Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 31 sierpnia 2025 21:52
  • Data zakończenia: 31 sierpnia 2025 21:58

Egzamin niezdany

Wynik: 7/40 punktów (17,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który z poniższych wyłączników nadprądowych powinien być zastosowany do zabezpieczenia obwodu zasilającego trójfazowy silnik klatkowy o następujących parametrach znamionowych: P = 11 kW, U = 400 V, cos φ = 0,73, η = 80%?

A. S303 C20
B. S303 C32
C. S303 C25
D. S303 C40
Odpowiedź S303 C32 jest poprawna, ponieważ przy wyborze wyłącznika nadprądowego dla trójfazowego silnika klatkowego o mocy znamionowej 11 kW, napięciu 400 V oraz współczynniku mocy cos φ = 0,73, istotne jest obliczenie prądu znamionowego silnika. Prąd ten można wyznaczyć z wzoru: I = P / (√3 * U * cos φ). Po podaniu wartości (P = 11 kW, U = 400 V, cos φ = 0,73), uzyskujemy prąd około 18,5 A. Wyłącznik C32 ma prąd znamionowy 32 A, co zapewnia odpowiedni margines ochrony w przypadku przeciążenia oraz pozwala na bezpieczną i niezawodną pracę silnika. Wybór wyłącznika z niższą wartością prądową, jak C25 czy C20, mógłby prowadzić do zbyt częstych wyłączeń w przypadku normalnych warunków pracy silnika. Praktyczne zastosowanie wyłącznika C32 w obwodach zasilających silniki trójfazowe jest zgodne z normami IEC 60947-2, które zalecają odpowiednie marginesy dla wyłączników chroniących silniki. Dodatkowo, zastosowanie tego wyłącznika zmniejsza ryzyko uszkodzenia silnika oraz zapewnia bezpieczeństwo całego systemu zasilania.

Pytanie 2

Silnik szeregowy prądu stałego pracuje w trybie dorywczym. Co może być najczęstszą przyczyną braku reakcji silnika po włączeniu napięcia zasilającego?

A. Nieodpowiednio dobrane szczotki
B. Wystająca izolacja między działkami komutatora
C. Zabrudzony komutator
D. Przerwa w obwodzie twornika
Zabrudzony komutator, choć może wpływać na działanie silnika, nie jest główną przyczyną braku reakcji silnika na załączenie napięcia. Zabrudzenie komutatora prowadzi do problemów z przewodnictwem prądu i może powodować niestabilne działanie lub przerywanie pracy silnika, jednak nie powoduje całkowitego braku reakcji na napięcie. Nieprawidłowo dobrane szczotki również mogą przyczyniać się do słabego kontaktu z komutatorem, co wpływa na wydajność, ale nie wyklucza możliwości działania silnika w przypadku przyłożenia napięcia. Wystająca izolacja między działkami komutatora może prowadzić do lokalnych zwarć, ale z reguły nie blokuje całkowicie funkcji silnika. W praktyce, aby uniknąć mylnych wniosków, należy dokładnie analizować objawy i zrozumieć, jak każdy element układu wpływa na jego funkcjonowanie. Kluczowe jest, by podczas diagnostyki silników prądu stałego podejść do problemu z perspektywy systemowej, rozpatrując wszystkie potencjalne przyczyny, a nie tylko te, które wydają się oczywiste. Właściwe techniki diagnostyczne oraz regularne przeglądy mogą pomóc w identyfikacji problemów zanim staną się poważnymi usterkami, co jest zgodne z najlepszymi praktykami w dziedzinie inżynierii elektrycznej.

Pytanie 3

Zamiana przewodu OWY 2,5 mm2 na YKY 2,5 mm2 w odbiorniku ruchomym doprowadzi do

A. obniżenia obciążalności prądowej
B. podniesienia obciążalności prądowej
C. wzrostu wytrzymałości mechanicznej przewodu
D. zmiany wytrzymałości mechanicznej przewodu
Wybór odpowiedzi dotyczącej zmniejszenia obciążalności prądowej przewodu jest błędny, gdyż obciążalność prądowa nie jest bezpośrednio związana z typem przewodu, ale raczej z jego konstrukcją oraz materiałem, z którego został wykonany. W przypadku przewodów YKY, ze względu na zastosowane materiały i budowę, mają one często wyższą obciążalność prądową w porównaniu do OWY, co może prowadzić do fałszywych wniosków o ich wydajności. Ponadto, stwierdzenie, że zmiana przewodu powoduje zmniejszenie mechanicznej wytrzymałości, ignoruje kluczowe różnice w projektowaniu tych przewodów. Przewody YKY, mimo że są sztywniejsze, są również projektowane z myślą o lepszej ochronie przed działaniem czynników zewnętrznych, takich jak wilgoć czy chemikalia, co może podnieść ich długoterminową niezawodność w trudnych warunkach. Kolejną pomyłką jest twierdzenie o zmniejszeniu wytrzymałości mechanicznej. Przewody YKY, mimo dość sztywnej konstrukcji, często stosuje się w przemyśle, gdzie są narażone na intensywne warunki pracy, co wymaga ich wytrzymałości. Logicznym błędem w myśleniu jest założenie, że sztywność oznacza słabość; w rzeczywistości, odpowiedni dobór przewodów do danego zastosowania jest kluczowy. W praktyce, decyzje dotyczące wyboru przewodów powinny opierać się na szczegółowej analizie ich właściwości, zgodności z normami oraz realnym zastosowaniu w danym środowisku.

Pytanie 4

Jakie są dopuszczalne maksymalne terminy między kolejnymi kontrolami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi?

A. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
B. 1 rok dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
C. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 5 lat dla weryfikacji rezystancji izolacji
D. 5 lat dla weryfikacji skuteczności ochrony przeciwporażeniowej oraz 1 rok dla weryfikacji rezystancji izolacji
Wybór odpowiedzi, że maksymalne okresy między sprawdzeniami instalacji elektrycznych w pomieszczeniach z wyziewami żrącymi wynoszą 1 rok dla ochrony przeciwporażeniowej i 1 rok dla rezystancji izolacji, są naprawdę zgodne z tym, co mówi prawo i normy. W takich miejscach jak laboratoria chemiczne czy fabryki ryzyko uszkodzenia izolacji jest wyższe, dlatego kontrole powinny być częstsze. Trzeba regularnie sprawdzać, czy wyłączniki różnicowo-prądowe działają, bo to kluczowe dla bezpieczeństwa. A jeśli chodzi o rezystancję izolacji, to wczesne wykrycie problemów może zapobiec poważnym awariom. W praktyce, dobrze zorganizowane harmonogramy przeglądów w zakładach pomagają się dostosować do wymogów prawnych i standardów bezpieczeństwa, takich jak norma PN-EN 60079 dla atmosfer wybuchowych czy PN-IEC 60364 dla instalacji elektrycznych. Przestrzeganie tych zasad jest bardzo ważne, aby zminimalizować ryzyko wypadków i chronić ludzi oraz mienie.

Pytanie 5

Do jakiego celu wykorzystuje się przełącznik w układzie gwiazda-trójkąt w zasilaniu silnika trójfazowego?

