Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik analityk
  • Kwalifikacja: CHM.03 - Przygotowywanie sprzętu, odczynników chemicznych i próbek do badań analitycznych
  • Data rozpoczęcia: 8 sierpnia 2025 20:21
  • Data zakończenia: 8 sierpnia 2025 21:15

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Proces nitrowania najczęściej realizuje się, stosując organiczny substrat

A. stężonym kwasem azotowym(V)
B. mieszaniną kwasów azotowego(V) oraz siarkowego(VI)
C. mieszaniną kwasów azotowego(V) oraz solnego
D. rozcieńczonym kwasem azotowym(V)
Reakcji nitrowania nie można przeprowadzać skutecznie przy użyciu wyłącznie rozcieńczonego kwasu azotowego(V), ponieważ w takim przypadku reakcja nie zachodzi z odpowiednią wydajnością. Rozcieńczony kwas azotowy ma zbyt niską stężenie, co powoduje, że nie jest w stanie dostarczyć wystarczającej ilości grup nitrowych do substratu organicznego. Z tego powodu stężony kwas azotowy jest znacznie bardziej efektywny, ale sam w sobie także nie jest wystarczający dla optymalizacji procesu, jak pokazuje praktyka. Mieszanina kwasów azotowego i siarkowego, a nie samodzielny kwas azotowy, jest standardem w chemii organicznej. Ponadto, stosowanie stężonego kwasu azotowego bez kwasu siarkowego może prowadzić do niekontrolowanych reakcji, takich jak nadmierne nitrowanie, co skutkuje powstawaniem niepożądanych produktów ubocznych. Użycie samego kwasu solnego nie tylko nie ma sensu w kontekście nitrowania, ale również może prowadzić do całkowicie innych reakcji chemicznych, co podkreśla znaczenie właściwego doboru reagentów. W praktyce, w laboratoriach i przemyśle chemicznym należy zawsze dążyć do użycia sprawdzonych metod, aby uzyskać pożądane produkty. Właściwe przygotowanie reagentów oraz kontrola warunków reakcji są kluczowe dla sukcesu procesów chemicznych.

Pytanie 3

Reagent, który reaguje wyłącznie z jednym konkretnym jonem lub związkiem, nazywamy reagente

A. grupowy
B. maskujący
C. specyficzny
D. selektywny
Odczynnik specyficzny to taki, który reaguje z jednym, ściśle określonym jonem lub związkiem chemicznym, co czyni go niezwykle przydatnym w analizach chemicznych i laboratoryjnych. Przykładem może być odczynnik nieselektywnego wykrywania jonów srebra, jakim jest chlorowodorek sodu, który wytrąca białe osady tylko w obecności jonów srebra. W praktyce, zastosowanie odczynników specyficznych pozwala na przeprowadzanie dokładnych analiz jakościowych i ilościowych, co jest kluczowe w laboratoriach chemicznych, analitycznych, a także w przemyśle farmaceutycznym i środowiskowym. Standardy ASTM i ISO promują stosowanie takich odczynników w badaniach laboratoryjnych, co podkreśla ich znaczenie w zapewnieniu wysokiej jakości wyników. W kontekście praktycznym, specyficzność odczynników jest niezwykle ważna w diagnostyce medycznej, gdzie konieczne jest precyzyjne określenie obecności konkretnych biomarkerów.

Pytanie 4

Ile gramów 80% kwasu mrówkowego trzeba zważyć, aby uzyskać 200 g 20% roztworu tego kwasu?

A. 200g
B. 80g
C. 20g
D. 50g
Przy analizie błędnych odpowiedzi często można zauważyć typowe pułapki związane z obliczeniami stężenia roztworów. Na przykład, wybór 200 g jako odpowiedzi może wynikać z błędnego założenia, że cała masa roztworu jest jednocześnie masą substancji czynnej, co jest nieprawidłowe. W rzeczywistości roztwór 20% oznacza, że tylko część masy to substancja chemiczna, a nie całość. Dlatego istotne jest, aby zrozumieć, że w obliczeniach chemicznych musimy oddzielić masę substancji czynnej od masy całkowitej roztworu. Z kolei wybór 20 g również jest nieprawidłowy, ponieważ odnosi się do zbyt małej ilości czystego kwasu mrówkowego, co nie wystarczyłoby do osiągnięcia pożądanej koncentracji w 200 g roztworu. Odpowiedź 80 g również jest błędna, ponieważ oznaczałaby zbyt dużą ilość 80% roztworu, nieproporcjonalnie do wymaganych 40 g czystego kwasu. Właściwe podejście do takich obliczeń wymaga zrozumienia zarówno zasad dotyczących stężenia, jak i umiejętności przekształcania jednostek masy oraz ich odpowiedniego zastosowania w praktyce laboratoryjnej. Umiejętność ta jest kluczowa w chemii, gdzie precyzyjne przygotowywanie roztworów ma kluczowe znaczenie dla jakości eksperymentów. W związku z tym, aby skutecznie stosować obliczenia stężenia, należy gruntownie przyswoić podstawowe zasady i metody obliczeniowe, co jest fundamentem każdej praktyki chemicznej.

