Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik teleinformatyk
  • Kwalifikacja: INF.07 - Montaż i konfiguracja lokalnych sieci komputerowych oraz administrowanie systemami operacyjnymi
  • Data rozpoczęcia: 13 lipca 2025 22:27
  • Data zakończenia: 13 lipca 2025 22:39

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Który standard sieci LAN reguluje dostęp do medium na podstawie przesyłania tokenu (żetonu)?

A. IEEE 802.1
B. IEEE 802.2
C. IEEE 802.3
D. IEEE 802.5
Standardy IEEE 802.1 i IEEE 802.2 dotyczą różnych rzeczy w budowie sieci. IEEE 802.1 to ramy dla sieci lokalnych i ich współpracy, zajmując się sprawami takimi jak dostęp do mediów i jakość usług (QoS). Ale tokenów tam nie ma. Z kolei IEEE 802.2 to standard warstwy 2, który mówi o protokołach komunikacyjnych, ale też nie ma tam przekazywania tokenu. Natomiast IEEE 802.3, czyli Ethernet, korzysta z metody CSMA/CD (Carrier Sense Multiple Access with Collision Detection), co oznacza, że wiele urządzeń może próbować nadawać w tym samym czasie, co prowadzi do kolizji. Dlatego niektórzy mogą mylić Ethernet z Token Ring, myśląc, że wszystkie sieci lokalne działają podobnie. To częsty błąd, że wydaje się, że wszystkie sieci LAN mają ten sam sposób dostępu do medium, ale w rzeczywistości to różne standardy rządzą się swoimi prawami. Trzeba wziąć pod uwagę, że wybór standardu zależy od konkretnych potrzeb aplikacyjnych i architektury sieci. Dlatego ważne jest, żeby znać różne standardy i ich zastosowania, żeby wykorzystać to, co oferują nowoczesne technologie sieciowe.

Pytanie 2

W wtyczce 8P8C, zgodnie z normą TIA/EIA-568-A, w sekwencji T568A, para przewodów biało-pomarańczowy/pomarańczowy jest przypisana do styków

A. 3 i 6
B. 4 i 6
C. 1 i 2
D. 3 i 5
Odpowiedzi wskazujące na inne kombinacje styków w wtyku 8P8C nie są zgodne z normą TIA/EIA-568-A, a ich wybór może prowadzić do błędnych połączeń w sieci, co może skutkować problemami z transmisją danych. Styk 3 jest przypisany konkretnej parze przewodów, ale wybór styków 1 i 2, 3 i 5 lub 4 i 6 ignoruje kluczowy podział na pary w standardzie T568A. W przypadku styków 1 i 2, które są przypisane do innych par, dochodzi do chaosu w sygnalizacji, co może prowadzić do zjawiska interferencji czy zakłóceń w transmitowanych sygnałach. Wybór styków 3 i 5 również jest błędny, gdyż pomija wymagania dotyczące pary przewodów, co może skutkować nieefektywnym przesyłem danych. Warto pamiętać, że w przypadku wtyków, każdy z kolorów przewodów i przypisanych do nich styków odgrywa istotną rolę w zachowaniu integralności sygnału. Standardy okablowania, takie jak T568A, nie są jedynie zaleceniami, ale są fundamentalnymi zasadami, które przyczyniają się do prawidłowego funkcjonowania sieci komputerowych. Dlatego tak ważne jest, aby stosować się do ustalonych norm, aby uniknąć potencjalnych problemów w przyszłych instalacjach oraz zapewnić sobie i użytkownikom stabilne i wydajne połączenie sieciowe.

Pytanie 3

Jakie urządzenie pozwala na połączenie lokalnej sieci komputerowej z Internetem?

A. hub.
B. router.
C. driver.
D. switch.
Ruter jest kluczowym urządzeniem w infrastrukturze sieciowej, które umożliwia podłączenie lokalnej sieci komputerowej do Internetu. Jego rola polega na kierowaniu pakietami danych pomiędzy różnymi sieciami, co pozwala na komunikację pomiędzy urządzeniami w sieci lokalnej a zdalnymi zasobami w Internecie. Ruter pracuje na warstwie trzeciej modelu OSI, co oznacza, że analizuje adresy IP w pakietach danych, aby określić najlepszą trasę do docelowego adresu. Przykładem zastosowania rutera może być domowa sieć Wi-Fi, gdzie ruter łączy wiele urządzeń, takich jak komputery, smartfony czy telewizory, z globalną siecią Internet. W praktyce, ruter może także pełnić funkcje zabezpieczeń, takie jak zapora ogniowa (firewall), co zwiększa bezpieczeństwo naszej sieci. Dobre praktyki w konfiguracji rutera obejmują regularne aktualizacje oprogramowania oraz stosowanie silnych haseł do zabezpieczenia dostępu do administracji. Warto również zwrócić uwagę na konfigurację NAT (Network Address Translation), która pozwala na ukrycie wewnętrznych adresów IP w sieci lokalnej, co dodatkowo zwiększa bezpieczeństwo.

Pytanie 4

Technologia oparta na architekturze klient-serwer, która umożliwia połączenie odległych komputerów w sieci poprzez szyfrowany tunel, nazywa się

A. VPN
B. WAN
C. WLAN
D. VLAN
Technologia VPN (Virtual Private Network) umożliwia bezpieczne połączenie zdalnych komputerów w sieci przez szyfrowany tunel. Dzięki temu użytkownicy mogą przesyłać dane w sposób chroniony przed podsłuchiwaniem i dostępem nieautoryzowanych osób. VPN jest powszechnie stosowany w firmach, które umożliwiają pracownikom zdalny dostęp do zasobów sieciowych, zapewniając jednocześnie ochronę danych. Przykładem może być pracownik, który korzystając z publicznej sieci Wi-Fi w kawiarni, łączy się z siecią firmową przez VPN, co uniemożliwia hakerom przechwycenie jego danych. Standardy bezpieczeństwa, takie jak IPsec (Internet Protocol Security) oraz SSL/TLS (Secure Sockets Layer/Transport Layer Security), są często wykorzystywane w implementacjach VPN, co czyni tę technologię zgodną z najlepszymi praktykami branżowymi.

Pytanie 5

Zastosowanie połączenia typu trunk między dwoma przełącznikami umożliwia

A. zwiększenie przepustowości dzięki wykorzystaniu dodatkowego portu
B. konfigurację agregacji portów, co zwiększa przepustowość między przełącznikami
C. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
D. zablokowanie wszystkich nadmiarowych połączeń na danym porcie
Analizując różne odpowiedzi, można zauważyć, że niektóre z nich bazują na mylnych założeniach dotyczących funkcji trunków. Zwiększenie przepustowości połączenia przez wykorzystanie kolejnego portu, choć wydaje się logiczne, odnosi się do agregacji portów, a nie do trunkowania. Połączenia trunkowe nie zwiększają fizycznej przepustowości, lecz umożliwiają przesyłanie różnych VLAN-ów przez to samo łącze. Z kolei sugestia dotycząca zablokowania wszystkich nadmiarowych połączeń na konkretnym porcie wskazuje na mylne rozumienie funkcji trunków; te nie służą do blokowania, lecz do przesyłania danych. Trunkowanie nie ma na celu eliminacji połączeń, ale efektywne przesyłanie danych z różnych źródeł. Ostatnia odpowiedź, dotycząca skonfigurowania agregacji portów, również wprowadza w błąd, ponieważ agregacja portów to osobna technika, która pozwala na połączenie wielu fizycznych interfejsów w jeden logiczny w celu zwiększenia przepustowości oraz redundancji, a nie jest to funkcjonalność trunków. W każdej z tych odpowiedzi widać typowe błędy myślowe, polegające na myleniu różnych terminów i funkcji w kontekście sieci komputerowych, co często prowadzi do nieporozumień w zakresie zarządzania siecią i jej konfiguracji.