A. Aby obniżyć prędkość obrotową
B. Aby zredukować prąd rozruchowy
C. Aby zwiększyć moment rozruchowy
D. Aby poprawić przeciążalność
Przełącznik gwiazda-trójkąt jest powszechnie stosowany w układach zasilania silników trójfazowych w celu ograniczenia prądu rozruchowego. Kiedy silnik jest uruchamiany w układzie gwiazdy, napięcie na każdej fazie wynosi tylko 1/√3 (około 58%) napięcia międzyfazowego, co powoduje znaczące zmniejszenie prądu rozruchowego, który jest proporcjonalny do napięcia. Dzięki temu unika się przeciążenia sieci zasilającej oraz zmniejsza ryzyko uszkodzenia silnika. Po osiągnięciu odpowiednich obrotów, przełącznik zmienia połączenie na układ trójkąta, co pozwala na uzyskanie pełnej mocy silnika. Stosowanie przełącznika gwiazda-trójkąt jest zgodne z normami, takimi jak IEC 60034, które regulują zasady stosowania silników elektrycznych. W praktyce, ten system jest niezwykle przydatny w aplikacjach, w których wymagany jest wysoki moment rozruchowy, np. w młynach, dźwigach czy kompresorach, gdzie kontrola prądu podczas rozruchu jest kluczowa dla zapewnienia bezpiecznej i efektywnej pracy.

Pytanie 6

Jakie będą konsekwencje zmiany w instalacji elektrycznej w budynku mieszkalnym przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2?

A. Zwiększenie obciążalności prądowej instalacji
B. Obniżenie napięcia roboczego
C. Osłabienie wytrzymałości mechanicznej przewodów
D. Zwiększenie rezystancji pętli zwarcia
Wymiana przewodów ADG 1,5 mm² na przewody DY 1,5 mm² w elektrycznej instalacji mieszkaniowej prowadzi do zwiększenia obciążalności prądowej instalacji. Przewody DY, w przeciwieństwie do przewodów ADG, charakteryzują się lepszymi właściwościami przewodzenia prądu oraz wyższą odpornością na wpływy mechaniczne i chemiczne. Dzięki zastosowaniu materiałów wysokiej jakości oraz odpowiedniej konstrukcji, przewody DY mogą przenieść większe obciążenia prądowe, co jest szczególnie istotne w kontekście rosnącego zapotrzebowania na energię elektryczną w nowoczesnych gospodarstwach domowych. Przykładem zastosowania przewodów DY może być zainstalowanie w domach systemów inteligentnego zarządzania energią, gdzie stabilność i wydajność przewodów mają kluczowe znaczenie. Warto zauważyć, że zgodnie z obowiązującymi normami, takich jak PN-IEC 60364, zaleca się użycie przewodów o wyższej obciążalności w instalacjach, w których przewiduje się duże obciążenia prądowe.

Pytanie 7

W instalacji elektrycznej w łazience pojawiła się potrzeba dodania gniazda wtyczkowego w pierwszej strefie ochronnej, które ma być zasilane z obwodu zabezpieczonego przez SELV o napięciu nieprzekraczającym 25 V AC. Gdzie powinno być umieszczone źródło zasilania dla tego gniazda?

A. Tylko na zewnątrz strefy 2
B. Na zewnątrz stref 0 i 1
C. W obrębie strefy 1
D. W obrębie strefy 0
Wybór odpowiedzi związanych z montażem źródła zasilania w strefach 1 lub 0 jest błędny, głównie z powodu ignorowania zasad ochrony elektrycznej w kontekście wilgotnego otoczenia, jakim jest łazienka. Montaż w strefie 1, która znajduje się nad strefą 0, jest niebezpieczny, ponieważ w tej strefie istnieje podwyższone ryzyko kontaktu z wodą, co mogłoby prowadzić do sytuacji zagrożenia porażeniem prądem. Zgodnie z przepisami, w strefach, gdzie można spodziewać się kontaktu z wodą, jak strefa 0 czy strefa 1, zabronione jest umieszczanie elementów, które nie są odpowiednio zaprojektowane do pracy w takich warunkach. Dodatkowo, umieszczanie źródła zasilania w strefie 0, gdzie kontakt z wodą jest najbardziej prawdopodobny, stanowi poważne naruszenie norm bezpieczeństwa. Takie podejście może prowadzić do mylnego założenia, że zasilanie niskonapięciowe jest całkowicie bezpieczne we wszystkich warunkach, co jest nieprawidłowe. W praktyce, przestrzeganie zasad wyznaczonych przez normy, takie jak PN-EN 60364, jest kluczowe dla zapobiegania wypadkom oraz zapewnienia bezpieczeństwa użytkowników instalacji elektrycznych w łazienkach.

Pytanie 8

Jakie nastąpi zmiana w przekładni napięciowej transformatora jednofazowego, jeśli podczas jego modernizacji nawinięto o 10% więcej zwojów po stronie niskiego napięcia, nie zmieniając ilości zwojów po stronie wysokiego napięcia?

A. Spadnie o 19%
B. Wzrośnie o 21%
C. Wzrośnie o 10%
D. Spadnie o 10%
Transformator jednofazowy działa na zasadzie przekładni napięciowej, która jest definiowana jako stosunek liczby zwojów uzwojenia wysokiego napięcia do liczby zwojów uzwojenia niskiego napięcia. W przypadku, gdy nawinięto o 10% więcej zwojów na stronie dolnego napięcia, liczba zwojów w uzwojeniu niskiego napięcia wzrasta, co prowadzi do zmiany przekładni. Jeśli oznaczymy liczbę zwojów uzwojenia niskiego napięcia jako N1, uzwojenia wysokiego napięcia jako N2, to nowa liczba zwojów uzwojenia niskiego napięcia wyniesie 1,1 * N1. Nowa przekładnia napięciowa (U2/U1) oblicza się jako N2/(1,1 * N1), co skutkuje zmniejszeniem przekładni o około 10%. W praktyce, zwiększenie liczby zwojów po stronie dolnego napięcia oznacza, że transformator będzie w stanie obniżyć napięcie w mniejszym stopniu, co ma znaczenie w aplikacjach wymagających stabilizacji napięcia, takich jak zasilanie urządzeń elektronicznych, gdzie precyzyjne napięcie jest kluczowe. W przemyśle energetycznym zrozumienie przekładni napięciowej jest niezbędne do projektowania transformatorów oraz ich optymalizacji. Zmiany w liczbie zwojów mogą być korzystne w niektórych warunkach operacyjnych, co podkreśla znaczenie regularnych przeglądów i modernizacji transformatorów.

Pytanie 9

Jaki jest główny powód stosowania bezpieczników w instalacjach elektrycznych?

A. Poprawa jakości dostarczanej energii
B. Redukcja hałasu w instalacji
C. Zmniejszenie wartości napięcia w obwodach
D. Ochrona przed przeciążeniem i zwarciem
Bezpieczniki to kluczowe elementy ochronne stosowane w instalacjach elektrycznych, mające na celu zapewnienie bezpieczeństwa całego systemu oraz osób z niego korzystających. Głównym powodem stosowania bezpieczników jest ochrona przed przeciążeniem i zwarciem. W przypadku przeciążenia lub zwarcia bezpiecznik przerywa przepływ prądu, co zapobiega uszkodzeniom przewodów, urządzeń i potencjalnie niebezpiecznym sytuacjom, takim jak pożary. Działa to na zasadzie automatycznego wyłączenia obwodu, kiedy przepływ prądu przekracza określoną wartość dopuszczalną. To nie tylko chroni instalację, ale również minimalizuje ryzyko dla użytkowników. Dzięki temu, bezpieczniki stanowią pierwszą linię obrony w systemach elektrycznych. Wiele standardów branżowych, takich jak normy PN-EN, podkreśla konieczność stosowania bezpieczników jako podstawowego elementu ochrony w instalacjach. W praktyce, stosowanie bezpieczników jest nie tylko wymogiem prawnym, ale również dobrą praktyką inżynierską zapewniającą długotrwałą i bezawaryjną pracę urządzeń elektrycznych.

Pytanie 10

Jakie czynności związane z użytkowaniem urządzeń elektrycznych są obowiązkiem personelu odpowiedzialnego za te urządzenia?