Pytanie 5

Metodą, która nie umożliwia przeniesienia składników próbki do roztworu, jest

A. roztwarzanie
B. liofilizacja
C. stapianie
D. mineralizacja
Mineralizacja, stapianie i roztwarzanie to metody, które można użyć do przygotowania próbek do analizy chemicznej. Mineralizacja przekształca składniki organiczne w rozpuszczalne formy, co jest kluczowe, bo eliminujemy interferencje, które mogą wpłynąć na wyniki. Stapianie to inna metoda, która zmienia próbki w jednorodną masę - przydaje się, gdy mamy do czynienia z twardymi materiałami, które trzeba przerobić. Roztwarzanie to po prostu dodanie próbki do rozpuszczalnika, co daje nam roztwór, i to jest najczęstsza metoda w laboratoriach. Wszystkie te metody służą do analizy chemicznej, a liofilizacja akurat nie daje roztworu, więc nie jest odpowiednia. Czasem ludzie mylą liofilizację z innymi metodami i przez to się mylą w wyborze sposobu przygotowania próbek. Laboratoria powinny korzystać z ustalonych standardów i najlepszych praktyk, by metody były skuteczne i odpowiednie do danej analizy.

Pytanie 6

Jakiego koloru nabierze lakmus w roztworze NaOH?

A. malinowy
B. niebieski
C. czerwony
D. fioletowy
Lakmus jest wskaźnikiem pH, który zmienia kolor w zależności od wartości pH roztworu. W przypadku, gdy wskazany zostaje kolor czerwony, sugeruje to, że substancja jest kwasowa, co jest całkowicie niezgodne z zachowaniem lakmusu w środowisku zasadowym, jakim jest roztwór NaOH. Odpowiedzi sugerujące kolory fioletowy i malinowy również są mylące, ponieważ nie występują jako rezultaty zmiany koloru lakmusu w takich warunkach. Fioletowy to kolor, który może pojawić się w przypadku niektórych wskaźników, ale nie w kontekście czystego lakmusu w roztworach alkalicznych. Malinowy również nie jest kolorem odnoszącym się do lakmusu, a jego pojawienie się mogłoby sugerować obecność innych wskaźników lub zanieczyszczeń. Zrozumienie tego, jak wskaźniki pH działają, jest kluczowe w chemii. Warto również pamiętać, że niektóre błędne odpowiedzi mogą wynikać z niepełnego zrozumienia zasadności pH lub z mylnego postrzegania kolorów wskaźników w różnych kontekstach. To podkreśla znaczenie dokładnego studiowania właściwości chemicznych substancji oraz ich reakcji w różnych środowiskach, co jest podstawą praktycznych zastosowań w naukach przyrodniczych i technologii.

Pytanie 7

Wskaż definicję fiksanali?

A. Kapsułki zawierające niewielkie ilości substancji chemicznej
B. Małe ampułki ze ściśle określoną masą substancji chemicznej
C. Małe kapsułki z nieokreśloną ilością stałej substancji chemicznej
D. Małe ampułki z nieokreśloną masą substancji chemicznej
Fiksanal, w kontekście farmaceutycznym, odnosi się do małych ampułek, które zawierają ściśle określoną masę danego związku chemicznego. Tego rodzaju preparaty są kluczowe w aplikacjach, gdzie precyzyjne dawkowanie substancji czynnej jest niezbędne, na przykład w leczeniu chorób, gdzie nadmierne lub niewystarczające dawki mogą prowadzić do poważnych skutków zdrowotnych. Fiksany są powszechnie wykorzystywane w laboratoriach analitycznych oraz w przemyśle farmaceutycznym, gdzie konieczność zachowania dokładnych proporcji substancji ma istotne znaczenie dla efektywności terapii. Przykładem zastosowania fiksanalów może być przygotowywanie rozwiązań do badań laboratoryjnych, gdzie wymagana jest precyzyjna kontrola masy substancji. Warto również zaznaczyć, że produkcja tych ampułek musi spełniać rygorystyczne normy jakości, takie jak GMP (Good Manufacturing Practice), co zapewnia, że każda partia fiksanali jest zgodna z określonymi standardami jakości.

