Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.06 - Eksploatacja i programowanie urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 czerwca 2025 12:16
  • Data zakończenia: 28 czerwca 2025 12:33

Egzamin zdany!

Wynik: 34/40 punktów (85,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Która z podanych funkcji programowych w sterownikach PLC jest przeznaczona do realizacji operacji dodawania?

A. MOVE
B. ADD
C. SUB
D. DIV
Funkcja ADD jest kluczowym elementem w programowaniu sterowników PLC, ponieważ umożliwia wykonanie operacji dodawania na danych wejściowych. W kontekście automatyki przemysłowej, operacje arytmetyczne, takie jak dodawanie, są niezbędne do przetwarzania sygnałów i podejmowania decyzji na podstawie zebranych danych. Na przykład, w aplikacjach, gdzie konieczne jest zliczanie jednostek produkcji lub sumowanie wartości czujników, funkcja ADD pozwala na efektywne obliczenia. W standardach takich jak IEC 61131-3, które definiują języki programowania dla PLC, ADD jest jedną z podstawowych funkcji arytmetycznych, obok takich jak SUB (odejmowanie) i MUL (mnożenie). Zrozumienie i umiejętność wykorzystania funkcji ADD w programowaniu sterowników PLC są niezbędne dla inżynierów automatyki, co pozwala na tworzenie bardziej złożonych i funkcjonalnych systemów sterowania.

Pytanie 2

Najczęściej stosowaną kategorią cieczy roboczych w hydraulice są

A. oleje pochodzenia roślinnego
B. oleje mineralne oraz ciecze niepalne
C. mieszanki wody oraz olejów mineralnych
D. mieszanki wody i olejów roślinnych
Oleje mineralne i ciecze niepalne są kluczowymi komponentami w hydraulice, ze względu na swoje wyjątkowe właściwości. Ich doskonała lepkość oraz stabilność termiczna sprawiają, że są one w stanie skutecznie przekazywać siłę w systemach hydraulicznych. Oleje mineralne charakteryzują się także niskim poziomem parowania i dużą odpornością na utlenianie, co wydłuża żywotność cieczy roboczych. Przykładem zastosowania olejów mineralnych są systemy hydrauliczne w maszynach budowlanych, takich jak koparki, gdzie niezawodność i efektywność przekazywania energii są kluczowe. W praktyce, stosowanie cieczy niepalnych jest istotne w kontekście bezpieczeństwa oraz ochrony środowiska, szczególnie w aplikacjach wymagających minimalizacji ryzyka pożaru. Zgodnie z normami ISO 6743-4, oleje mineralne klasy HFA, HFB, HFC i HFD są zalecane w różnych zastosowaniach hydraulicznych, co potwierdza ich dominującą pozycję na rynku.

Pytanie 3

Jakie kluczowe warunki powinien spełniać system regulacji automatycznej, aby mógł funkcjonować w pełnym zakresie zmian wartości zadanej?

A. Krótki czas regulacji
B. Brak uchybu w stanie ustalonym
C. Niewielkie przeregulowanie
D. Stabilność
Wybór odpowiedzi innej niż stabilność odzwierciedla pewne nieporozumienia dotyczące kluczowych zasad regulacji automatycznej. Zerowy uchyb w stanie ustalonym, mimo że jest istotnym aspektem w kontekście dokładności regulacji, nie jest warunkiem koniecznym do zapewnienia, że układ działa w pełnym zakresie wartości zadanej. Układ może być z założenia zbliżony do stanu ustalonego, ale bez stabilności może doświadczać niekontrolowanych wahań. Minimalne przeregulowanie, choć korzystne w niektórych scenariuszach, może w rzeczywistości wprowadzać dodatkowe oscylacje, które mogą prowadzić do niestabilności. Minimalny czas regulacji, choć ważny dla efektywności, również nie zapewnia stabilności systemu; szybka reakcja na zmiany nie gwarantuje, że system nie będzie oscylować wokół wartości zadanej. Fundamentalnym błędem w analizie odpowiedzi jest mylenie efektów czasu reakcji i uchybu z wymaganiami dotyczącymi stabilności. W kontekście regulacji automatycznej, stabilność jest nadrzędnym warunkiem, który zapewnia, że system może funkcjonować w zmieniających się warunkach, a inne aspekty, takie jak czas regulacji czy uchyb, są wtórne w stosunku do tego kluczowego wymogu.