Pytanie 6

Jakie urządzenie pozwala komputerom na bezprzewodowe łączenie się z przewodową siecią komputerową?

A. koncentrator
B. modem
C. regenerator
D. punkt dostępu
Punkt dostępu, czyli po angielsku access point, to urządzenie, które pozwala komputerom i innym sprzętom łączyć się z bezprzewodową siecią lokalną, znaną jako WLAN. Można to porównać do mostu, który łączy sieć przewodową z urządzeniami bezprzewodowymi. Dzięki niemu można korzystać z Internetu i lokalnych zasobów. Wiesz, często spotykamy punkty dostępu w biurach, szkołach czy w domach, bo pomagają w rozszerzaniu zasięgu sieci. W praktyce, kiedy mamy dużo urządzeń, jak smartfony, laptopy czy tablety, to punkty dostępu są naprawdę niezbędne, bo umożliwiają dostęp bez kabli. Używając dobrze zaprojektowanej sieci Wi-Fi z punktami dostępu zgodnymi z normą IEEE 802.11, możemy cieszyć się świetną wydajnością i bezpieczeństwem danych.

Pytanie 7

Jakie polecenie w systemie Windows pokazuje tablicę routingu hosta?

A. ipconfig /release
B. netstat -n
C. ipconfig /renew
D. netstat - r
Polecenie 'netstat -r' w systemie Windows jest używane do wyświetlania tabeli routingu, która zawiera informacje o dostępnych trasach sieciowych, jakie komputer wykorzystuje do komunikacji z innymi urządzeniami w sieci. To polecenie dostarcza przede wszystkim informacji o lokalnych interfejsach sieciowych, ich adresach IP, maskach podsieci oraz bramach domyślnych. W praktyce, administratorzy sieci korzystają z tego narzędzia do diagnozowania problemów z połączeniami sieciowymi, monitorowania tras przesyłania danych oraz weryfikacji poprawności konfiguracji sieci. Znajomość tabeli routingu jest kluczowa dla efektywnego zarządzania ruchem sieciowym oraz dla zapewnienia, że dane są kierowane prawidłowo do odpowiednich docelowych adresów. Dodatkowo, w standardach branżowych, takich jak TCP/IP, zarządzanie trasami jest jednym z fundamentalnych aspektów, który wpływa na wydajność i niezawodność komunikacji w sieci.

Pytanie 8

W jakiej warstwie modelu TCP/IP funkcjonuje protokół DHCP?

A. Internetu
B. Łącza danych
C. Transportowej
D. Aplikacji
Wybór odpowiedzi z warstwą Internetu, łącza danych lub transportową sugeruje, że może być jakieś nieporozumienie odnośnie tego, jak działa model TCP/IP i jakie są role poszczególnych protokołów. Warstwa Internetu, w której działają protokoły takie jak IP, zajmuje się przesyłaniem datagramów przez sieć i kierowaniem ich do odpowiednich adresów, ale nie odpowiada za przydzielanie adresów IP. Protokół DHCP nie działa na tym poziomie, bo nie zajmuje się routowaniem, tylko konfiguracją. Z kolei warstwa łącza danych zapewnia komunikację między urządzeniami w tej samej sieci lokalnej, używając adresów MAC, a nie IP. Warstwa transportowa to już inna bajka, bo to tam działają protokoły jak TCP i UDP, które odpowiadają za przesyłanie danych i kontrolę błędów, ale nie za konfigurację sieci. Często ludzie mylą funkcje protokołów i ich miejsca w modelu TCP/IP. DHCP jako protokół aplikacyjny tworzy most między aplikacjami a warstwą transportową, ale samo w sobie nie przesyła danych, tylko je konfiguruje, co dobrze pokazuje, czemu należy do warstwy aplikacji.

Pytanie 9

Jakie rekordy DNS umożliwiają przesyłanie wiadomości e-mail do odpowiednich serwerów pocztowych w danej domenie?

A. MX
B. SOA
C. PTR
D. CNAME
Rekordy SOA (Start of Authority) są podstawowym typem rekordu DNS, który definiuje główne informacje o strefie DNS, takie jak adres serwera nazw i dane kontaktowe administratora. Nie służą one do kierowania wiadomości e-mail, lecz do określenia, kto odpowiada za dany obszar DNS. Rejestracja SOA jest istotna dla zarządzania strefą, ale nie ma zastosowania w kontekście dostarczania e-maili. Rekordy PTR (Pointer) są używane głównie w odwrotnych wyszukiwaniach DNS, czyli do mapowania adresów IP na nazwy domen. Choć mogą być przydatne w kontekście weryfikacji nadawcy e-maila, nie odpowiadają za kierowanie wiadomości. Z kolei rekordy CNAME (Canonical Name) są używane do tworzenia aliasów dla innych rekordów DNS, co również nie ma związku z procesem dostarczania e-maili. Często spotykanym błędem jest mylenie różnych typów rekordów DNS i ich funkcji. Użytkownicy mogą błędnie założyć, że jakikolwiek rekord DNS może być wykorzystany do dostarczania wiadomości e-mail, ignorując przy tym specyfikę rekordów MX, które są zaprojektowane specjalnie w tym celu. Zrozumienie różnicy między tymi rekordami jest kluczowe dla efektywnego zarządzania systemem pocztowym i unikania problemów z dostarczaniem e-maili.

Pytanie 10

Jaki będzie całkowity koszt brutto materiałów zastosowanych do wykonania odcinka okablowania łączącego dwie szafki sieciowe wyposażone w panele krosownicze, jeżeli wiadomo, że zużyto 25 m skrętki FTP cat. 6A i dwa moduły Keystone? Ceny netto materiałów znajdują się w tabeli, stawka VAT na materiały wynosi 23%.

Materiałj.m.Cena
jednostkowa
netto
Skrętka FTP cat. 6Am.3,50 zł
Moduł Keystone FTP RJ45szt.9,50 zł
A. 106,50 zł
B. 119,31 zł
C. 131,00 zł
D. 97,00 zł
Obliczając całkowity koszt brutto materiałów, należy najpierw zsumować ceny netto skrętki FTP cat. 6A oraz dwóch modułów Keystone, a następnie do tej wartości doliczyć podatek VAT, który wynosi 23%. Przyjmując standardowe ceny rynkowe, za 25 metrów skrętki FTP cat. 6A można przyjąć koszt 100,00 zł, natomiast dwa moduły Keystone to z reguły koszt rzędu 30,00 zł. Zatem całkowity koszt netto wynosi 100,00 zł + 30,00 zł = 130,00 zł. Po dodaniu VAT, obliczamy: 130,00 zł * 1,23 = 159,90 zł. Warto jednak pamiętać, że w praktyce należy zawsze stosować się do aktualnych cen materiałów oraz przepisów podatkowych, które mogą się zmieniać. Proszę pamiętać, że przy planowaniu projektów okablowania, ważne jest nie tylko uwzględnienie kosztów materiałów, ale także ich zgodność ze standardami branżowymi, takimi jak ANSI/TIA-568, które określają wymagania dotyczące instalacji okablowania strukturalnego. Dzięki temu zapewniamy nie tylko efektywność kosztową, ale także niezawodność i trwałość całego systemu.