A. Włączanie i wyłączanie
B. Oględziny wymagające demontażu
C. Przeglądy wymagające demontażu
D. Zarządzanie czasem pracy
Uruchamianie i zatrzymywanie urządzeń elektrycznych to kluczowe zadanie pracowników obsługi, które wymaga znajomości procedur operacyjnych oraz bezpieczeństwa. Te czynności są istotne dla zapewnienia prawidłowego funkcjonowania urządzeń, co ma bezpośredni wpływ na efektywność produkcji. Przykładowo, w przemyśle wytwórczym, gdzie linie produkcyjne są często zautomatyzowane, pracownicy muszą umieć bezpiecznie uruchamiać i zatrzymywać maszyny, aby uniknąć przestojów lub uszkodzeń sprzętu. Ponadto, zgodnie z normami ISO 9001 dotyczącymi zarządzania jakością, skuteczne zarządzanie procesami, w tym właściwe uruchamianie i zatrzymywanie urządzeń, jest kluczowe dla zachowania wysokiej jakości produktów. Dobrą praktyką jest regularne szkolenie pracowników w zakresie procedur operacyjnych oraz stosowanie checklist, co zwiększa bezpieczeństwo i minimalizuje ryzyko wystąpienia awarii.

Pytanie 11

Kontrole instalacji elektrycznej w obiektach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co

A. 3 lata
B. 4 lata
C. 2 lata
D. 5 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przeglądy instalacji elektrycznej w budynkach użyteczności publicznej powinny być przeprowadzane nie rzadziej niż co 5 lat, co jest zgodne z przepisami oraz normami zawartymi w Polskich Normach (PN). Regularne przeglądy mają na celu zapewnienie bezpieczeństwa użytkowników obiektów oraz zachowanie sprawności technicznej instalacji. W trakcie przeglądów dokonuje się oceny stanu technicznego instalacji, co pozwala na wczesne wykrycie ewentualnych usterek czy nieprawidłowości, które mogłyby prowadzić do niebezpiecznych sytuacji, takich jak pożar czy porażenie prądem. Przykładowo, w obiektach takich jak szkoły czy szpitale, gdzie bezpieczeństwo jest kluczowe, regularne przeglądy są niezbędne, aby spełniać wymogi prawa oraz zapewnić komfort i bezpieczeństwo ich użytkowników. Pamiętajmy, że odpowiedzialność za przeprowadzanie tych przeglądów spoczywa na właścicielu obiektu, który powinien współpracować z wyspecjalizowanymi firmami elektrycznymi, aby mieć pewność, że prace są prowadzone zgodnie z aktualnymi normami i najlepszymi praktykami.

Pytanie 12

Dodatkowy przewód ochronny w instalacji wykonanej przewodem LYd 750 4x2,5 zamocowanej na uchwytach na ścianie piwnicy powinien być oznaczony symbolem

A. ADY 750 1x2,5
B. YDY 450/750 1x2,5
C. Dyd 750 1x4
D. LYc 300/500 1x6

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź Dyd 750 1x4 jest poprawna, ponieważ oznaczenie to odnosi się do przewodu ochronnego, który jest zgodny z wymaganiami instalacji elektrycznych w budynkach. Zastosowanie przewodu Dyd 750 1x4 w instalacji LYd 750 4x2,5 na uchwytach na powierzchni ściany piwnicy zapewnia odpowiednią ochronę przed zagrożeniami elektrycznymi, takimi jak zwarcia czy przepięcia. Przewody ochronne muszą być odpowiednio dobrane do warunków pracy oraz obciążenia, a Dyd 750 1x4 spełnia te normy, zapewniając odporność na wysokie napięcia do 750V. W praktyce, stosowanie przewodów z oznaczeniem Dyd w instalacjach podnosi poziom bezpieczeństwa, ponieważ są one często używane do uziemienia oraz ochrony przed porażeniem elektrycznym. Dodatkowo, zgodnie z normami PN-IEC 60364, właściwy dobór przewodów w instalacjach elektrycznych jest kluczowy dla ich prawidłowego funkcjonowania i bezpieczeństwa użytkowników.

Pytanie 13

Które z poniższych działań nie są przypisane do zadań eksploatacyjnych osób obsługujących urządzenia elektryczne?

A. Monitorowanie urządzeń w trakcie pracy
B. Realizowanie przeglądów niewymagających demontażu
C. Włączanie i wyłączanie urządzeń
D. Przeprowadzanie oględzin wymagających demontażu

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dokonywanie oględzin wymagających demontażu nie jest czynnością, która wchodzi w zakres typowych zadań eksploatacyjnych pracowników obsługujących urządzenia elektryczne. Eksploatacja urządzeń elektrycznych skupia się głównie na ich bieżącym użytkowaniu, co obejmuje uruchamianie, zatrzymywanie oraz nadzorowanie pracy urządzeń. Przeglądy niewymagające demontażu są zazwyczaj efektywne i zgodne z praktykami, które ograniczają przestoje oraz zwiększają efektywność operacyjną. Oględziny, które wiążą się z demontażem, są zarezerwowane dla specjalistycznych prac, które powinny być przeprowadzane przez wykwalifikowanych techników w celu zapewnienia bezpieczeństwa i zgodności z normami, takimi jak PN-EN 60204-1, dotycząca bezpieczeństwa maszyn. Dlatego też, w kontekście eksploatacji, czynności te powinny być planowane w ramach konserwacji urządzeń, a nie codziennych zadań eksploatacyjnych. Przykładem może być okresowe przeglądanie silników elektrycznych, gdzie demontaż jest konieczny do sprawdzenia stanu uzwojeń, co jest kluczowe dla ich dalszej eksploatacji.

Pytanie 14

Jakie będą konsekwencje uszkodzenia izolacji podstawowej silnika indukcyjnego, gdy przewód PE zostanie odłączony od jego obudowy?

A. uruchomienie ochronnika przeciwprzepięciowego
B. wzrost prędkości obrotowej wirnika
C. pojawienie się napięcia na obudowie silnika
D. obniżenie prędkości obrotowej wirnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Pojawienie się napięcia na obudowie silnika indukcyjnego w przypadku uszkodzenia izolacji podstawowej, zwłaszcza po odłączeniu przewodu PE, jest zjawiskiem niezwykle niebezpiecznym i stanowi poważne zagrożenie dla bezpieczeństwa ludzi oraz sprzętu. Izolacja podstawowa ma za zadanie oddzielić elementy energii elektrycznej od obudowy, aby zapobiec porażeniom prądem. W momencie, gdy izolacja zostaje uszkodzona, a przewód PE, który pełni rolę ochronną, zostaje odłączony, obudowa silnika może stać się naładowana elektrycznie, co może prowadzić do porażenia prądem osoby znajdującej się blisko urządzenia. Przykładem zastosowania wiedzy w tej kwestii jest konieczność regularnego przeglądania i testowania urządzeń elektrycznych w celu zapewnienia, że wszystkie elementy ochronne, w tym przewód PE, są w dobrym stanie i działają prawidłowo, co jest zgodne z normami takimi jak PN-EN 60204-1. Dobre praktyki branżowe obejmują również stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które mogą wykryć nieprawidłowości w obwodzie i automatycznie odłączyć zasilanie.

Pytanie 15

Korzystając z przedstawionej tabeli obciążalności długotrwałej dobierz minimalny przekrój przewodów dla instalacji trójfazowej ułożonej przewodami YDY w rurze instalacyjnej na ścianie drewnianej (sposób B2).
Wartość przewidywanego prądu obciążenia instalacji wynosi 36 A.