Pytanie 8

Nie należy używać gorącej wody do mycia

A. zlewki
B. szkiełka zegarkowego
C. kolby miarowej
D. kolby stożkowej
Kolba miarowa jest szklanym naczyniem laboratoryjnym, które służy do dokładnego pomiaru objętości cieczy. Z uwagi na jej konstrukcję, nagłe zmiany temperatury mogą prowadzić do uszkodzeń, takich jak pęknięcia czy odkształcenia. Gorąca woda może powodować, że szkło stanie się bardziej podatne na stres termiczny, co jest niebezpieczne, zwłaszcza w przypadku kolb miarowych, które są projektowane z myślą o precyzyjnych pomiarach. W standardach laboratoryjnych, takich jak normy ISO, zaleca się, aby naczynia wykonane ze szkła boro-krzemowego, wykorzystywane w laboratoriach, nie były narażane na nagłe zmiany temperatury. Dobrą praktyką jest mycie ich w letniej wodzie z detergentem, a następnie dokładne płukanie w wodzie destylowanej, aby zminimalizować ryzyko uszkodzenia i zapewnić dokładność pomiarów. Przy odpowiedniej konserwacji, kolby miarowe mogą służyć przez wiele lat, jednak ich właściwe użytkowanie jest kluczowe dla utrzymania ich funkcjonalności.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

Podczas przygotowywania roztworów buforowych do analizy pH w laboratorium istotne jest, aby:

A. Dodać soli buforowej do dowolnej ilości wody.
B. Dokładnie odmierzyć masy składników i rozpuścić je w określonej objętości wody destylowanej.
C. Przygotować bufor wyłącznie z wody kranowej.
D. Zmierzyć pH po przypadkowym zmieszaniu soli i kwasu.
Prawidłowo przygotowany roztwór buforowy wymaga bardzo precyzyjnego odmierzania mas poszczególnych składników, jak również dokładnego uzupełnienia do ściśle określonej objętości, zwykle za pomocą wody destylowanej. To jest kluczowe, bo nawet niewielkie odchylenia od zalecanych proporcji mogą skutkować zmianą wartości pH, a co za tym idzie – błędami w analizie. Woda destylowana zapobiega wprowadzeniu dodatkowych jonów, które mogłyby zakłócić działanie buforu i zafałszować wyniki badania pH. Takie postępowanie to podstawa profesjonalnej praktyki laboratoryjnej, opisana w każdej instrukcji doświadczalnej oraz zgodna z normami branżowymi. Z mojego doświadczenia wynika, że najczęściej popełnianym błędem przez początkujących jest bagatelizowanie dokładności – czasem wydaje się, że 'odrobinę więcej' lub 'trochę mniej' nie zrobi różnicy, ale w chemii analitycznej nie ma miejsca na takie uproszczenia. Dobrze przygotowany bufor to podstawa wiarygodnych wyników, a sumienne przygotowanie odczynników świadczy o kompetencji laboranta.

Pytanie 12

Woda używana w laboratorium chemicznym, uzyskana poprzez filtrację przez wymieniacz jonowy, jest określana mianem wody

A. mineralizowanej
B. redestylowanej
C. destylowanej
D. demineralizowanej
Woda mineralizowana to woda, która zawiera rozpuszczone minerały, takie jak wapń, magnez czy potas. Jej stosowanie w laboratoriach chemicznych jest nieodpowiednie, ponieważ te minerały mogą wprowadzać zakłócenia w reakcjach chemicznych oraz analizach, prowadząc do błędnych wyników. Woda redestylowana nie jest powszechnie używana jako termin w laboratoriach; destylacja jest procesem polegającym na odparowaniu cieczy i skropleniu jej pary, co może usunąć zanieczyszczenia, ale nie jest to proces wymiany jonów, który koncentruje się na eliminacji soli. Destylowana woda, choć czysta, może nie spełniać norm jakości demineralizowanej, ponieważ nie do końca eliminuje wszystkie rozpuszczone substancje chemiczne. Typowym błędem jest mylenie procesu destylacji z demineralizacją, co prowadzi do niewłaściwego doboru wody do eksperymentów. W laboratorium kluczowe jest stosowanie wody o odpowiednim stopniu czystości, a demineralizowana woda jest standardem, który zapewnia powtarzalność i precyzję wyników, co jest niezbędne w badaniach naukowych.

Pytanie 13

Przy transporcie próbek wody zaleca się, aby próbki były

A. zakwaszone do pH < 6
B. zalkalizowane
C. narażone na działanie światła
D. schłodzone do temperatury 2 - 5°C
Schłodzenie próbek wody do temperatury 2 - 5°C to naprawdę ważny krok, gdy transportujemy te próbki. Chodzi o to, żeby zmniejszyć wszelkie zmiany w ich składzie chemicznym i biologicznym. Niska temperatura spowalnia mikroorganizmy i różne reakcje chemiczne, które mogą zniszczyć próbki. W praktyce, według wytycznych takich organizacji jak EPA albo ISO, próbki powinny być transportowane w termosach czy chłodnicach, żeby zachować ich właściwości fizykochemiczne. Na przykład, jeśli analizujemy wodę pitną, to dobre utrzymanie temperatury jest konieczne dla dokładnych wyników badań, co jest kluczowe dla zdrowia publicznego. Dodatkowo, schłodzenie próbek pomaga też w zachowaniu ich wartości analitycznej, co jest ważne, zwłaszcza w kontekście monitorowania jakości wód w środowisku. Dlatego naprawdę trzeba trzymać się tych standardów, żeby uzyskać wiarygodne wyniki.