Pytanie 11

Najbardziej popularny kodek audio używany przy ustawianiu bramki VoIP to

A. GSM
B. G.711
C. A.512
D. AC3
Wybór innych kodeków mowy, takich jak GSM, A.512 czy AC3, nie jest optymalny w kontekście bramek VoIP. Kodek GSM, chociaż powszechnie stosowany w telekomunikacji komórkowej, oferuje niższą jakość dźwięku w porównaniu do G.711, ponieważ jest kompresowany, co prowadzi do utraty niektórych szczegółów w dźwięku. Użytkownicy mogą zauważyć, że jakość rozmowy jest mniej wyraźna, co może być nieakceptowalne w profesjonalnych zastosowaniach. Kodek A.512 nie jest standardowym kodekiem mowy i nie jest powszechnie stosowany w systemach VoIP, co powoduje, że jego zastosowanie wiąże się z ryzykiem braku kompatybilności z innymi systemami. Z kolei AC3, znany głównie z zastosowania w systemach audio i filmowych, nie jest zoptymalizowany do transmisji mowy i charakteryzuje się złożonymi algorytmami kompresji, co może wprowadzać opóźnienia i obniżać jakość audio w real-time communication. Ważne jest, aby unikać podejść, które mogą prowadzić do obniżenia jakości połączeń głosowych, dlatego wybór odpowiedniego kodeka, takiego jak G.711, jest kluczowy dla zapewnienia wysokiej jakości usług VoIP.

Pytanie 12

Które z poniższych urządzeń sieciowych umożliwia segmentację sieci na poziomie warstwy 3 modelu OSI?

A. Punkt dostępowy (Access Point)
B. Switch
C. Repeater (regenerator sygnału)
D. Router
Wiele osób myli funkcje podstawowych urządzeń sieciowych, co prowadzi do błędnych założeń dotyczących segmentacji. Switch działa głównie w warstwie drugiej modelu OSI, czyli warstwie łącza danych. Jego głównym zadaniem jest przełączanie ramek w obrębie jednej sieci lokalnej (VLAN), a nie segmentacja na poziomie IP. Co prawda, istnieją switche warstwy trzeciej, które potrafią segmentować ruch na poziomie sieciowym, ale standardowo przyjmuje się, że switch nie jest urządzeniem do segmentacji warstwy trzeciej. Repeater to urządzenie jeszcze prostsze – działa w warstwie pierwszej i służy tylko do wzmacniania sygnału, bez jakiejkolwiek analizy czy rozdzielania ruchu. Nie wprowadza żadnej segmentacji ani logiki sieciowej. Punkt dostępowy (Access Point) odpowiada za umożliwienie urządzeniom bezprzewodowym dołączenie do sieci lokalnej, również operuje na niższych warstwach (głównie warstwa druga i warstwa fizyczna). Nie segmentuje ruchu IP, przekazuje jedynie sygnał dalej do sieci przewodowej. Typowym błędem jest mylenie funkcji tych urządzeń, zwłaszcza gdy w praktyce wiele z nich bywa zintegrowanych w jednym sprzęcie domowym (np. router Wi-Fi z wbudowanym switchem i access pointem). Jednak w kontekście profesjonalnych sieci, każde z tych urządzeń ma jasno określoną rolę i tylko router (lub zaawansowany switch L3) umożliwia segmentację na poziomie warstwy trzeciej. Z mojego doświadczenia wynika, że rozumienie tych różnic jest kluczowe przy projektowaniu wydajnej i bezpiecznej infrastruktury sieciowej, bo pomyłki na tym etapie mogą prowadzić do poważnych problemów z bezpieczeństwem, wydajnością czy zarządzaniem ruchem.

Pytanie 13

W systemie Windows narzędzie do zarządzania skryptami wiersza poleceń, które pozwala na przeglądanie lub zmianę konfiguracji sieciowej komputera, który jest włączony, to

A. ipconfig
B. netsh
C. nslookup
D. netstat
No, więc 'netsh' to naprawdę super narzędzie do ogarniania konfiguracji sieci w Windowsie. Dzięki niemu możesz nie tylko zobaczyć, jak wyglądają twoje parametry sieciowe, ale też je zmienić. W praktyce można tam ogarnąć ustawienia IP, DNS czy zaporę systemową. Na przykład, jak chcesz ustawić statyczny adres IP albo zmienić coś w DHCP, to właśnie netsh będzie najlepszym wyborem. Ciekawostka – administratorzy mogą nawet pisać skrypty, żeby zautomatyzować te procesy. To jest mega przydatne w zarządzaniu infrastrukturą IT. A jak coś nie działa w sieci, to często korzysta się z netsh do resetowania TCP/IP, co czasami naprawdę potrafi załatwić sprawę. W skrócie, znajomość netsh to must-have dla każdego, kto boryka się z administracją Windowsa.

Pytanie 14

Aby uzyskać sześć podsieci z sieci o adresie 192.168.0.0/24, co należy zrobić?

A. zmniejszyć długość maski o 2 bity
B. zwiększyć długość maski o 3 bity
C. zmniejszyć długość maski o 3 bity
D. zwiększyć długość maski o 2 bity
Aby wydzielić sześć podsieci z sieci o adresie 192.168.0.0/24, konieczne jest zwiększenie długości maski o 3 bity. Maska /24 oznacza, że pierwsze 24 bity adresu IP są wykorzystywane do identyfikacji sieci, a pozostałe 8 bitów do identyfikacji hostów. W celu uzyskania sześciu podsieci, musimy za pomocą dodatkowych bitów zarezerwować odpowiednią ilość adresów. W przypadku podziału sieci na podsieci, stosujemy formułę 2^n >= liczba wymaganych podsieci, gdzie n to liczba bitów, które dodajemy do maski. Zatem, 2^3 = 8, co zaspokaja potrzebę sześciu podsieci. Przy zwiększeniu długości maski o 3 bity, uzyskujemy maskę /27, co pozwala na otrzymanie 8 podsieci, z których każda ma 30 dostępnych adresów hostów. Przykładowe podsieci, które powstają w tym wypadku, to: 192.168.0.0/27, 192.168.0.32/27, 192.168.0.64/27, itd. Dobrą praktyką w projektowaniu sieci jest planowanie adresacji IP z wyprzedzeniem, aby dostosować ją do przyszłych potrzeb, co w tym przypadku zostało uwzględnione.

Pytanie 15

Ile podsieci obejmują komputery z adresami: 192.168.5.12/25, 192.168.5.50/25, 192.168.5.200/25 oraz 192.158.5.250/25?

A. 4
B. 1
C. 2
D. 3
Wielu uczniów ma problem z liczeniem podsieci, bo mylą adresy IP i ich klasyfikację. Adresy IP 192.168.5.12/25 i 192.168.5.50/25 są w tej samej podsieci, bo maska /25 pokazuje, że pierwsze 25 bitów jest takie same. Więc te adresy nie mogą być traktowane jako osobne podsieci. Z kolei 192.168.5.200/25 jest w innej podsieci, bo ma adres sieciowy 192.168.5.128. Dodatkowo, adres 192.158.5.250/25 to zupełnie inny adres, z innej klasy, czyli nie należy do żadnej z podsieci w klasie 192.168.5.x. Często ludzie myślą, że wystarczy spojrzeć na ostatnią część IP, żeby określić, czy są one w tej samej podsieci. Ale zrozumienie maski podsieci jest kluczowe dla ogarnięcia struktury sieciowej. Kiedy tworzy się sieć lokalną, dobrze jest pamiętać o adresach i maskach, żeby móc odpowiednio zarządzać ruchem i urządzeniami.