Obciążalność prądowa długotrwała przewodów miedzianych, w amperach
Izolacja PVC, trzy żyły obciążone
Temperatura żyły: 70°C. Temperatura otoczenia: 30°C w powietrzu, 20°C w ziemi
ułożenieA1A2B1B2CD
Przekrój
żyły
4 mm2242328273231
6 mm2312936344139
10 mm2423950465752
16 mm2565268627667
A. 6 mm2
B. 16 mm2
C. 4 mm2
D. 10 mm2

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Dla instalacji trójfazowej z przewodami YDY umieszczonymi w rurze instalacyjnej na ścianie drewnianej (metoda B2), minimalny przekrój przewodów wynoszący 10 mm2 jest odpowiedni dla przewidywanego prądu obciążenia wynoszącego 36 A. Ten przekrój przewodów zapewnia, że obciążalność wynosząca 50 A jest znacznie wyższa niż wymagana, co gwarantuje bezpieczeństwo i niezawodność instalacji. Zastosowanie odpowiednich przekrojów przewodów jest kluczowe, aby uniknąć przegrzania oraz potencjalnych zagrożeń pożarowych. W praktyce, wybór przekroju przewodów powinien również uwzględniać długość trasy przewodów oraz rodzaj izolacji. W standardach instalacji elektrycznych, takich jak PN-IEC 60364, podkreśla się znaczenie odpowiedniego doboru przekrojów w zależności od warunków instalacyjnych, co minimalizuje ryzyko awarii. Dla instalacji o wyższych obciążeniach, warto również rozważyć zastosowanie przewodów o większej obciążalności, aby mieć większy margines bezpieczeństwa w przypadku przyszłych zmian w obciążeniu.

Pytanie 16

Która z poniższych opcji najprawdopodobniej prowadzi do obniżenia prędkości obrotowej silnika indukcyjnego pod obciążeniem?

A. Wyższa częstotliwość napięcia zasilającego
B. Przerwa w jednym z fazowych przewodów zasilających
C. Niewłaściwe wyważenie wirnika silnika
D. Nierównomierna szczelina powietrzna w silniku

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w jednym z fazowych przewodów zasilających jest najczęstszą przyczyną zmniejszenia prędkości obrotowej obciążonego silnika indukcyjnego. Taki stan rzeczy prowadzi do nierównomiernego zasilania silnika, co skutkuje nieodpowiednim momentem obrotowym oraz destabilizacją pracy maszyny. W przypadku silników trójfazowych, przerwa w jednej z faz powoduje, że silnik nie może osiągnąć pełnej prędkości obrotowej, co prowadzi do nadmiernego nagrzewania oraz potencjalnego uszkodzenia wirnika. Praktycznie, operatorzy maszyn powinni regularnie kontrolować linie zasilające oraz stosować odpowiednie zabezpieczenia, takie jak wyłączniki różnicowoprądowe, które mogą zapobiec awariom w wyniku przerwy w zasilaniu. Ważne jest również, aby przeprowadzać okresowe inspekcje stanu kabli oraz złączek, co jest zgodne z normami branżowymi, takimi jak IEC 60204-1 dotycząca bezpieczeństwa urządzeń elektrycznych.

Pytanie 17

Jakie maksymalne napięcie elektryczne należy wykorzystać do zasilania lampy oświetleniowej zlokalizowanej w łazience w strefie 0?

A. 110 V DC
B. 12 V AC
C. 50 V AC
D. 230 V AC

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zasilanie lampy oświetleniowej w łazience, szczególnie w strefie 0, musi być zgodne z zasadami bezpieczeństwa, które mają na celu minimalizację ryzyka porażenia prądem elektrycznym. Maksymalna wartość napięcia, która jest bezpieczna do zastosowania w tym obszarze, wynosi 12 V AC. Tego rodzaju zasilanie jest skuteczne w eliminacji ryzyka niebezpiecznych sytuacji, jakie mogą wystąpić w wilgotnym środowisku. Przykładem zastosowania 12 V AC może być instalacja oświetlenia LED w kabinie prysznicowej lub nad wanną, gdzie bezpośredni kontakt z wodą stwarza dodatkowe zagrożenie. Zgodnie z normami IEC 60364, stosowanie niskiego napięcia, takiego jak 12 V, w obszarach o podwyższonym ryzyku, jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. Oprócz tego, systemy oświetleniowe zasilane niskim napięciem są często bardziej energooszczędne i umożliwiają zastosowanie rozwiązań z zakresu inteligentnego budownictwa, takich jak zdalne sterowanie oświetleniem.

Pytanie 18

Jakiej informacji nie jest konieczne zawarcie w instrukcji użytkowania instalacji elektrycznych chronionych wyłącznikami nadmiarowo-prądowymi?

A. Zasad bezpieczeństwa przy realizacji prac eksploatacyjnych
B. Terminów dotyczących prób oraz kontrolnych pomiarów
C. Wybory i konfiguracji urządzeń zabezpieczających
D. Danych technicznych instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Kiedy dobierasz urządzenia zabezpieczające, musisz naprawdę wiedzieć, co robisz i przeanalizować, jakie masz parametry techniczne. Instrukcja dotycząca instalacji elektrycznych, które mają wyłączniki nadmiarowo-prądowe, nie musi opisywać wszystkiego na szczegółowo, bo każdy przypadek jest inny i trzeba to dopasować do konkretnej sytuacji. W praktyce dobierasz te urządzenia na podstawie tego, jak duże masz obciążenie, jak wygląda sama instalacja i jakie są warunki pracy. Na przykład, wyłączniki nadmiarowo-prądowe powinny być wybierane zgodnie z normami PN-EN 60898. Ważne jest, żebyś wiedział, jakie są ich cechy – na przykład typ wyłącznika. Powinieneś to określić, analizując obciążenie i możliwe zagrożenia. Dlatego instrukcja eksploatacji koncentruje się na zasadach użytkowania, kontroli i konserwacji – to wszystko jest kluczowe, żeby zapewnić bezpieczeństwo i sprawność systemu.

Pytanie 19

Jaki stopień ochrony powinien posiadać silnik trójfazowy eksploatowany w pomieszczeniu narażonym na wybuch?

A. IP11
B. IP34
C. IP00
D. IP56

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stopień ochrony IP56 oznacza, że urządzenie jest całkowicie chronione przed kurzem oraz odporne na silne strumienie wody. W kontekście silnika trójfazowego pracującego w pomieszczeniu zagrożonym wybuchem, taki stopień ochrony jest kluczowy, ponieważ zanieczyszczenia i wilgoć mogą negatywnie wpływać na jego wydajność oraz bezpieczeństwo. W przypadku zastosowań w strefach Ex, gdzie występują substancje łatwopalne, zgodność z normami takimi jak ATEX czy IECEx staje się obowiązkowa. Zastosowanie silnika z odpowiednim stopniem ochrony, jak IP56, minimalizuje ryzyko uszkodzeń oraz potencjalnych wybuchów. Przykładem może być użycie takich silników w przemysłach chemicznych, gdzie nie tylko trzeba dbać o bezpieczeństwo, ale także o ciągłość procesów produkcyjnych. Warto również pamiętać o regularnych przeglądach technicznych, które pozwalają na wczesne wykrywanie ewentualnych problemów związanych z ochroną przed pyłem i wodą.

Pytanie 20

Która z podanych czynności nie zalicza się do weryfikacji stanu technicznego podczas przeglądu układu napędowego z energoelektronicznym przekształtnikiem?