Pytanie 14

Wskaź zestaw reagentów oraz przyrządów wymaganych do przygotowania 0,5 dm3 roztworu HCl o stężeniu 0,2 mol/dm3?

A. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 1 naważka analityczna HCl
B. Kolba pomiarowa na 1000 cm3, cylinder pomiarowy na 500 cm3, 4 odważki analityczne HCl 0,1 mol/dm3
C. Kolba pomiarowa na 500 cm3, 2 odważki analityczne HCl 0,1 mol/dm3
D. Kolba pomiarowa na 500 cm3, 1 odważka analityczna HCl 0,1mol/dm3
Przy wyborze zestawu odczynników i sprzętu do sporządzenia 0,5 dm³ roztworu HCl o stężeniu 0,2 mol/dm³ ważne jest zrozumienie, dlaczego inne opcje są niewłaściwe. Na przykład, użycie kolby miarowej na 1000 cm³ w połączeniu z cylinder miarowym na 500 cm³ oraz jedną naważką analityczną HCl nie odpowiada wymaganiom tego zadania. Takie podejście może sugerować marnotrawstwo materiałów, gdyż nie jest konieczne posiadanie większej kolby do przygotowania mniejszych objętości roztworu. Ponadto, to może prowadzić do błędów w odmierzeniu HCl, co jest kluczowe w kontekście uzyskania pożądanego stężenia. Niepoprawne mieszanie odczynników może skutkować niewłaściwym przygotowaniem roztworu, co może wpłynąć na dalsze eksperymenty oraz wyniki badań. Użycie czterech odważek analitycznych HCl 0,1 mol/dm³ w innym zestawie również jest zbędne, gdyż konieczne są tylko jedne odważki dla uzyskania żądanej ilości moli. Takie nadmierne wyposażenie w sprzęt oraz reagenty może prowadzić do nieefektywności oraz zwiększenia ryzyka błędów w laboratorium. W kontekście dobrych praktyk laboratoryjnych istotne jest dążenie do minimalizacji użycia materiałów oraz przestrzeganie zasad precyzyjnego pomiaru, co jest kluczowe w chemii analitycznej.

Pytanie 15

Aby uzyskać sole sodowe fenoli, należy stopić dany fenol z sodą (M = 106 g/mol), stosując 10% nadmiar w porównaniu do ilości stechiometrycznej, według równania:
2 ArOH + Na2CO3 → 2 ArONa + H2O + CO2 Ile sody jest wymagane do reakcji z 7,2 g 2-naftolu (M = 144 g/mol)?

A. 2,92 g
B. 5,30 g
C. 2,65 g
D. 5,83 g
Podczas rozwiązywania zadania, można się łatwo pomylić w obliczeniach dotyczących reagentów. Często się zdarza, że ktoś po prostu przyjmuje masę sody potrzebną do reakcji z 2-naftolem na podstawie masy 2-naftolu, nie patrząc na stechiometrię reakcji. Z równania to wiadomo, że na każdy 2 mole 2-naftolu potrzeba 1 mol Na2CO3. Jak się to ignoruje, to może się to skończyć błędami w obliczeniach. Często też pomijany jest nadmiar reagentu, co jest dość powszechnym błędem. W praktyce dodanie nadmiaru zapewnia, że reakcja przebiegnie do końca i zmniejsza ryzyko zostawienia nieprzereagowanych reagentów. Również niektórzy mogą się pomylić przy wyliczaniu masy molowej Na2CO3, co też prowadzi do złych wyników. Ważne, żeby dokładnie obliczyć masę molową i użyć odpowiednich wzorów chemicznych, bo nawet małe błędy tu mogą dać duże różnice w wynikach. W końcu, żeby dobrze to rozwiązać, trzeba aplikować zasady chemiczne i stechiometrię oraz skrupulatnie robić obliczenia.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

Poniżej jest równanie reakcji prażenia węglanu wapnia. 200 g węglanu wapnia zawierającego 10% zanieczyszczeń poddano prażeniu. Masa otrzymanego tlenku wapnia wyniosła