Pytanie 16

Jakie jest IP sieci, w której funkcjonuje host o adresie 192.168.176.125/26?

A. 192.168.176.64
B. 192.168.176.128
C. 192.168.176.0
D. 192.168.176.192
Rozważając inne odpowiedzi, warto zauważyć, że adres 192.168.176.0 odnosi się do pierwszej podsieci, jednak nie jest to poprawna odpowiedź w kontekście pytania, ponieważ dotyczy adresu sieci, a nie konkretnej podsieci, w której znajduje się host. W przypadku adresu 192.168.176.128, jest on również nieprawidłowy, ponieważ znajduje się poza zakresem podsieci 192.168.176.0/26. Adres ten jest częścią kolejnej podsieci, co prowadzi do błędnych wniosków o przynależności hosta do tej sieci. Adres 192.168.176.192 również nie jest poprawny, ponieważ znajduje się w dalszej podsieci, co wskazuje na brak zrozumienia zasady podziału adresów w sieciach IP. Często spotykanym błędem jest nieprawidłowe określenie, która podsieć jest używana, co prowadzi do niepoprawnego przypisania adresów IP. W kontekście standardów adresacji IP, zrozumienie maski podsieci oraz zakresu adresów jest kluczowe dla efektywnego projektowania i zarządzania sieciami lokalnymi. Warto pamiętać, że w przypadku CIDR, adresy podsieci są zdefiniowane przez pierwsze bity maski, co powinno być uwzględnione przy określaniu przynależności adresów IP do określonych podsieci.

Pytanie 17

Który z programów został przedstawiony poniżej?

To najnowsza wersja klienta działającego na różnych platformach, cenionego na całym świecie przez użytkowników, serwera wirtualnej sieci prywatnej, umożliwiającego utworzenie połączenia pomiędzy hostem a lokalnym komputerem, obsługującego uwierzytelnianie przy użyciu kluczy, a także certyfikatów, nazwy użytkownika oraz hasła, a w wersji dla Windows dodatkowo oferującego karty.

A. Ethereal
B. OpenVPN
C. Putty
D. TightVNC
OpenVPN to otwartoźródłowy program, który umożliwia tworzenie wirtualnych sieci prywatnych (VPN) i cieszy się dużym uznaniem wśród użytkowników na całym świecie. Jego najnowsza wersja zapewnia wsparcie dla wielu platform, co oznacza, że można go używać na różnych systemach operacyjnych, takich jak Windows, macOS, Linux, iOS oraz Android. OpenVPN obsługuje różne metody uwierzytelniania, w tym uwierzytelnianie za pomocą kluczy publicznych, certyfikatów oraz standardowych nazw użytkowników i haseł. Dzięki temu użytkownicy mogą dostosowywać swoje połączenia do własnych potrzeb związanych z bezpieczeństwem. Kluczowe jest również to, że OpenVPN wspiera różne protokoły szyfrowania, co pozwala na zabezpieczenie przesyłanych danych przed nieautoryzowanym dostępem. Przykładowe zastosowanie OpenVPN obejmuje zdalny dostęp do zasobów firmowych, co pozwala pracownikom na bezpieczną pracę z domu. Standardy bezpieczeństwa, takie jak AES-256-GCM, są zgodne z najlepszymi praktykami branżowymi, co czyni OpenVPN odpowiednim wyborem dla organizacji dbających o ochronę danych.

Pytanie 18

Usługi wspierające utrzymanie odpowiedniej kondycji oraz poziomu bezpieczeństwa sieci kontrolowanej przez Serwer Windows to

A. Usługi zarządzania prawami dostępu w usłudze Active Directory
B. Usługi wdrażania systemu Windows
C. Usługi zasad sieciowych i dostępu sieciowego
D. Usługi certyfikatów Active Directory
Usługi zasad sieciowych i dostępu sieciowego (Network Policy and Access Services, NPAS) stanowią istotny element infrastruktury serwerowej Windows, odpowiadając za zarządzanie dostępem do zasobów sieciowych oraz egzekwowanie polityk bezpieczeństwa. Ich główną funkcją jest kontrola dostępu do sieci, co obejmuje autoryzację, uwierzytelnianie oraz audyt. Dzięki zastosowaniu tych usług, administratorzy mogą definiować i wdrażać polityki, które decydują, które urządzenia mogą uzyskać dostęp do sieci, w oparciu o zdefiniowane zasady. Przykładem może być sytuacja, w której urządzenia mobilne pracowników są sprawdzane pod kątem zgodności z politykami bezpieczeństwa przed dopuszczeniem do sieci korporacyjnej. Usługi te wspierają również protokoły takie jak RADIUS, co umożliwia centralne zarządzanie dostępem i logowaniem użytkowników. W kontekście zabezpieczeń, NPAS spełnia standardy branżowe dotyczące bezpieczeństwa sieci, takie jak ISO/IEC 27001, pomagając organizacjom w utrzymywaniu wysokiego poziomu zabezpieczeń i zgodności z regulacjami prawnymi.

Pytanie 19

Do zdalnego administrowania stacjami roboczymi nie używa się

A. programu UltraVNC
B. pulpitu zdalnego
C. programu Wireshark
D. programu TeamViewer
Zdalne zarządzanie stacjami roboczymi to proces, który umożliwia administratorom systemów i użytkownikom dostęp do komputerów zlokalizowanych w różnych miejscach, często w zdalnych lokalizacjach. W kontekście dostępnych odpowiedzi, zarówno TeamViewer, jak i UltraVNC oraz pulpit zdalny są aplikacjami zaprojektowanymi z myślą o zdalnym dostępie do stacji roboczych. TeamViewer to popularne narzędzie, które umożliwia użytkownikom zdalne połączenie z innymi komputerami, oferując różnorodne funkcje, w tym przesyłanie plików oraz wsparcie techniczne. Podobnie, pulpit zdalny, będący funkcjonalnością wbudowaną w systemy Windows, pozwala na zdalne logowanie się do innych komputerów w sieci lokalnej lub przez Internet. UltraVNC to z kolei program oparty na technologii VNC, który umożliwia zdalny dostęp do ekranów komputerów, zapewniając użytkownikom interakcję z systemami operacyjnymi w czasie rzeczywistym. Wybór niewłaściwych narzędzi do zarządzania zdalnego może prowadzić do ograniczonej funkcjonalności, problemów z bezpieczeństwem lub brakiem kompatybilności z różnymi systemami operacyjnymi. Zrozumienie różnicy między narzędziami do zdalnego zarządzania a programami do analizy sieci jest kluczowe dla efektywnego zarządzania infrastrukturą IT oraz zapewnienia bezpieczeństwa w organizacji.

Pytanie 20

Norma PN-EN 50174 nie obejmuje wytycznych odnoszących się do

A. uziemień systemów przetwarzania danych
B. realizacji instalacji w obrębie budynków
C. montażu instalacji na zewnątrz budynków
D. zapewnienia jakości instalacji kablowych
Wydaje się, że odpowiedzi związane z wykonaniem instalacji wewnątrz budynków, zapewnieniem jakości instalacji okablowania oraz wykonaniem instalacji na zewnątrz budynków są mylnie interpretowane jako wytyczne ujęte w normie PN-EN 50174. W rzeczywistości, norma ta koncentruje się na aspektach związanych z planowaniem, projektowaniem i wykonawstwem instalacji okablowania strukturalnego w budynkach oraz ich integralności systemowej, co obejmuje zarówno instalacje wewnętrzne, jak i zewnętrzne. W kontekście instalacji wewnętrznych, norma dostarcza wytycznych dotyczących m.in. rozmieszczenia kabli, ich oznaczenia, a także minimalnych odległości między różnymi systemami. Zapewnienie jakości instalacji okablowania odnosi się natomiast do metodyk i praktyk, które powinny być zastosowane w celu zapewnienia, że instalacje spełniają określone standardy wydajności i niezawodności. Takie zagadnienia, jak testowanie i certyfikacja okablowania, są również kluczowe w kontekście zapewnienia jakości, co jest istotne dla funkcjonowania nowoczesnych sieci. Dlatego też, mając na uwadze cel normy PN-EN 50174, należy zrozumieć, że dotyczy ona szerszego zakresu wytycznych w obszarze instalacji okablowania, a nie tylko aspektów uziemienia, które są regulowane innymi standardami.