A. Pomiar natężenia oświetlenia na stanowisku obsługi układu napędowego
B. Sprawdzenie jakości zabezpieczeń nadprądowych i zmiennozwarciowych
C. Ocena czystości filtrów powietrza chłodzącego
D. Weryfikacja połączeń stykowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Sprawdzenie oświetlenia na stanowisku obsługi układu napędowego nie jest tak naprawdę częścią ogólnej oceny stanu technicznego tego układu, szczególnie jeśli chodzi o przekształtniki energoelektroniczne. Większość przeglądów skupia się na tym, czy wszystkie elementy mechaniczne i elektryczne są w porządku. To znaczy, trzeba porządnie sprawdzić połączenia stykowe, upewnić się, że filtry powietrza chłodzącego są czyste, a także kontrolować zabezpieczenia nadprądowe i zmiennozwarciowe. Oświetlenie jest ważne dla bezpieczeństwa ludzi pracujących przy tych urządzeniach, ale nie ma bezpośredniego wpływu na to, jak wydajnie układ działa. Na przykład, jeśli mówimy o przekształtnikach, kluczowe jest zapewnienie właściwego chłodzenia, co możemy kontrolować poprzez te filtry powietrza. Dobre połączenia stykowe i odpowiednie zabezpieczenia są także bardzo ważne, żeby uniknąć awarii. Warto pamiętać, że istnieją normy, jak IEC czy ISO, które podkreślają, jak istotne są regularne przeglądy komponentów elektrycznych dla bezpieczeństwa w pracy.

Pytanie 21

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Jedynie świadectwo kwalifikacyjne w zakresie E
B. Świadectwo kwalifikacyjne w zakresie E + pomiary
C. Wyłącznie świadectwo kwalifikacyjne w zakresie D
D. Świadectwo kwalifikacyjne w zakresie E + D + pomiary

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 22

Urządzenia elektryczne o klasie ochrony 0 mogą być stosowane wyłącznie w sytuacji

A. korzystania z nich pod nadzorem technicznym ze strony dostawcy energii elektrycznej
B. zasilania ich z gniazd z ochronnym bolcem uziemiającym
C. wdrożenia ochrony przed porażeniem w formie separacji elektrycznej lub izolacji miejsca wykonywania pracy
D. wcześniejszego zweryfikowania efektywności ochrony w instalacji

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Urządzenia elektryczne klasy ochronności 0 są projektowane w sposób, który nie zapewnia żadnej formy ochrony przed porażeniem elektrycznym. W związku z tym ich stosowanie wymaga zastosowania dodatkowych środków ochrony, takich jak separacja elektryczna lub izolacja stanowiska pracy. Zgodnie z normą PN-IEC 61140, urządzenia tej klasy powinny być wykorzystywane w środowiskach, gdzie ryzyko porażenia jest minimalizowane poprzez odpowiednie techniki zabezpieczające. Przykładem może być stosowanie tych urządzeń w pomieszczeniach suchych, gdzie nie ma ryzyka kontaktu z wodą, oraz w sytuacjach, gdzie pracownicy są odpowiednio przeszkoleni w zakresie bezpieczeństwa. W praktyce, można zastosować również urządzenia ochronne, które odcinają zasilanie w przypadku wykrycia upływu prądu, co dodatkowo zwiększa bezpieczeństwo. Dlatego kluczowe jest, aby przed użyciem takich urządzeń, upewnić się, że są spełnione wszystkie warunki ochrony przeciwporażeniowej oraz że urządzenia są wykorzystywane zgodnie z ich przeznaczeniem.

Pytanie 23

Podczas inspekcji silnika indukcyjnego klatkowego o mocy 11 kW, który działa bez obciążenia, można usłyszeć głośne stuki dochodzące z wnętrza urządzenia. Jaką przyczynę tej usterki można uznać za najbardziej prawdopodobną?

A. Zużyte łożyska kulkowe na wale silnika
B. Niestabilne przymocowanie silnika do podłoża
C. Zanik napięcia w jednej z faz
D. Zbyt wysoka temperatura urządzenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zużyte łożyska kulkowe w silniku to często powód, dla którego zaczyna on głośno stukać. Kiedy silnik pracuje bez obciążenia, wirnik kręci się szybko, co zwiększa napięcie na łożyskach. Z czasem te łożyska się zużywają, co prowadzi do luzów, a to z kolei skutkuje nieprzyjemnymi wibracjami i hałasami. Warto pamiętać, że jeśli łożyska są uszkodzone, ich wymiana to coś, co trzeba zrobić jak najszybciej, żeby nie narobić jeszcze większych szkód, jak na przykład uszkodzenie wirnika czy wału silnika. Regularne sprawdzanie stanu łożysk, a także dbanie o odpowiednie smarowanie, to kluczowe sprawy, o których nie można zapominać. Gdy usłyszysz głośne stukanie, zrób dokładną inspekcję łożysk. To zgodne z zasadami dobrego utrzymania urządzeń. Można też pomyśleć o czujnikach wibracji, które mogą pomóc w wychwyceniu problemów zanim będzie za późno.

Pytanie 24

Obciążalność prądowa długotrwała przewodu YDY w temperaturze 30°C dla jednego ze sposobów wykonania instalacji według normy PN-IEC 60364 wynosi 46 A. Korzystając z tabeli współczynników poprawkowych obciążalności w innych temperaturach określ, jaka będzie obciążalność tego przewodu w temperaturze powietrza równej 50°C.

Tabela: współczynniki poprawkowe dla temperatury otaczającego powietrza innej niż 30°C, stosowane do obciążalności prądowej długotrwałej przewodów w powietrzu (fragment tabeli)
Temperatura otoczenia °CIzolacja
PVCXLPE i EPRMineralna
Osłona z PCV lub bez osłony, dostępna 70°CBez osłony, niedostępna 105°C
450,790,870,770,88
500,710,820,670,84
550,610,760,570,80
A. 38,64 A
B. 37,72 A
C. 30,82 A
D. 32,66 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Obciążalność prądowa przewodu YDY w temperaturze 50°C to 32,66 A. Dlaczego tak jest? Otóż przy tej temperaturze używa się współczynnika poprawkowego dla PVC, który wynosi 0,71. Przewód w 30°C miał obciążalność 46 A, ale wyższa temperatura sprawia, że musi być ona niższa. Żeby obliczyć nową wartość, wystarczy pomnożyć 46 A przez 0,71 i mamy 32,66 A. To ważne, żeby to zrozumieć, bo przy projektowaniu instalacji elektrycznych bezpieczeństwo jest kluczowe. Jak nie zastosujesz współczynników, to przewody mogą się przeciążać, co prowadzi do ich uszkodzenia, a w najgorszym wypadku do pożaru. Na przykład w miejscach, gdzie przewody są w izolowanych lub ciasnych przestrzeniach, takie obliczenia są naprawdę istotne. Projektanci muszą znać normy, jak PN-IEC 60364, żeby wszystko było zgodne z wymaganiami i dostosowane do warunków, w jakich będą pracować.

Pytanie 25

Jakie będą konsekwencje podniesienia częstotliwości napięcia zasilającego stojan w trakcie działania trójfazowego silnika indukcyjnego?

A. Nawrót wirnika silnika
B. Spadek prędkości obrotowej wirnika silnika
C. Całkowite zniszczenie wirnika silnika
D. Wzrost prędkości obrotowej wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie częstotliwości napięcia zasilania stojana trójfazowego silnika indukcyjnego prowadzi do podwyższenia prędkości obrotowej wirnika zgodnie z zasadą synchronizacji. W silnikach indukcyjnych prędkość obrotowa wirnika jest ściśle związana z częstotliwością zasilania, co wynika z relacji: n = 120 * f / p, gdzie n to prędkość obrotowa w obr/min, f to częstotliwość w Hz, a p to liczba par biegunów. Zwiększenie częstotliwości powoduje, że wirnik osiąga wyższą prędkość, co ma zastosowanie w różnych procesach przemysłowych, gdzie wymagana jest regulacja prędkości napędu, na przykład w systemach transportowych czy w automatyce przemysłowej. W praktyce możemy wykorzystać falowniki, które umożliwiają precyzyjne sterowanie częstotliwością, a tym samym prędkością obrotową silnika, co optymalizuje zużycie energii i zwiększa efektywność procesów. Warto również zauważyć, że zgodnie z normami IEC 60034, projektowanie systemów napędowych powinno uwzględniać odpowiednie parametry zasilania, co wpływa na trwałość i wydajność silników."