Pytanie 4

Jakim oznaczeniem literowym nazywa się zmienne wewnętrzne kontrolera, które są używane w programie jako styki i cewki?

A. T
B. M
C. C
D. Q
Odpowiedź "M" jest poprawna, ponieważ symbol ten odnosi się do zmiennych wewnętrznych sterownika, które pełnią rolę cewek i styków w programowaniu PLC. Zmienne te są związane z pamięcią sterownika, co znajduje odzwierciedlenie w angielskim słowie "memory". W praktyce zmienne typu M są wykorzystywane do przechowywania stanów logicznych, które mogą być używane w różnych częściach programu, co zapewnia elastyczność i możliwość łatwego zarządzania danymi. Dobrą praktyką jest przydzielanie zmiennych pamięciowych do konkretnych funkcji, co ułatwia późniejsze debugowanie oraz utrzymanie programu. W kontekście standardów, w wielu systemach automatyki przemysłowej, takich jak Siemens TIA Portal czy Allen-Bradley, zmienne pamięciowe są kluczowym elementem programowania, ponieważ umożliwiają manipulację danymi oraz interakcję z fizycznymi urządzeniami. Warto także zaznaczyć, że zrozumienie i umiejętność wykorzystania zmiennych M ma istotne znaczenie w kontekście pisania efektywnych i bezpiecznych programów automatyki.

Pytanie 5

Jaką czynność projektową można uznać za niemożliwą do zrealizowania w programie CAM?

A. Stworzenia kodu dla maszyny CNC
B. Realizowania symulacji obróbki elementu w środowisku wirtualnym
C. Przygotowania dokumentacji technologicznej produktu
D. Przygotowania instrukcji (G-CODE) dla urządzeń Rapid Prototyping
Opracowanie dokumentacji technologicznej wyrobu jest procesem, który zazwyczaj wymaga zastosowania oprogramowania CAD (Computer-Aided Design). Oprogramowanie CAM (Computer-Aided Manufacturing) jest natomiast skoncentrowane na aspektach produkcji, takich jak generowanie kodów maszynowych dla obrabiarek CNC oraz symulacja procesów obróbczych. Przy pomocy CAM można efektywnie przygotować programy do obróbki, co jest kluczowe w zautomatyzowanej produkcji. Przykładem praktycznym może być wykorzystanie oprogramowania CAM do zaprogramowania maszyny CNC w celu wytworzenia konkretnego detalu, co pozwala na precyzyjnie zdefiniowane operacje, ich czas i sekwencję. Dzięki symulacjom można również przewidzieć ewentualne problemy przed rozpoczęciem rzeczywistej produkcji, co znacznie zwiększa wydajność i redukuje koszty. Standardy branżowe, takie jak ISO 9001, podkreślają znaczenie dokumentacji w procesach technologicznych, jednak nie obejmują one działań związanych z przygotowaniem szczegółowej dokumentacji wyrobu, które są domeną CAD.

Pytanie 6

Które z poniższych wskazówek dotyczących komunikacyjnej sieci sterowników PLC jest nieprawdziwe?