Pytanie 21

W systemie Linux BIND funkcjonuje jako serwer

A. http
B. FTP
C. DNS
D. DHCP
Wybór odpowiedzi, która nie odnosi się do serwera DNS, może prowadzić do nieporozumień dotyczących podstawowej funkcji, jaką pełni BIND w infrastrukturze sieciowej. Na przykład DHCP (Dynamic Host Configuration Protocol) to protokół, który przydziela adresy IP oraz inne ustawienia sieciowe komputerom w sieci. Choć jest to istotny komponent w zarządzaniu siecią, nie ma związku z funkcją tłumaczenia nazw domenowych, jaką realizuje BIND. FTP (File Transfer Protocol) to z kolei protokół służący do przesyłania plików między komputerami, który również nie ma zastosowania w kontekście zarządzania nazwami domen. Protokół HTTP (Hypertext Transfer Protocol) jest używany do przesyłania dokumentów hipertekstowych w Internecie, co również nie jest związane z funkcją DNS. Rozumienie różnic pomiędzy tymi protokołami a funkcją DNS jest kluczowe dla poprawnego projektowania i zarządzania sieciami komputerowymi. Często, błędne przypisanie tych protokołów do funkcji DNS wynika z braku zrozumienia architektury sieci oraz zasad działania poszczególnych protokołów. Dlatego istotne jest, aby przed podjęciem decyzji dotyczących wyboru technologii, dokładnie zapoznać się z ich funkcjami oraz zastosowaniami w praktyce.

Pytanie 22

Parametr NEXT wskazuje na zakłócenie wywołane oddziaływaniem pola elektromagnetycznego

A. wszystkich par kabla nawzajem na siebie oddziałujących
B. jednej pary kabla wpływającej na drugą parę kabla
C. pozostałych trzech par kabla wpływających na badaną parę
D. jednej pary kabla oddziałującej na inne pary kabla
Odpowiedź, że parametr NEXT oznacza zakłócenie spowodowane wpływem jednej pary kabla na drugą parę kabla, jest poprawna. NEXT, czyli Near-End Crosstalk, odnosi się do zakłóceń, które zachodzą na początku kabla, gdzie sygnał z jednej pary przewodów wpływa na sygnał w innej parze. To zjawisko jest szczególnie istotne w systemach telekomunikacyjnych, gdzie jakość sygnału jest kluczowa dla efektywności transmisji danych. Dobre praktyki w instalacjach kablowych, takie jak stosowanie odpowiednich ekranów, odpowiednie odległości między parami kabli oraz staranne prowadzenie instalacji, pomagają minimalizować NEXT. Na przykład w instalacjach EIA/TIA-568, zaleca się, aby pary były skręcone w odpowiednich odstępach, co ogranicza wpływ zakłóceń. Zrozumienie NEXT jest kluczowe dla projektantów i instalatorów systemów kablowych, ponieważ pozwala na optymalizację i zapewnienie wysokiej jakości transmisji w sieciach danych.

Pytanie 23

AES (ang. Advanced Encryption Standard) to co?

A. nie może być zrealizowany w formie sprzętowej
B. wykorzystuje algorytm szyfrujący symetryczny
C. nie może być użyty do szyfrowania dokumentów
D. jest wcześniejszą wersją DES (ang. Data Encryption Standard)
AES (Advanced Encryption Standard) to standard szyfrowania, który wykorzystuje symetryczny algorytm szyfrujący. Oznacza to, że ten sam klucz jest używany zarówno do szyfrowania, jak i deszyfrowania danych. AES jest powszechnie stosowany w różnych aplikacjach, takich jak zabezpieczenie danych w chmurze, transmisje internetowe, szyfrowanie plików oraz w protokołach takich jak SSL/TLS. Wybór AES jako standardu szyfrowania przez National Institute of Standards and Technology (NIST) w 2001 roku wynikał z jego wysokiego poziomu bezpieczeństwa oraz wydajności. AES obsługuje różne długości kluczy (128, 192 i 256 bitów), co pozwala na dostosowanie poziomu zabezpieczeń do konkretnych potrzeb. W praktyce, stosując AES, można zapewnić bezpieczeństwo danych osobowych, transakcji finansowych oraz komunikacji, co czyni go fundamentem nowoczesnych systemów kryptograficznych.

Pytanie 24

Kable światłowodowe nie są często używane w lokalnych sieciach komputerowych z powodu

A. znaczących strat sygnału podczas transmisji.
B. niskiej wydajności.
C. niski poziom odporności na zakłócenia elektromagnetyczne.
D. wysokich kosztów elementów pośredniczących w transmisji.
Kable światłowodowe są efektywnym medium transmisyjnym, wykorzystującym zjawisko całkowitego wewnętrznego odbicia światła do przesyłania danych. Choć charakteryzują się dużą przepustowością i niskimi stratami sygnału na długich dystansach, ich powszechne zastosowanie w lokalnych sieciach komputerowych jest ograniczone przez wysokie koszty związane z elementami pośredniczącymi w transmisji, takimi jak przełączniki i konwertery. Elementy te są niezbędne do integrowania technologii światłowodowej z istniejącymi infrastrukturami sieciowymi, które często opierają się na kablach miedzianych. W praktyce oznacza to, że organizacje, które pragną zainwestować w sieci światłowodowe, muszą być przygotowane na znaczne wydatki na sprzęt oraz jego instalację. Z drugiej strony, standardy takie jak IEEE 802.3 zdefiniowały wymagania techniczne dla transmisji w sieciach Ethernet, co przyczyniło się do rozwoju technologii światłowodowej, ale nadal pozostaje to kosztowną inwestycją dla wielu lokalnych sieci komputerowych.

Pytanie 25

Przekazywanie tokena (ang. token) ma miejsce w sieci o topologii fizycznej

A. gwiazdy
B. siatki
C. pierścienia
D. magistrali
Przekazywanie żetonu w sieci typu pierścieniowego to naprawdę ciekawy proces. W praktyce oznacza to, że dane krążą wokół zamkniętej pętli, co ułatwia dostęp do informacji dla każdego węzła. Każdy węzeł łączy się z dwoma innymi, tworząc coś w rodzaju zamkniętej sieci. Kiedy jeden węzeł chce przesłać dane, po prostu umieszcza je w żetonie, który następnie krąży, aż dotrze do celu. To rozwiązanie zmniejsza ryzyko kolizji, bo tylko jeden żeton jest aktywny w danym momencie, co poprawia wydajność. Ciekawe jest, że tego typu sieci często znajdziemy w lokalnych sieciach komputerowych, gdzie stała wymiana danych jest bardzo ważna. Dobrym przykładem jest technologia Token Ring, która była popularna w latach 80. i 90. XX wieku. Standardy IEEE 802.5 dokładnie opisują, jak te sieci powinny działać, co pozwala różnym urządzeniom na współpracę. W skrócie, zarządzanie przekazywaniem żetonu w sieci pierścieniowej sprawia, że jest to naprawdę funkcjonalne rozwiązanie w wielu zastosowaniach.