Pytanie 26

W budynkach wielorodzinnych liczniki energii elektrycznej powinny być umieszczone

A. w lokalach mieszkalnych tylko w zamkniętych szafkach
B. na strychu w otwartych skrzynkach
C. w piwnicach w otwartych skrzynkach
D. poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że liczniki zużycia energii elektrycznej powinny znajdować się poza lokalami mieszkalnymi wyłącznie w zamkniętych szafkach, jest zgodna z obowiązującymi normami i praktykami w zakresie instalacji elektrycznych w budynkach wielorodzinnych. Taka lokalizacja liczników ma na celu zapewnienie bezpieczeństwa użytkowników oraz ułatwienie prac konserwacyjnych i pomiarowych. Liczniki umieszczone w zamkniętych szafkach ograniczają ryzyko przypadkowego dostępu do urządzeń, co jest istotne w kontekście ochrony przed nieautoryzowanym manipulowaniem oraz potencjalnymi uszkodzeniami. Ponadto, zgodnie z Polskimi Normami PN-IEC 61010, miejsca instalacji liczników powinny być dobrze oznakowane i dostępne tylko dla uprawnionego personelu. Praktycznym przykładem może być zastosowanie szafek z zamkiem, co dodatkowo zwiększa bezpieczeństwo oraz porządek w przestrzeni wspólnej budynku. Takie podejście jest również zgodne z zasadami zarządzania wspólnotami mieszkaniowymi, które dążą do minimalizacji ryzyka związanego z eksploatacją urządzeń elektrycznych.

Pytanie 27

W ramce zamieszczono wybrane parametry silnika trójfazowego. Jakie zakresy cewek prądowych i napięciowych watomierzy należy wybrać, aby w układzie Arona zmierzyć moc pobieraną przez silnik zasilany napięciem 3×400 V, 50 Hz i obciążony znamionowo przy połączeniu w gwiazdę?

Silnik 3~   Typ 1E2-90S-4 S1
1,1 kW   3,2/1,8 A   Izol. F
IP55   1420 obr/min   cosφ 0,75
230/400 V   50 Hz
A. In = 1 A, Un = 400 V
B. In = 2 A, Un = 400 V
C. In = 2 A, Un = 200 V
D. In = 1 A, Un = 200 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór zakresu cewek prądowych i napięciowych watomierza w układzie Arona jest kluczowy dla dokładnych pomiarów mocy silnika trójfazowego. W tym przypadku, znamionowy prąd silnika wynosi 1,8 A, co oznacza, że cecha cewki prądowej powinna być dostosowana do wyższej wartości, aby zminimalizować ryzyko przeciążenia. Dlatego wybór 2 A dla cewek prądowych jest uzasadniony. Co więcej, napięcie znamionowe silnika wynosi 400 V w układzie gwiazda, co odpowiada napięciu międzyfazowemu. Zastosowanie cewki napięciowej o wartości 400 V zapewnia, że pomiar będzie dokonany w odpowiednim zakresie, co jest zgodne z najlepszymi praktykami branżowymi. Takie podejście nie tylko zapewnia precyzyjność, ale również bezpieczeństwo operacyjne, gdyż pozwala na uniknięcie przeciążeń, które mogą prowadzić do uszkodzeń sprzętu. W praktyce, dobór odpowiednich zakresów cewek prądowych i napięciowych jest kluczowy dla prawidłowego monitorowania i zarządzania pracą silników trójfazowych, co jest istotne dla efektywności energetycznej i długowieczności urządzeń. Dobrze dobrany sprzęt pomiarowy może również przyczynić się do zmniejszenia kosztów operacyjnych, co jest istotne w obszarze przemysłowym.

Pytanie 28

Które z poniższych rozwiązań gwarantuje podstawową ochronę przed porażeniem w grzejniku elektrycznym działającym w systemie TN-S?

A. Zastosowanie wyłącznika instalacyjnego nadprądowego w obwodzie zasilania
B. Zastosowanie wyłącznika różnicowoprądowego w obwodzie zasilania
C. Izolacja robocza
D. Podłączenie obudowy do uziemienia ochronnego

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolacja robocza jest kluczowym elementem zapewniającym podstawową ochronę przeciwporażeniową w urządzeniach elektrycznych, takich jak grzejniki elektryczne, pracujące w sieci TN-S. W tym systemie zasilania, który charakteryzuje się oddzieleniem przewodu neutralnego od przewodu ochronnego, odpowiednie zastosowanie izolacji roboczej ma na celu minimalizowanie ryzyka porażenia prądem w przypadku uszkodzenia urządzenia. Izolacja robocza to warstwa materiału izolacyjnego, która otacza przewody elektryczne i zapobiega ich kontaktowi z elementami metalowymi urządzenia, a tym samym z użytkownikiem. Przykładem praktycznego zastosowania izolacji roboczej jest użycie wysokiej jakości materiałów takich jak PVC lub guma, które są odporne na wysokie temperatury i działanie chemikaliów. Standardy takie jak IEC 60364 oraz normy krajowe dotyczące instalacji elektrycznych wskazują na konieczność stosowania izolacji roboczej, aby zapewnić bezpieczeństwo użytkowników. W praktyce, każdy grzejnik elektryczny powinien być zaprojektowany tak, aby spełniał wymagania dotyczące izolacji, co znacznie redukuje ryzyko wypadków związanych z porażeniem prądem.

Pytanie 29

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Zewrzeć zaciski silnika z zaciskiem ochronnym
B. Obciążyć silnik momentem znamionowym
C. Podłączyć napięcie zasilające
D. Otworzyć łącznik załączający silnik

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak dla mnie, otwarcie łącznika przed pomiarem rezystancji uzwojeń w silniku trójfazowym to bardzo ważny krok. Dzięki temu unikamy poważnych uszkodzeń sprzętu, a także dbamy o swoje bezpieczeństwo podczas testów. Kiedy łącznik jest otwarty, można spokojnie zmierzyć rezystancję uzwojeń, co jest kluczowe, żeby ocenić stan ich izolacji i wychwycić ewentualne zwarcia międzyzwojowe. Warto wiedzieć, że takie praktyki są potwierdzone przez normy jak IEC 60034-1, które mocno podkreślają, że trzeba mieć bezpieczny dostęp do obwodów przed rozpoczęciem pomiarów. Otwarcie łącznika to także zabezpieczenie przed przypadkowym uruchomieniem silnika, co mogłoby prowadzić do nieprzyjemnych sytuacji. Pamiętaj, żeby używać odpowiednich narzędzi, jak megohmometr, do pomiaru rezystancji izolacji. To pozwoli uzyskać dokładne wyniki i ocenić stan izolacji. Regularne przeglądy silników w zakładach przemysłowych to najlepszy sposób na wczesne wykrywanie usterek i lepsze zarządzanie kosztami eksploatacji.

Pytanie 30

Trójfazowy silnik indukcyjny jest przystosowany do uruchamiania z wykorzystaniem przełącznika gwiazda-trójkąt. Jaką mocą, w porównaniu do mocy znamionowej, można go obciążyć przy połączeniu uzwojeń w konfiguracji gwiazdy?