CaCO3 → CaO + CO2
(MCaCO3 = 100 g/mol, MCaO = 56 g/mol, MCO2 = 44 g/mol)
A. 31,1 g
B. 112,0 g
C. 100,8 g
D. 28,0 g
Odpowiedzi 112,0 g, 31,1 g oraz 28,0 g opierają się na nieprawidłowym rozumieniu zachodzących procesów chemicznych oraz błędnych obliczeniach. W przypadku pierwszej z tych odpowiedzi, mogąca wynikać z pominięcia etapu obliczania masy czystego węglanu wapnia, prowadzi do zawyżonego wyniku. Użytkownicy często zapominają, że zanieczyszczenia wpływają na efektywną ilość materiału reagującego, co jest kluczowe w obliczeniach związanych z reakcjami chemicznymi. Z kolei odpowiedź 31,1 g i 28,0 g mogą wynikać z błędnego stosunku mas molowych lub niewłaściwego zrozumienia reakcji chemicznej. Użytkownicy mogą mylnie zakładać, że masa otrzymanego tlenku wapnia powinna być znacznie mniejsza, co może wynikać z braku zrozumienia, że w procesie prażenia, mimo wydzielania dwutlenku węgla, masa pozostałego tlenku wapnia jest wciąż znaczna. W praktyce, poprawne podejście do rozwiązywania takich problemów wymaga ścisłego stosowania zasad chemii, uwzględniając zarówno masy molowe, jak i wpływ zanieczyszczeń w materiałach. Dlatego też przy pracy z reakcjami chemicznymi ważne jest, aby zawsze brać pod uwagę zarówno masę początkową, jak i czystość reagentów, co jest standardem w laboratoriach chemicznych.

Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Jednym z sposobów oddzielania jednorodnych mieszanin jest

A. sedymentacja
B. destylacja
C. filtracja
D. dekantacja
Destylacja to naprawdę ważna metoda, jeśli chodzi o rozdzielanie mieszanin jednorodnych. Działa to tak, że różne składniki mają różne temperatury wrzenia. Fajnie sprawdza się to szczególnie w cieczy, gdzie te różnice są wyraźne. W praktyce, destylacja ma wiele zastosowań, zwłaszcza w przemyśle chemicznym, petrochemicznym i farmaceutycznym. Na przykład, podczas produkcji etanolu z fermentacji, destylacja pomaga oddzielić alkohol od wody i innych substancji. W branży chemicznej korzysta się z niej do oczyszczania rozpuszczalników, a w przemyśle naftowym do separacji różnych frakcji ropy naftowej. Metoda destylacji frakcyjnej jest super, bo pozwala skupić się na skutecznym rozdzielaniu skomplikowanych mieszanin na poszczególne składniki. To wszystko jest zgodne z normami przemysłowymi, które wymagają, żeby produkty końcowe były czyste i żeby proces był jak najbardziej efektywny.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Aby ustalić miano roztworu wodnego NaOH, należy zastosować

A. naważkę kwasu mrówkowego
B. odmierzoną ilość kwasu azotowego(V)
C. naważkę kwasu benzenokarboksylowego
D. odmierzoną porcję roztworu kwasu octowego
Wybór innych kwasów, takich jak kwas mrówkowy, kwas azotowy(V) czy kwas octowy, nie jest odpowiedni do ustalania miana roztworu wodorotlenku sodu z kilku powodów. Kwas mrówkowy, mimo że jest kwasem organicznym, charakteryzuje się innymi właściwościami, które mogą prowadzić do błędnych wyników podczas miareczkowania ze względu na jego zmienność i trudności w ustaleniu punktu końcowego. Kwas azotowy(V) jest silnym kwasem nieorganicznych, którego użycie do kalibracji roztworu zasadowego może powodować nieprawidłowości w wynikach z uwagi na reakcje redoks, które mogą zachodzić w trakcie miareczkowania. Kwas octowy, z kolei, jest słabym kwasem, co sprawia, że jego możliwości w zakresie określania miana są ograniczone, ponieważ reakcje z wodorotlenkiem sodu mogą nie być wystarczająco wyraźne do precyzyjnego ustalenia stężenia roztworu. Właściwy dobór reagentów do miareczkowania jest kluczowy, aby uniknąć błędów systematycznych, które mogą wpłynąć na dalsze analizy jakościowe i ilościowe. Dlatego tak istotne jest, aby w procesie kalibracyjnym stosować substancje o stabilnych właściwościach chemicznych, co w przypadku kwasu benzenokarboksylowego jest zapewnione.

Pytanie 27

Jakie środki stosuje się do czyszczenia szkła miarowego, które zostało zanieczyszczone substancjami tłustymi?