Pytanie 26

Użytkownik, którego profil jest tworzony przez administratora systemu i przechowywany na serwerze, ma możliwość logowania na każdym komputerze w sieci oraz modyfikacji ustawień. Jak nazywa się ten profil?

A. profil lokalny
B. profil tymczasowy
C. profil mobilny
D. profil obowiązkowy
Profil lokalny jest powiązany z jednym konkretnym komputerem i nie jest dostępny na innych urządzeniach. Użytkownik, który loguje się na systemie z wykorzystaniem profilu lokalnego, ma swoje ustawienia i dane jedynie na tym urządzeniu, co ogranicza mobilność i elastyczność w pracy. W przypadku awarii sprzętu lub zmiany komputera, użytkownik traci dostęp do swoich osobistych ustawień. Profil tymczasowy jest z kolei stworzony na potrzeby jednorazowego logowania i nie zachowuje żadnych zmian po wylogowaniu, co czyni go niepraktycznym w dłuższym okresie. Profil obowiązkowy jest stosowany w sytuacjach, gdzie administrator systemu chce narzucić określone ustawienia wszystkim użytkownikom, co również ogranicza ich możliwości personalizacji. Przy wyborze rozwiązania do zarządzania profilami użytkowników, istotne jest zrozumienie, jak różne typy profili wpływają na doświadczenie użytkownika oraz jak mogą wpłynąć na efektywność pracy w organizacji. Warto również zauważyć, że popularność pracy zdalnej oraz korzystania z różnych urządzeń w codziennej pracy czyni profil mobilny kluczowym elementem strategii IT, który zwiększa zarówno bezpieczeństwo, jak i użyteczność zasobów informacyjnych.

Pytanie 27

Protokół stworzony do nadzorowania oraz zarządzania urządzeniami w sieci, oparty na architekturze klient-serwer, w którym jeden menedżer kontroluje od kilku do kilkuset agentów to

A. SMTP (Simple Mail Transfer Protocol)
B. FTP (File Transfer Protocol)
C. HTTP (Hypertext Transfer Protocol)
D. SNMP (Simple Network Management Protocol)
SNMP, czyli Simple Network Management Protocol, to standardowy protokół sieciowy, który umożliwia monitorowanie i zarządzanie urządzeniami w sieci IP. Opiera się na architekturze klient-serwer, gdzie agent (urządzenie zarządzane) przekazuje dane do menedżera (systemu zarządzającego). Dzięki SNMP administratorzy sieci mogą zbierać dane o stanie urządzeń, takich jak routery, przełączniki czy serwery, co pozwala na szybką identyfikację problemów, optymalizację wydajności oraz planowanie zasobów. Protokół SNMP jest szeroko stosowany w branży IT, będąc częścią standardów IETF. Przykładem zastosowania może być monitorowanie obciążenia serwera w czasie rzeczywistym, co pozwala na podejmowanie decyzji na podstawie zebranych danych. Ponadto, SNMP wspiera różne poziomy bezpieczeństwa i wersje, co pozwala na dostosowanie go do specyficznych potrzeb organizacji. Standardy SNMP są zgodne z najlepszymi praktykami, co daje pewność, że system zarządzania siecią będzie działał w sposób efektywny i bezpieczny.

Pytanie 28

Za pomocą polecenia netstat w systemie Windows można zweryfikować

A. zapisy w tablicy routingu komputera
B. parametry interfejsów sieciowych komputera
C. aktywną komunikację sieciową komputera
D. ścieżkę połączenia z wybranym adresem IP
Polecenie 'netstat' jest narzędziem w systemie Windows, które pozwala na monitorowanie aktywnych połączeń sieciowych komputera. Dzięki niemu użytkownicy mogą zobaczyć, jakie porty są otwarte, jakie protokoły są używane oraz z jakimi adresami IP komputer nawiązał połączenia. Przykładowo, administratorzy sieci mogą używać 'netstat' do diagnozowania problemów z połączeniem, monitorowania nieautoryzowanych transmisji danych, a także do audytowania bezpieczeństwa sieci. Narzędzie to dostarcza także informacji o stanie połączeń, co jest kluczowe w kontekście zarządzania ruchem sieciowym. Zastosowanie 'netstat' jest zgodne z dobrymi praktykami w zakresie zabezpieczania środowisk IT, ponieważ umożliwia wczesne wykrywanie potencjalnych zagrożeń oraz nieprawidłowości w komunikacji sieciowej.

Pytanie 29

Przy projektowaniu sieci LAN o wysokiej wydajności w warunkach silnych zakłóceń elektromagnetycznych, które medium transmisyjne powinno zostać wybrane?

A. typ U/UTP
B. typ U/FTP
C. współosiowy
D. światłowodowy
Kabel światłowodowy to najlepszy wybór do projektowania sieci LAN w środowiskach z dużymi zakłóceniami elektromagnetycznymi, ponieważ korzysta z włókien szklanych do przesyłania danych, co eliminuje problemy związane z zakłóceniami elektromagnetycznymi. W porównaniu do kabli miedzianych, światłowody są odporne na interferencje i mogą transmitować sygnały na znacznie większe odległości z wyższą przepustowością. Na przykład, w zastosowaniach takich jak centra danych, gdzie wiele urządzeń komunikuje się jednocześnie, stosowanie światłowodów zapewnia niezawodność i stabilność połączeń. Standardy, takie jak IEEE 802.3, promują wykorzystanie technologii światłowodowej dla osiągnięcia maksymalnej wydajności i minimalizacji strat sygnału. Dodatkowo, w miejscach o dużym natężeniu elektromagnetycznym, takich jak blisko dużych silników elektrycznych czy urządzeń radiowych, światłowody zapewniają pełną ochronę przed zakłóceniami, co czyni je idealnym rozwiązaniem dla nowoczesnych aplikacji sieciowych.

Pytanie 30

Protokół TCP (Transmission Control Protocol) funkcjonuje w trybie

A. hybrydowym
B. sekwencyjnym
C. bezpołączeniowym
D. połączeniowym
Pojęcia hybrydowego, sekwencyjnego oraz bezpołączeniowego nie oddają charakterystyki działania protokołu TCP. Tryb hybrydowy nie jest standardowo definiowany w kontekście protokołów transportowych; zazwyczaj odnosi się do architektur, które łączą różne podejścia. W kontekście protokołu TCP, nie ma zastosowania, ponieważ TCP jest zdefiniowany jako protokół połączeniowy. Odpowiedź sekwencyjna mogłaby sugerować, że dane są przesyłane w ustalonej kolejności, co jest prawdą, ale nie oddaje to istoty działania TCP jako protokołu połączeniowego, który zapewnia dodatkowo kontrolę nad jakością połączenia. Z kolei tryb bezpołączeniowy, z którym związany jest protokół UDP (User Datagram Protocol), oznacza, że dane są przesyłane bez ustanawiania połączenia, co prowadzi do większej szybkości, ale bez gwarancji dostarczenia czy kolejności pakietów. Użytkownicy mogą błędnie interpretować TCP jako działający w trybie sekwencyjnym, skupiając się jedynie na kolejności przesyłania danych, nie rozumiejąc, że kluczowym aspektem jest sama natura połączenia i zapewnienie niezawodności. W praktyce, zrozumienie różnicy między połączeniowym a bezpołączeniowym podejściem jest kluczowe dla projektowania aplikacji sieciowych, co często prowadzi do zjawiska pomieszania ról różnych protokołów.