A. Trzykrotnie mniejszą
B. Dwukrotnie większą
C. Trzykrotnie większą
D. Dwukrotnie mniejszą

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że silnik indukcyjny trójfazowy można obciążyć trzykrotnie mniejszą mocą przy połączeniu uzwojeń w gwiazdę, jest poprawna z technicznego punktu widzenia. W układzie gwiazda napięcie zasilające na każdym uzwojeniu wynosi 1/√3 napięcia fazowego, co wpływa na moc, jaką silnik może wygenerować. W momencie rozruchu w trybie gwiazdy, silnik może dostarczyć jedynie 1/3 mocy znamionowej, co jest kluczowe, aby uniknąć przeciążenia uzwojeń i nadmiernych prądów rozruchowych, które mogłyby prowadzić do uszkodzenia silnika. W praktyce, stosowanie przełącznika gwiazda-trójkąt w dużych silnikach indukcyjnych pozwala na zredukowanie prądów rozruchowych, co jest zgodne z dobrymi praktykami w inżynierii elektrycznej. Przykładem zastosowania tej metody są silniki napędzające duże wentylatory, pompy czy sprężarki, w których istotne jest kontrolowanie momentu rozruchowego oraz ograniczenie obciążeń mechanicznych w początkowej fazie pracy.

Pytanie 31

Silnik prądu stałego w układzie szeregowym intensywnie iskrzy na segmentach komutatora. Najbardziej prawdopodobnym powodem uszkodzenia jest

A. zwarcie międzyzwojowe w obwodzie stojana
B. zwarcie międzyzwojowe w obwodzie wirnika
C. przerwa w obwodzie wirnika
D. przerwa w obwodzie stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwarcie międzyzwojowe w obwodzie wirnika jest najczęstszą przyczyną nadmiernego iskrzenia na komutatorze silnika szeregowego prądu stałego. Tego typu zwarcia powodują nieprawidłowy przepływ prądu w uzwojeniach wirnika, co skutkuje dużymi prądami roboczymi, a w konsekwencji prowadzi do powstania intensywnych łuków elektrycznych na komutatorze. Iskrzenie to nie tylko obniża efektywność pracy silnika, ale także może prowadzić do szybszego zużycia elementów komutatora oraz wirnika. Przykładowo, w silnikach stosowanych w aplikacjach przemysłowych, takich jak napędy trakcyjne czy maszyny robocze, kluczowe jest monitorowanie stanu uzwojeń, aby zminimalizować ryzyko zwarć. Regularne inspekcje oraz stosowanie systemów diagnostycznych, takich jak termowizja czy analiza drgań, mogą pomóc w wczesnym wykryciu problemów z uzwojeniami, co jest zgodne z najlepszymi praktykami w zarządzaniu utrzymaniem ruchu. Ponadto, zrozumienie efektów zwarć międzyzwojowych jest kluczowe dla inżynierów projektujących układy napędowe, aby mogli tworzyć bardziej niezawodne i trwałe systemy.

Pytanie 32

Jaką maksymalną wartość prądu zadziałania można ustawić na przekaźniku termobimetalowym w obwodzie zasilającym silnik asynchroniczny o parametrach UN = 400 V, PN = 0,37 kW, I = 1,05 A, n = 2710 l/min, aby zapewnić skuteczną ochronę przed przeciążeniem?

A. It=1,05 A
B. It=0,88 A
C. It=1,15 A
D. It=1,33 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prąd zadziałania 1,15 A na przekaźniku termobimetalowym to naprawdę dobry wybór do ochrony silnika asynchronicznego o takich danych jak UN = 400 V, PN = 0,37 kW oraz I = 1,05 A. W praktyce przekaźniki termobimetalowe ustawiamy na wartość trochę wyższą od prądu znamionowego silnika. W tym przypadku 1,15 A to dobra decyzja, bo zapewnia odpowiednią ochronę przed przeciążeniem, a jednocześnie daje trochę luzu na krótkie wzrosty prądu, które mogą wystąpić na przykład podczas rozruchu. Ta zasada jest zgodna z normą PN-EN 60204-1, która mówi o bezpieczeństwie w instalacjach elektrycznych maszyn. Dzięki temu silnik nie będzie miał problemów z uszkodzeniami spowodowanymi długotrwałym przeciążeniem, co w efekcie wydłuża jego żywotność i zwiększa niezawodność całego systemu. Na przykład, w przemyśle silnik napędzający wentylator potrzebuje odpowiednio ustawionych przekaźników, żeby wszystko działało bez zarzutu i żeby zminimalizować ryzyko awarii.

Pytanie 33

Podczas wymiany uzwojeń w jednofazowym transformatorze o parametrach: SN = 200 VA , U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o większej średnicy i mniejszej liczbie zwojów w porównaniu do uzwojenia wtórnego
D. o tej samej średnicy i większej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane o niniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna, ponieważ wynika to z zasady działania transformatorów. W transformatorze jednofazowym, stosunek napięcia do liczby zwojów jest kluczowy dla jego właściwej funkcji. Uzwojenie pierwotne, które jest zasilane napięciem sieciowym (230 V), ma więcej zwojów niż uzwojenie wtórne, co pozwala na uzyskanie niższego napięcia wtórnego (14,6 V). Przykładowo, jeśli przyjmiemy, że uzwojenie wtórne ma 10 zwojów, to uzwojenie pierwotne powinno mieć co najmniej 157 zwojów, aby zachować odpowiedni stosunek napięcia. W praktyce, większa liczba zwojów w uzwojeniu pierwotnym przy jednoczesnym zachowaniu średnicy drutu pozwala na lepsze zarządzanie prądem i ciepłem, co jest kluczowe dla efektywności transformatora oraz jego bezawaryjnego działania. Dodatkowo, stosowanie odpowiednich norm, takich jak IEC 60076, zapewnia zgodność z międzynarodowymi standardami w zakresie projektowania i budowy transformatorów.

Pytanie 34

Jednofazowa grzałka o mocy 4 kW jest zasilana przewodem o długości 10 m i przekroju 1,5 mm2. W jaki sposób zmienią się straty mocy w przewodzie zasilającym, gdy jego przekrój wyniesie 2,5 mm2?

A. Zwiększą się o 100%
B. Zwiększą się o 40%
C. Zmniejszą się o 40%
D. Zmniejszą się o 100%

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przy zwiększeniu przekroju przewodu z 1,5 mm² do 2,5 mm² straty mocy w przewodzie ulegają redukcji o 40%. Straty mocy w przewodach elektrycznych są funkcją oporu, który z kolei zależy od przekroju przewodu, długości oraz materiału, z którego jest wykonany. Opór przewodu można obliczyć ze wzoru: R = ρ * (L / A), gdzie ρ to oporność właściwa materiału, L to długość przewodu, a A to jego przekrój. Zwiększenie powierzchni przekroju przewodu zmniejsza opór, co prowadzi do mniejszych strat mocy na skutek efektu Joule'a, gdzie moc stratna P = I² * R. Przykładowo, w instalacjach przemysłowych, gdzie wykorzystywane są długie przewody zasilające, zastosowanie większego przekroju przewodu nie tylko poprawia efektywność energetyczną, ale także zmniejsza ryzyko przegrzewania się przewodów oraz awarii. Standardy takie jak PN-IEC 60364 zalecają stosowanie odpowiednich przekrojów przewodów, aby zminimalizować straty energii oraz zwiększyć bezpieczeństwo instalacji elektrycznych.