A. słabą zasadę
B. mieszaninę chromową
C. słaby kwas
D. gorącą wodę
Słaby kwas nie jest skutecznym środkiem do usuwania tłuszczów, ponieważ nie wykazuje wystarczającej siły w reakcji z grubsza zbudowanymi cząsteczkami organicznymi, jakie występują w tłuszczach. Tego typu substancje chemiczne, jak na przykład kwas octowy czy kwas cytrynowy, mogą jedynie częściowo rozkładać niektóre zanieczyszczenia, ale nie są wystarczająco efektywne w przypadku tłuszczów. Również słaba zasada, chociaż może działać w niektórych przypadkach, nie jest optymalnym rozwiązaniem, ponieważ wiele tłuszczów jest hydrofobowych i nie reaguje z zasadowymi roztworami. Gorąca woda, mimo że potrafi rozpuścić pewne zanieczyszczenia, jest niewystarczająca w przypadku substancji tłustych, które wymagają zastosowania silniejszych reagentów. Mieszanina chromowa oferuje unikalną zdolność do utleniania i rozkładu tłuszczów, co czyni ją niezbędnym środkiem w laboratoriach chemicznych. Niezrozumienie potrzeby stosowania odpowiednich reagentów może prowadzić do niedostatecznego oczyszczenia sprzętu, co w efekcie wpływa na dokładność pomiarów, a tym samym na wyniki eksperymentów. W praktyce laboratoryjnej kluczowe jest stosowanie się do standardów czyszczenia, aby zapewnić rzetelność wyników i bezpieczeństwo w pracy z chemikaliami.

Pytanie 28

Aby przygotować mianowany roztwór KMnO4, należy odważyć wysuszone Na2C2O4 o masie zbliżonej do 250 mg, z dokładnością wynoszącą 1 mg. Jaką masę powinna mieć prawidłowo przygotowana odważka?

A. 0,025 g
B. 0,215 g
C. 0,251 g
D. 2,510 g
Odważka Na2C2O4, którą przygotowałeś, powinna mieć masę około 250 mg, a dokładnie to 0,251 g. Przygotowywanie roztworów o ścisłych stężeniach wymaga naprawdę dokładnej pracy w laboratorium oraz świadomości, jakie mają masy molowe substancji. W tym przypadku Na2C2O4, czyli sól sodowa kwasu szczawiowego, ma masę molową około 90 g/mol. Dlatego 0,251 g to w przybliżeniu 2,79 mmol. Kluczowe jest, żeby podczas miareczkowania, gdzie KMnO4 działa jako czynnik utleniający, mieć taką dokładność. Gdy precyzyjnie odważysz reagenty, zwiększasz pewność i powtarzalność wyników. W laboratoriach chemicznych używa się wag analitycznych, żeby uzyskać wyniki, które odpowiadają rzeczywistości. Dzięki temu można przeprowadzać dalsze analizy chemiczne i poprawnie interpretować wyniki.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Odważka analityczna wodorotlenku sodu, przygotowana fabrycznie, zawiera 0,1 mola NaOH. Jaką objętość wody destylowanej należy dodać w kolbie miarowej, aby uzyskać roztwór wodorotlenku sodu o stężeniu 0,0500 mol/dm3?

A. 1 dm3
B. 2 dm3
C. 50 cm3
D. 500 cm3
Rozważając błędne odpowiedzi, warto zauważyć, że przygotowanie roztworu o stężeniu 0,0500 mol/dm3 z 0,1 mola NaOH wymaga precyzyjnego obliczenia objętości, a niektóre z zaproponowanych odpowiedzi nie uwzględniają zasad rozcieńczania. Na przykład, wybór 50 cm3 sugeruje, że osoba odpowiadająca nie dostrzega, że rozcieńczenie do takiej objętości prowadziłoby do stężenia znacznie wyższego niż docelowe 0,0500 mol/dm3. Podobnie, odpowiedź 500 cm3 również jest nieprawidłowa, ponieważ nie osiągnie wymaganej koncentracji. W laboratoriach chemicznych kluczowe jest zrozumienie, że stężenie roztworu można dokładnie obliczyć tylko wtedy, gdy wszystkie parametry są poprawnie uwzględnione. Typowym błędem myślowym jest pomijanie wpływu całkowitej objętości roztworu na końcowe stężenie, co prowadzi do niewłaściwego oszacowania potrzebnej objętości rozcieńczenia. Przygotowując roztwory, należy zawsze stosować wzory i metody obliczeniowe, aby zapewnić dokładność i zgodność z standardami laboratoryjnymi.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Jakie jest stężenie molowe kwasu siarkowego(VI) o zawartości 96% i gęstości 1,84 g/cm3?

