hydraulicznej
B. intensywnych drgań układu
C. zwiększenia tempa działania układu
D. spadku ciśnienia czynnika roboczego
Długotrwała eksploatacja układu hydraulicznego z czynnikiem roboczym o innej lepkości niż zalecana w dokumentacji techniczno-ruchowej może prowadzić do uszkodzenia pompy hydraulicznej. Pompy hydrauliczne są projektowane do pracy z określoną lepkością oleju, co wpływa na ich wydajność oraz żywotność. Zmiana lepkości czynnika roboczego może skutkować nieprawidłowym smarowaniem i przegrzewaniem się pompy, co w konsekwencji prowadzi do jej uszkodzenia. Przykładem zastosowania tej wiedzy jest regularne monitorowanie lepkości oleju oraz jego wymiana zgodnie z zaleceniami producenta. W praktyce, stosowanie oleju o nieodpowiedniej lepkości może skutkować zwiększonym zużyciem elementów układu hydraulicznego, co nie tylko wpływa na efektywność działania, ale również na bezpieczeństwo całego systemu. Standardy, takie jak ISO 6743, dostarczają szczegółowych wytycznych dotyczących właściwego doboru olejów hydraulicznych, co jest kluczowe dla zapewnienia długotrwałej i niezawodnej pracy układów hydraulicznych.

Pytanie 39

Szczelność systemu pneumatycznego weryfikuje się poprzez pomiar

A. spadku ciśnienia w systemie w ustalonym czasie
B. ilości powietrza potrzebnego do utrzymania stałego poziomu ciśnienia
C. zmiany maksymalnej siły wytwarzanej przez siłownik
D. zmiany maksymalnej prędkości siłownika
Szczelność układu pneumatycznego sprawdza się poprzez pomiar spadku ciśnienia w określonym czasie, co jest kluczowym aspektem diagnostyki i konserwacji systemów pneumatycznych. W przypadku, gdy układ jest szczelny, ciśnienie powinno pozostawać na stałym poziomie. Jeżeli jednak ciśnienie zaczyna spadać, oznacza to, że gdzieś w układzie występuje wyciek lub nieszczelność. W praktyce, technicy często wykorzystują manometry oraz różne czujniki ciśnienia do monitorowania tego parametru. Standardy branżowe, takie jak ISO 8573, podkreślają znaczenie dokładnego pomiaru ciśnienia i jego stabilności w zachowaniu właściwych warunków pracy układów pneumatycznych. Dodatkowo, regularne testowanie szczelności jest zalecane w celu minimalizacji strat energii oraz zwiększenia efektywności operacyjnej systemów, co przekłada się na redukcję kosztów eksploatacji. Warto również pamiętać, że nieszczelności mogą prowadzić do uszkodzenia komponentów systemu, co podkreśla znaczenie precyzyjnego i regularnego monitorowania ciśnienia.

Pytanie 40

Jakie urządzenie pneumatyczne ma następujące cechy: napięcie 230 V, moc 1,1 kW, ciśnienie 8 bar, wydajność ssawna 200 l/min, wydajność wyjściowa 115 l/min, pojemność zbiornika 24 l, liczba cylindrów 1, prędkość obrotowa 2850 obr/min?

A. Siłownik obrotowy
B. Sprężarka tłokowa
C. Silnik tłokowy
D. Zbiornik ciśnieniowy
Sprężarka tłokowa wyróżnia się parametrami, które zostały podane w pytaniu. Napięcie 230 V i moc 1,1 kW są typowe dla sprężarek, które często są zasilane z sieci jednofazowej, co czyni je łatwymi do zastosowania w różnych środowiskach, od warsztatów po małe zakłady przemysłowe. Ciśnienie robocze 8 bar jest standardowe dla sprężarek tłokowych, które są szeroko wykorzystywane do zasilania narzędzi pneumatycznych, takich jak wkrętarki czy młoty udarowe. Wydajność ssawna 200 l/min oraz wydajność wyjściowa 115 l/min wskazują na efektywność pracy sprężarki, co jest kluczowe w zastosowaniach wymagających ciągłego dostarczania sprężonego powietrza. Dodatkowo, pojemność zbiornika 24 l pozwala na akumulację sprężonego powietrza, co poprawia stabilność ciśnienia w systemie. Prędkość obrotowa 2850 obr/min jest standardowa dla sprężarek tłokowych, co podkreśla ich wydajność i zdolność do szybkiego generowania ciśnienia. Sprężarki tłokowe są na ogół preferowane w zastosowaniach, gdzie wymagana jest duża moc i wydajność, co czyni je niezastąpionymi w wielu branżach."