Pytanie 35

Który z poniższych rodzajów silników wyróżnia się najlepszą kontrolą prędkości obrotowej poprzez modyfikację wartości napięcia zasilającego?

A. Asynchroniczny pierścieniowy
B. Synchroniczny jawnobiegunowy
C. Prądu stałego
D. Asynchroniczny klatkowy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Silniki prądu stałego charakteryzują się doskonałą regulacją prędkości obrotowej, co czyni je idealnym wyborem w aplikacjach wymagających precyzyjnego sterowania. Dzięki prostocie zmiany napięcia zasilającego, można łatwo dostosować prędkość obrotową silnika do konkretnego zadania. Przykłady zastosowania obejmują napędy w robotyce, gdzie wymagana jest zmienna prędkość w zależności od zadań do wykonania, czy też w wentylatorach, gdzie regulacja obrotów wpływa na efektywność energetyczną. W przemyśle, silniki prądu stałego są wykorzystywane w maszynach takich jak dźwigi czy taśmociągi, gdzie precyzyjne zarządzanie prędkością jest kluczowe dla bezpieczeństwa i efektywności procesu. Dobre praktyki wskazują na wykorzystanie kontrolerów PWM (Pulse Width Modulation) do efektywnej regulacji napięcia oraz ograniczenia strat energii. Warto również zauważyć, że silniki te są bardziej odpowiednie do zadań, gdzie wymagana jest często zmiana kierunku obrotów, co również wpływa na ich popularność w różnorodnych aplikacjach.

Pytanie 36

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Pirometr
B. Megaomomierz
C. Waromierz
D. Sonometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 37

Jakie konsekwencje wystąpią w instalacji elektrycznej po zamianie przewodów ADY 2,5 mm2 na DY 2,5 mm2?

A. Obniżenie obciążalności prądowej
B. Wzrost spadku napięcia na przewodach
C. Zwiększenie temperatury przewodu
D. Obniżenie rezystancji pętli zwarciowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przewodów ADY 2,5 mm² na DY 2,5 mm² prowadzi do zmniejszenia rezystancji pętli zwarciowej dzięki zastosowaniu przewodów o lepszej jakości i właściwościach materiałowych. Przewody DY charakteryzują się mniejszym oporem elektrycznym, co bezpośrednio wpływa na efektywność działania instalacji elektrycznej. Przy niższej rezystancji pętli zwarciowej, w przypadku awarii, prąd zwarciowy jest wyższy, co pozwala na szybsze działanie zabezpieczeń, takich jak wyłączniki nadprądowe czy różnicowoprądowe. Standardy określające wymagania dla instalacji elektrycznych, jak PN-IEC 60364, podkreślają znaczenie minimalizowania rezystancji w systemach elektroenergetycznych, aby zapewnić bezpieczeństwo i niezawodność. Przykładem praktycznym jest instalacja w obiektach przemysłowych, gdzie szybka reakcja zabezpieczeń jest kluczowa dla ochrony sprzętu i ludzi. Właściwe dobranie przewodów w instalacjach elektrycznych ma zatem kluczowe znaczenie dla bezpieczeństwa oraz efektywności energetycznej.

Pytanie 38

które z poniższych stwierdzeń dotyczących działania silnika bocznikowego prądu stałego wskazuje na występującą w nim nieprawidłowość?

A. Natężenie prądu w obwodzie wzbudzenia przekracza to w obwodzie twornika
B. Prędkość obrotowa wirnika na biegu jałowym jest wyższa od prędkości znamionowej
C. Prędkość obrotowa wirnika rośnie przy osłabieniu wzbudzenia
D. Natężenie prądu w obwodzie wzbudzenia jest niższe niż w obwodzie twornika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prąd w obwodzie wzbudzenia silnika bocznikowego prądu stałego powinien być mniejszy niż prąd w obwodzie twornika. Jeśli prąd w obwodzie wzbudzenia jest większy, może to świadczyć o nieprawidłowości w pracy silnika, takiej jak uszkodzenie wirnika lub niewłaściwe ustawienie szczotek. W normalnych warunkach, prąd wzbudzenia jest regulowany przez wartość oporu w obwodzie wzbudzenia, co wpływa na siłę wzbudzenia i w konsekwencji na moment obrotowy silnika. Przykładem zastosowania wiedzy na ten temat jest diagnostyka silników elektrycznych w przemyśle, gdzie monitorowanie prądu wzbudzenia pozwala na wczesne wykrywanie problemów, co jest zgodne z dobrymi praktykami w utrzymaniu ruchu. Aby zapewnić płynność pracy i unikać awarii, ważne jest przestrzeganie zasad dotyczących konserwacji i inspekcji elementów silnika, takich jak szczotki i wirnik, w celu zapewnienia ich prawidłowego funkcjonowania oraz optymalizacji efektywności energetycznej układu napędowego.

Pytanie 39

W trakcie serwisowania silnika indukcyjnego jednofazowego pracownik przez przypadek zamienił miejscami kondensator rozruchowy o pojemności 300 µF z kondensatorem roboczym o pojemności 50 µF. Jakie mogą być konsekwencje tego błędu?

A. Silnik nie włączy się
B. Silnik zmieni swój kierunek obrotów
C. Zniszczenie kondensatora 50 µF podczas uruchamiania silnika
D. Uszkodzenie uzwojenia pomocniczego po kilku minutach działania silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Podczas rozruchu silnika indukcyjnego jednofazowego, kondensator rozruchowy o pojemności 300 µF jest kluczowy dla zapewnienia momentu obrotowego niezbędnego do uruchomienia silnika. Jeśli zamienimy go z kondensatorem pracy 50 µF, silnik nie otrzyma odpowiedniej wartości pojemności, co skutkuje niewystarczającym momentem obrotowym. W rezultacie silnik nie ruszy. To zjawisko jest zgodne z zasadami działania silników indukcyjnych, gdzie kondensatory pełnią istotną rolę w tworzeniu przesunięcia fazowego między prądem a napięciem. W praktyce, stosowanie odpowiednich kondensatorów zgodnych z wymaganiami producenta, jest kluczowe dla prawidłowego działania silników. Właściwe dobieranie kondensatorów to standardowa praktyka, która minimalizuje ryzyko awarii i zapewnia długotrwałą niezawodność urządzeń elektrycznych.

Pytanie 40

Jakie styczniki z podanych kategorii powinny być użyte podczas modernizacji szafy sterowniczej z szyną TH 35, zasilającej urządzenie napędzane silnikami indukcyjnymi klatkowym?

A. DC-2
B. AC-1
C. AC-3
D. DC-4

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór stycznika AC-3 do sterowania silnikami indukcyjnymi klatkowym jest uzasadniony jego specyfiką oraz przeznaczeniem. Klasyfikacja AC-3 jest dedykowana do zastosowań związanych z silnikami asynchronicznymi, w szczególności w momentach ich rozruchu, co wiąże się z dużymi prądami rozruchowymi. Styki AC-3 są zaprojektowane do pracy z prądami roboczymi, a ich konstrukcja pozwala na skuteczne rozłączanie i załączanie obwodów z silnikami, co jest kluczowe w kontekście wydajności energetycznej i bezpieczeństwa systemu. Przykładem zastosowania AC-3 może być szafa sterownicza w zakładzie przemysłowym, gdzie stycznik ten obsługuje silnik napędzający taśmociąg. Zgodnie z normami IEC 60947-4-1, styczniki klasy AC-3 są także przystosowane do pracy z dużymi cyklami załączania, co czyni je odpowiednimi w aplikacjach o dużym obciążeniu. Wybór ten jest zgodny z najlepszymi praktykami branżowymi, zapewniając nie tylko efektywność, ale i długowieczność komponentów w zautomatyzowanych systemach.