A. Kable powinny być niskorezystancyjne, czyli mieć duży przekrój żył
B. Kable powinny charakteryzować się niską pojemnością międzyżyłową
C. Kable komunikacyjne powinny być prowadzone równolegle z kablami zasilającymi
D. Kable używane powinny być miedziane
Używanie kabli niskorezystancyjnych oraz miedzianych często jest polecane, ale to tylko teoria, bo jak nie połączysz ich z odpowiednim prowadzeniem kabli, to może być niewłaściwie. Kable o dużym przekroju żył mogą pomóc z minimalizowaniem strat sygnału, co jest bardzo ważne, ale jeśli prowadzi się je obok kabli zasilających, to te zakłócenia mogą być tak duże, że nie ma sensu ich stosować. Z drugiej strony, kable miedziane, mimo że świetnie przewodzą, mogą też stwarzać problemy, jak się je źle poukłada. Kable o niskiej pojemności wzajemnej są dobre na zmniejszenie zakłóceń, ale ich działanie jest ograniczone, kiedy są blisko kabli zasilających, bo wtedy te zakłócenia mogą powodować błędy w transmisji. Wiele systemów automatyki przemysłowej stosuje standardy jak IEC 61000, które opisują prowadzenie kabli, żeby zmniejszyć ryzyko zakłóceń. Więc trzeba pamiętać, że sama jakość kabli to nie wszystko, musi być odpowiednie prowadzenie, żeby wszystko działało jak należy.

Pytanie 7

Obniżenie błędu statycznego, skrócenie czasu reakcji, pogorszenie jakości regulacji przy niższych częstotliwościach, wzmocnienie szumów przetwornika pomiarowego są cechami działania jakiego rodzaju regulatora?

A. PD
B. PID
C. I
D. P
Regulator PD (proporcjonalno-derywacyjny) jest efektywnym narzędziem w wielu zastosowaniach automatyki, szczególnie tam, gdzie istotne jest zminimalizowanie błędu statycznego i skrócenie czasu reakcji. Działa on na zasadzie przeprowadzenia regulacji, która uwzględnia zarówno aktualny błąd, jak i jego tempo zmian, co pozwala na szybszą odpowiedź systemu na zakłócenia. W praktyce, regulator PD sprawdza się w systemach, gdzie wymagana jest szybkość reakcji, takich jak kontrola silników elektrycznych czy systemy wyrównywania poziomu w zbiornikach. Warto jednak pamiętać, że jego stosowanie wiąże się z pewnymi ograniczeniami. Przy mniejszych częstotliwościach regulacji, jakość odpowiedzi systemu może się pogarszać, a szumy przetwornika pomiarowego mogą zostać wzmocnione, co może prowadzić do niepożądanych fluktuacji. Dlatego też, w projektowaniu systemów regulacji, ważne jest zrozumienie specyfiki działania regulatora PD i jego wpływu na jakość regulacji.

Pytanie 8

Jaki adres, przyznawany przez producenta w sieci, pozostaje stały w trakcie działania urządzenia i jednoznacznie je identyfikuje?

A. IP
B. TCP
C. MAC
D. OSI
Poprawna odpowiedź to MAC, co oznacza Media Access Control. Adres MAC to unikalny identyfikator przypisywany do interfejsu sieciowego przez producenta, który pozostaje niezmienny przez cały okres użytkowania urządzenia. Dzięki temu adresowi możliwe jest jednoznaczne identyfikowanie urządzeń w sieci lokalnej oraz umożliwienie komunikacji między nimi. Adresy MAC są wykorzystywane w warstwie łącza danych modelu OSI, co czyni je kluczowymi dla działania lokalnych sieci Ethernet. Przykładem zastosowania adresów MAC może być przydzielanie adresów IP w sieci poprzez protokół DHCP, który pozwala na dynamiczne przypisywanie adresów IP na podstawie adresów MAC. W praktyce oznacza to, że router identyfikuje urządzenia w sieci, a następnie przydziela im odpowiednie adresy IP, co jest zgodne z dobrą praktyką w zarządzaniu sieciami.

Pytanie 9

Co obejmuje zakres pomiarowy czujnika?