A. 1,80 mol/dm3 (H — 1 g/mol, S — 32 g/mol, O — 16 g/mol)
B. 18,02 mol/cm3
C. 18,02 mol/dm3
D. 0,18 mol/dm3
Niepoprawne odpowiedzi wynikają z błędów w obliczeniach oraz niepoprawnych założeń dotyczących stężenia molowego. Odpowiedzi 0,18 mol/dm3 i 1,80 mol/dm3 mogą sugerować, że obliczenia nie uwzględniają odpowiednio masy molowej kwasu siarkowego lub gęstości roztworu. W przypadku 0,18 mol/dm3 można zauważyć, że odpowiada ona zbyt niskiej wartości, co może sugerować, że założono zbyt małą masę kwasu w roztworze. Z kolei 1,80 mol/dm3 może być wynikiem nieprawidłowych obliczeń, w których pominięto dokładne określenie objętości roztworu. Odpowiedź 18,02 mol/dm3 jest znacznie wyższa, co wskazuje na to, że w obliczeniach użyto właściwych wartości masy molowej i stężenia. Typowym błędem myślowym jest mylenie jednostek objętości i masy oraz pomijanie gęstości roztworu, co prowadzi do niepoprawnych wyników. W kontekście chemii, niezwykle ważne jest zrozumienie, że stężenie molowe to stosunek moli substancji do objętości roztworu, a nie tylko masa kwasu w danym roztworze. Dlatego kluczowe jest stosowanie właściwych jednostek oraz umiejętność ich konwersji, co jest podstawą w obliczeniach chemicznych.

Pytanie 34

Metodą, która nie służy do utrwalania próbek wody, jest

A. naświetlanie lampą UV
B. dodanie biocydów
C. schłodzenie do temperatury 2-5°C
D. zakwaszenie do pH < 2
Naświetlanie próbek wody lampą UV nie jest skuteczną metodą ich utrwalania, ponieważ ta technika służy głównie do dezynfekcji wody, a nie do długoterminowego utrwalania próbek. Proces naświetlania UV eliminuje mikroorganizmy, jednak nie zatrzymuje procesów chemicznych, które mogą prowadzić do zmian w składzie chemicznym próbki. W praktyce, dla zachowania integralności próbki wody, stawia się na metody takie jak schłodzenie do temperatury 2-5°C, co ogranicza aktywność mikroorganizmów i spowalnia procesy biochemiczne. Dodanie biocydów również może być skuteczne w eliminacji niepożądanych mikroorganizmów, natomiast zakwaszenie próbki do pH < 2 ma na celu denaturację białek i stabilizację niektórych związków chemicznych, co jest szczególnie ważne w kontekście analizy chemicznej. W przypadku analizy wody, zwłaszcza w kontekście norm takich jak PN-EN ISO 5667, każda z tych metod ma swoje wytyczne i zasady stosowania, które należy przestrzegać, aby zapewnić wiarygodność wyników.

Pytanie 35

W celu usunięcia drobnych zawiesin z roztworu przed analizą spektrofotometryczną stosuje się:

A. dekantację bez sączenia
B. podgrzewanie roztworu do wrzenia
C. sączenie przez sączek o drobnych porach lub filtr membranowy
D. suszenie roztworu w suszarce laboratoryjnej
Sączenie przez sączek o drobnych porach lub filtr membranowy to standardowa metoda przygotowania próbek do analiz spektrofotometrycznych, szczególnie gdy zależy nam na usunięciu nawet najmniejszych cząstek zawieszonych. W branży laboratoryjnej takie podejście uchodzi za dobrą praktykę, bo pozwala skutecznie oddzielić fazę ciekłą od niepożądanych drobin, które mogłyby rozpraszać światło i zakłócać pomiar. Filtry membranowe wyróżniają się bardzo drobną porowatością (np. 0,22–0,45 µm), przez co nawet mikroskopijne cząstki nie przechodzą dalej. Użycie sączka o drobnych porach jest też bezpieczne dla składu chemicznego roztworu, nie powoduje dodatkowych reakcji i nie wpływa na wyniki analizy. Moim zdaniem, to wręcz obowiązkowa czynność przed większością analiz spektrofotometrycznych, szczególnie gdy pracujemy z próbkami środowiskowymi, farmaceutycznymi czy biologicznymi. Warto wspomnieć, że profesjonalne laboratoria stosują filtry strzykawkowe lub sączki z tworzyw sztucznych, bo są wygodne i minimalizują ryzyko zanieczyszczeń. Odpowiednia filtracja gwarantuje, że absorbancja mierzona spektrofotometrycznie odzwierciedla wyłącznie skład roztworu, a nie „szum” od cząstek zawieszonych. Takie przygotowanie próbek to po prostu podstawa rzetelnych wyników.

Pytanie 36

Ropa naftowa stanowi mieszankę węglowodorów. Jaką metodę wykorzystuje się do jej rozdzielania na składniki?