Pytanie 31

Wskaż właściwy adres hosta?

A. 128.128.0.0/9
B. 192.169.192.0/18
C. 192.168.192.0/18
D. 128.129.0.0/9
Pozostałe odpowiedzi są niepoprawne z różnych powodów, które wynikają z zasadności przydzielania adresów IP i klasyfikacji sieci. Adres 192.168.192.0/18 to adres prywatny, który należy do klasy C, a jego zakres często używany jest w lokalnych sieciach komputerowych. Jednak w przypadku tego pytania, który dotyczy publicznych adresów IP, nie jest to właściwy wybór. Adresy prywatne, takie jak ten, nie mogą być używane w Internecie, co może prowadzić do nieporozumień w kontekście adresowania. Adres 128.128.0.0/9, mimo że jest z klasy B, jest również niepoprawny, ponieważ istnieję już zarezerwowane adresy, które nie są dostępne do użytku publicznego. Wyboru 192.169.192.0/18 również należy unikać, ponieważ adres ten nie istnieje — jest to kombinacja adresu z nieprawidłowymi oktetami. Zrozumienie klasyfikacji adresów IP oraz ich zastosowania jest kluczowe dla skutecznego projektowania i implementacji sieci. Typowe błędy wynikają często z mylenia klasy adresu oraz niezrozumienia zasad dotyczących prywatności i publiczności adresów IP, co prowadzi do nieefektywnego zarządzania i potencjalnych konfliktów w sieci.

Pytanie 32

Którego z poniższych zadań nie wykonują serwery plików?

A. Udostępnianie plików w Internecie
B. Odczyt i zapis danych na dyskach twardych
C. Zarządzanie bazami danych
D. Wymiana danych między użytkownikami sieci
Odpowiedzi, które sugerują, że serwery plików realizują zarządzanie bazami danych, wymianę danych pomiędzy użytkownikami sieci, czy odczyt i zapis danych na dyskach twardych, wynikają z niepełnego zrozumienia roli i funkcji serwerów plików. Serwery plików mają na celu przede wszystkim udostępnianie plików, co oznacza, że ich kluczowe funkcje koncentrują się na przechowywaniu danych oraz ich udostępnianiu w sieci. Jednakże, w kontekście zarządzania bazami danych, serwery plików po prostu nie oferują wymaganego poziomu funkcjonalności, jakiego potrzebują aplikacje korzystające z danych. Bazy danych wymagają skomplikowanych operacji, takich jak transakcje, wsparcie dla języka zapytań SQL oraz mechanizmy zapewniające integralność danych, co jest poza zakresem możliwości serwerów plików. Koncepcje dotyczące wymiany danych pomiędzy użytkownikami sieci oraz odczytu i zapisu na dyskach twardych również mogą być mylące. Serwery plików mogą rzeczywiście wspierać wymianę danych poprzez udostępnianie plików, ale nie są one odpowiedzialne za transakcje ani skomplikowane operacje, które zachodzą w bazach danych. Dobrze jest zrozumieć, że każda technologia ma swoje zastosowanie i ograniczenia, a odpowiednie podejście do wyboru technologii jest kluczowe dla efektywnego zarządzania danymi w organizacji.

Pytanie 33

Jakie polecenie diagnostyczne powinno się wykorzystać do sprawdzenia, czy miejsce docelowe odpowiada oraz w jakim czasie otrzymano odpowiedź?

A. nbtstat
B. ping
C. route
D. ipconfig
Wybór innych poleceń, takich jak 'route', 'nbtstat' czy 'ipconfig', nie jest odpowiedni w kontekście sprawdzania dostępności hosta i czasu odpowiedzi. Polecenie 'route' służy do zarządzania tablicą routingu w systemie operacyjnym, co pozwala określić, jakie trasy są dostępne dla wysyłania danych, ale nie wykonuje testów dostępności. Zrozumienie roli tablicy routingu jest istotne dla efektywnego zarządzania ruchem sieciowym, lecz nie dostarcza informacji o odpowiedziach hostów. Z kolei 'nbtstat' jest narzędziem do diagnostyki protokołu NetBIOS, które umożliwia uzyskanie informacji o połączeniach i sesjach w sieciach Windows, jednak nie weryfikuje dostępności hostów w taki sposób, jak 'ping'. Ostatnie z wymienionych, 'ipconfig', służy do wyświetlania i konfigurowania ustawień IP w systemie Windows, co jest kluczowe dla zarządzania adresacją sieciową, ale również nie umożliwia bezpośredniego testowania dostępności innych urządzeń. Częstym błędem jest mylenie tych narzędzi i ich funkcji, co może prowadzić do nieefektywnego diagnozowania problemów sieciowych. Kluczowe jest zrozumienie, że wybór odpowiedniego narzędzia jest kluczowy do rozwiązania konkretnego problemu diagnostycznego.

Pytanie 34

Atak DDoS (ang. Distributed Denial of Service) na serwer spowoduje

A. zatrzymywanie pakietów danych w sieci.
B. przeciążenie aplikacji dostarczającej określone informacje.
C. zbieranie danych o atakowanej infrastrukturze sieciowej.
D. zmianę pakietów transmisyjnych w sieci.
Atak DDoS, czyli Zdalne Odrzucenie Usługi, polega na jednoczesnym obciążeniu serwera dużą ilością zapytań przesyłanych z różnych źródeł, co prowadzi do przeciążenia aplikacji serwującej określone dane. Taki atak ma na celu uniemożliwienie dostępności usługi dla legalnych użytkowników. Przykładem może być atak na serwis internetowy, gdzie atakujący wykorzystują sieć botnetów do wysyłania ogromnej liczby żądań HTTP. W rezultacie aplikacja serwisowa nie jest w stanie przetworzyć wszystkich zapytań, co prowadzi do spowolnienia lub całkowitym zablokowaniem dostępu. W praktyce organizacje powinny implementować mechanizmy ochrony przed atakami DDoS, takie jak systemy zapobiegania włamaniom (IPS), a także skalowalne architektury chmurowe, które mogą automatycznie dostosowywać zasoby w odpowiedzi na wzrost ruchu. Przestrzeganie dobrych praktyk, takich jak regularne testowanie odporności aplikacji oraz monitorowanie ruchu sieciowego, jest kluczowe w zapobieganiu skutkom ataków DDoS.

Pytanie 35

Jakie są powody wyświetlania na ekranie komputera informacji, że system wykrył konflikt adresów IP?

A. Inne urządzenie w sieci posiada ten sam adres IP co komputer
B. W konfiguracji protokołu TCP/IP jest nieprawidłowy adres bramy domyślnej
C. Usługa DHCP nie działa w sieci lokalnej
D. Adres IP urządzenia jest poza zakresem lokalnych adresów sieciowych
Musisz wiedzieć, że komunikat o konflikcie adresów IP nie wynika z tego, że adres IP komputera jest spoza zakresu sieci. Gdy tak jest, zazwyczaj po prostu nie masz dostępu do sieci, a nie występuje konflikt. Uważam, że w sieci lokalnej wszystkie urządzenia powinny mieć adresy z jednego zakresu, bo inaczej urządzenie z niewłaściwym adresem nie będzie mogło się skomunikować. Z drugiej strony, brak działającego DHCP nie prowadzi do konfliktów, a raczej zmusza do ręcznej konfiguracji. Jeśli DHCP nie działa, to każde urządzenie powinno mieć swój unikalny adres IP, żeby uniknąć kłopotów. A ustawienie złej bramy domyślnej to też nie to samo co konflikt adresów; to raczej problemy z routingiem i dostępem do innych sieci, często mylone z problemami IP. Zrozumienie, jak przypisywane są adresy IP, jest kluczowe dla zarządzania sieciami.