A. destylację prostą
B. destylację frakcyjną
C. sedymentację
D. krystalizację
Destylacja frakcyjna to naprawdę najbardziej odpowiedni sposób na rozdzielanie ropy naftowej. Dzięki niej możemy oddzielać różne frakcje węglowodorów, bo opiera się na ich punktach wrzenia. W praktyce to wygląda tak, że mieszanka cieczy przechodzi przez kolumnę destylacyjną i przy różnych temperaturach wrzenia frakcji, oddzielają się one na różnych poziomach. W przemyśle naftowym używa się tej metody do produkcji paliw, jak benzyna, olej napędowy czy nafta lotnicza, które są separowane w odpowiednich zakresach temperatur. To wszystko jest zgodne z tym, co robią specjaliści i naprawdę ważne, bo liczy się efektywność rozdziału i jakość produktów. Co ciekawe, destylacja frakcyjna ma też zastosowanie w innych branżach, na przykład w produkcji alkoholu czy chemii organicznej. Tam też potrzeba dobrego oddzielania składników, żeby uzyskać czyste substancje.

Pytanie 37

Jakie jest stężenie roztworu NaOH, który zawiera 4 g wodorotlenku sodu w 1 dm3 (masa molowa NaOH = 40 g/mol)?

A. 0,01 mol/dm3
B. 1 mol/dm3
C. 0,1 mol/dm3
D. 0,001 mol/dm3
Stężenie roztworu NaOH wyliczamy dzieląc liczbę moli substancji przez objętość roztworu w decymetrach sześciennych. W przypadku 4 g wodorotlenku sodu, najpierw musimy policzyć, ile mamy moli, korzystając z masy molowej NaOH, która to wynosi 40 g/mol. To wygląda tak: 4 g podzielone przez 40 g/mol daje nam 0,1 mola. A ponieważ nasze objętość roztworu wynosi 1 dm³, stężenie okaże się 0,1 mol / 1 dm³, co daje 0,1 mol/dm³. Te obliczenia są super ważne w laboratoriach chemicznych, bo precyzyjne przygotowywanie roztworów jest kluczowe dla dobrej jakości wyników eksperymentów. W praktyce stężenie roztworu oddziałuje na reakcje chemiczne, ich tempo i efektywność, więc rozumienie tych zasad leży u podstaw chemii analitycznej i w różnych aplikacjach przemysłowych, jak synteza chemiczna czy proces oczyszczania.

Pytanie 38

Do 300 g wody o temperaturze 30oC dodano 120 g substancji, co zaowocowało powstaniem roztworu nasyconego. Jaką ma rozpuszczalność ta substancja w temperaturze 30oC?

A. 20 g
B. 50 g
C. 30 g
D. 40 g
Odpowiedź 40 g jest poprawna, ponieważ oznacza to, że w 300 g wody w temperaturze 30°C maksymalna ilość substancji, która może się w niej rozpuścić, wynosi właśnie 40 g. Rozpuszczalność jest charakterystyczną właściwością substancji i jest określona dla danej temperatury. W praktyce oznacza to, że w celu uzyskania roztworu nasyconego należy dodać substancję do wody, aż osiągnie się stan, w którym wszelka dodatkowa substancja nie rozpuści się, co jest praktycznym krokiem przy przygotowywaniu roztworów w laboratoriach chemicznych. Wartości rozpuszczalności są kluczowe w różnych zastosowaniach, na przykład w przemyśle farmaceutycznym, gdzie odpowiednia rozpuszczalność substancji aktywnej wpływa na efektywność leku. Zrozumienie tego parametru pozwala na precyzyjne formułowanie roztworów o odpowiednich stężeniach, co jest niezbędne w procesach produkcyjnych. Dodatkowo, wiedza o rozpuszczalności substancji jest istotna w analizach chemicznych oraz w ocenie wpływu czynników fizykochemicznych na procesy rozpuszczania.

Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

Który z wskaźników nie jest używany w alkacymetrii?

A. Fenoloftaleina
B. Skrobia
C. Oranż metylowy
D. Błękit tymolowy
Skrobia jest polisacharydem, który nie pełni funkcji wskaźnika pH w reakcjach alkacymetrycznych. W alkacymetrii, kluczowe jest monitorowanie zmian pH roztworu, co pozwala na określenie punktu równoważności. W tym kontekście, wskaźniki takie jak oranż metylowy, fenoloftaleina oraz błękit tymolowy są stosowane ze względu na ich zdolność do zmiany koloru w określonym zakresie pH. Oranż metylowy zmienia kolor w pH od 3,1 do 4,4, co czyni go użytecznym w reakcjach kwasowo-zasadowych w środowisku kwasowym. Fenoloftaleina natomiast zmienia kolor z bezbarwnego na różowy w pH od 8,2 do 10,0, co jest istotne w alkacymetrii zasadowej. Błękit tymolowy działa w zakresie pH 6,0 - 7,6, co pozwala na wykrywanie przejścia z kwasowego do obojętnego. W przeciwieństwie do tych wskaźników, skrobia nie jest używana w alkacymetrii, a jej zastosowanie koncentruje się głównie w analizie jakościowej, jako reagent do wykrywania jodu.