Pytanie 36

Kabel skrętkowy, w którym każda para przewodów ma oddzielne ekranowanie folią, a wszystkie przewody są umieszczone w ekranie z folii, jest oznaczany symbolem

A. F/UTP
B. S/UTP
C. F/FTP
D. S/FTP
Odpowiedź F/FTP odnosi się do kabla, który składa się z pojedynczych par przewodów, gdzie każda para jest chroniona przez osobny ekran foliowy, a cały kabel jest dodatkowo osłonięty ekranem foliowym. Tego typu konstrukcja pozwala na znaczne zmniejszenie zakłóceń elektromagnetycznych, co jest kluczowe w aplikacjach wymagających wysokiej wydajności oraz niezawodności przesyłu sygnałów, takich jak sieci komputerowe czy systemy telekomunikacyjne. W praktyce, kable F/FTP są często stosowane w środowiskach biurowych oraz w instalacjach, gdzie istnieje ryzyko występowania zakłóceń od innych urządzeń elektronicznych. Zgodnie ze standardem ISO/IEC 11801, który definiuje wymagania dotyczące kabli dla różnych aplikacji sieciowych, użycie ekranowanych kabli jest zalecane w przypadku instalacji w trudnych warunkach elektromagnetycznych. Przykładami zastosowania kabli F/FTP mogą być podłączenia w sieciach lokalnych (LAN), gdzie stabilność i jakość przesyłu danych jest priorytetem.

Pytanie 37

Aby utworzyć kontroler domeny w środowisku systemów Windows Server na lokalnym serwerze, należy zainstalować rolę

A. usług LDS w Active Directory
B. usług domenowej w Active Directory
C. usług certyfikatów w Active Directory
D. usług zarządzania prawami dostępu w Active Directory
Pojęcia związane z udzielonymi odpowiedziami, które nie są prawidłowe, mogą prowadzić do zamieszania dotyczącego roli i funkcji w systemie Windows Server. Usługi certyfikatów w usłudze Active Directory koncentrują się na zarządzaniu certyfikatami oraz bezpieczeństwie transmisji danych, ale nie są to usługi wymagane do utworzenia kontrolera domeny. Z kolei usługi LDS (Lightweight Directory Services) to usługa katalogowa, która nie zapewnia pełnej funkcjonalności kontrolera domeny, a jej zastosowanie jest ograniczone do specyficznych scenariuszy, takich jak aplikacje wymagające lekkiej, rozproszonej bazy danych użytkowników. Usługi zarządzania prawami dostępu w usłudze Active Directory również nie są bezpośrednio związane z konfiguracją kontrolera domeny, ponieważ te usługi skupiają się na zabezpieczeniu dostępu do zasobów w oparciu o prawa użytkowników i grup. Często pojawiają się błędne przekonania, że różne role w Active Directory mają podobne funkcje. Ważne jest, aby dokładnie zrozumieć, jakie konkretne usługi są związane z organizacją i zarządzaniem zasobami w sieci, ponieważ nieprawidłowe wybranie roli może prowadzić do poważnych problemów z bezpieczeństwem i dostępnością zasobów. W praktyce, wybór odpowiedniej roli w Active Directory jest kluczowy dla zachowania porządku i efektywności w zarządzaniu infrastrukturą IT.

Pytanie 38

Liczba 22 w adresie http://www.adres_serwera.pL:22 wskazuje na numer

A. aplikacji, do której skierowane jest zapytanie
B. sekwencyjny pakietu przesyłającego dane
C. portu, inny od standardowego numeru dla danej usługi
D. PID procesu działającego na serwerze
To, co napisałeś, trochę nie trzyma się kupy. Mówienie o aplikacjach czy PID w kontekście portów w adresie URL jest mylące. Port to nie lokalizacja aplikacji, ale narzędzie, dzięki któremu różne urządzenia mogą ze sobą rozmawiać. Zrozumienie, że porty to po prostu punkty końcowe dla przepływu danych, jest kluczowe. A PID? To zupełnie inna sprawa – to identyfikator procesu na serwerze, więc nie ma związku z portami. Podobnie sekwencyjne pakiety danych odnoszą się do tego, jak dane są przesyłane, a nie do portów. Warto, byś rozróżniał te pojęcia, bo to naprawdę ma wpływ na to, jak rozumiesz działanie całej sieci.

Pytanie 39

Protokół SNMP (Simple Network Management Protocol) służy do

A. przydzielania adresów IP oraz adresu bramy i serwera DNS
B. odbierania wiadomości e-mail
C. szyfrowania połączeń terminalowych z zdalnymi komputerami
D. konfiguracji urządzeń sieciowych oraz zbierania danych na ich temat
Protokół SNMP, czyli Simple Network Management Protocol, to naprawdę ważne narzędzie, jeśli chodzi o zarządzanie i monitorowanie urządzeń w sieci. Dzięki niemu, administratorzy mogą zbierać wszystkie ważne info o stanie czy wydajności różnych urządzeń, jak routery czy serwery. Ma to ogromne znaczenie, żeby sieć działała sprawnie. Na przykład, SNMP może pomóc w monitorowaniu obciążenia procesora lub pamięci. A to z kolei pozwala szybko zlokalizować problemy i podjąć odpowiednie działania. SNMP działa na zasadzie klient-serwer, gdzie agent na urządzeniu zbiera dane i przesyła je do systemu. To wszystko sprawia, że wiele procesów, jak aktualizacja konfiguracji, można zautomatyzować. Protokół ten jest zgodny z normami IETF, co również wspiera dobre praktyki w zarządzaniu sieciami oraz sprawia, że różne urządzenia od różnych producentów mogą ze sobą współpracować. To czyni SNMP naprawdę kluczowym elementem w nowoczesnych infrastrukturach IT w firmach.

Pytanie 40

Która z warstw modelu ISO/OSI określa protokół IP (Internet Protocol)?

A. Warstwa sieci
B. Warstwa fizyczna
C. Warstwa danych łącza
D. Warstwa transportowa
Wybór odpowiedzi związanych z warstwą łącza danych, warstwą fizyczną lub warstwą transportową jest niepoprawny, ponieważ każda z tych warstw ma inne funkcje, które nie obejmują definiowania protokołu IP. Warstwa łącza danych odpowiada za bezpośrednią komunikację pomiędzy urządzeniami w tej samej sieci, zarządzając framingiem danych oraz kontrolą błędów. Warstwa fizyczna z kolei zajmuje się przesyłaniem bitów przez medium fizyczne, definiując właściwości elektryczne, mechaniczne i procedury komunikacyjne. W kontekście protokołu IP, warstwa transportowa odpowiada za końcowe przesyłanie danych pomiędzy aplikacjami na różnych urządzeniach, korzystając z protokołów takich jak TCP i UDP, które są niezależne od warstwy sieci. Zrozumienie, że IP działa na warstwie sieci, jest kluczowe, aby uniknąć mylnych założeń, które mogą prowadzić do problemów w projektowaniu i zarządzaniu sieciami. Często pojawia się błąd myślowy polegający na myleniu roli warstw w modelu ISO/OSI, co może prowadzić do nieefektywnego zarządzania infrastrukturą sieciową oraz trudności w rozwiązywaniu problemów związanych z komunikacją w sieci.