A. zakres wartości czynników wejściowych, które dany czujnik jest w stanie zmierzyć
B. wykres ilustrujący zależność między wartościami: wejściową i wyjściową czujnika
C. najniższa wartość czynników wejściowych, która jest możliwa do pomiaru
D. maksymalna różnica pomiędzy wartością zmierzoną a rzeczywistą
Zakres pomiarowy czujnika to kluczowe pojęcie w technologii pomiarowej, definiujące przedział wartości, w którym dany czujnik może prawidłowo funkcjonować. Odpowiedź "przedział wartości wielkości wejściowych czujnika, jaki może być mierzony danym czujnikiem" precyzyjnie opisuje, że każdy czujnik ma określone granice, wewnątrz których jego pomiary są wiarygodne. Na przykład, czujnik temperatury może mieć zakres od -50°C do 150°C, co oznacza, że wartości poza tym przedziałem mogą być niedokładne lub całkowicie niemożliwe do zmierzenia. Zrozumienie zakresu pomiarowego jest niezbędne przy doborze odpowiednich czujników do konkretnego zastosowania, co jest zgodne z praktykami inżynieryjnymi i normami branżowymi, takimi jak ISO 9001. W praktyce, wybór czujnika z nieodpowiednim zakresem pomiarowym może prowadzić do błędów w danych, co może mieć poważne konsekwencje w różnych dziedzinach przemysłu, takich jak automatyka czy monitorowanie procesów chemicznych.

Pytanie 10

Wskaż operator w języku IL, który musi być użyty w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. LD FUN_1
B. ST FUN_1
C. CAL FUN_1
D. RET FUN_1
Operator "CAL" w języku IL (Instruction List) jest kluczowym elementem programowania w systemach sterowania, pozwalającym na efektywne wywoływanie bloków funkcyjnych, takich jak FUN_1. Użycie operatora "CAL" oznacza, że w danym punkcie programu następuje przekazanie kontroli do zdefiniowanej funkcji, co jest niezbędne dla realizacji zadań automatyzacji procesów. Bloki funkcyjne stanowią podstawowy element programowania w systemach PLC, a ich wywoływanie za pomocą "CAL" pozwala na modularne podejście do tworzenia aplikacji. Przykładowo, w przypadku złożonych systemów, operator ten umożliwia wielokrotne wykorzystanie tych samych bloków funkcyjnych w różnych częściach programu, co sprzyja optymalizacji kodu i zmniejsza ryzyko błędów. W praktyce, każdy programista PLC powinien być dobrze zaznajomiony z tym operatorem oraz jego zastosowaniami, aby efektywnie projektować systemy automatyzacji, zgodnie z najlepszymi praktykami branżowymi.

Pytanie 11

Podaj operatora, który jest stosowany w języku IL i musi być uwzględniony w programie sterującym, aby zrealizować wywołanie bloku funkcyjnego FUN_1?

A. LD FUN_1
B. CAL FUN_1
C. RET FUN_1
D. JMP FUN_1
Operator CAL jest kluczowym elementem w języku IL (Instruction List) służącym do wywoływania bloków funkcyjnych w programach sterowników PLC. Użycie operatora CAL dla bloku funkcyjnego FUN_1 oznacza, że program sterujący aktywuje kod zapisany w tym bloku, co jest niezbędne do realizacji określonych zadań w systemie automatyki. W praktyce operator CAL umożliwia modularne podejście do programowania, co jest zgodne z najlepszymi praktykami w inżynierii oprogramowania. Dzięki takiej modularności, programy stają się bardziej czytelne i łatwiejsze do utrzymania. Warto zauważyć, że odpowiednie użycie bloków funkcyjnych i ich wywoływanie za pomocą operatorów jest zgodne z normami IEC 61131-3, które regulują programowanie sterowników PLC. Stosując operator CAL, inżynierowie mogą efektywnie dzielić swoje programy na mniejsze, łatwiejsze do zarządzania komponenty, co z kolei sprzyja lepszej organizacji i wydajności systemu.

Pytanie 12

Jak często powinny być realizowane przeglądy techniczne urządzeń oraz systemów mechatronicznych?

A. Zgodnie z ustalonym harmonogramem przeglądów.
B. Systematycznie, co pięć lat.
C. Przynajmniej raz do roku.
D. Co dwa lata.
Odpowiedź 'Zgodnie z planem przeglądów' jest prawidłowa, ponieważ przeglądy techniczne urządzeń i systemów mechatronicznych powinny być realizowane zgodnie z ustalonym harmonogramem, który najczęściej jest określany przez producenta. Plan przeglądów uwzględnia specyfikę działania danego urządzenia, jego intensywność eksploatacji oraz warunki środowiskowe, w jakich pracuje. Przykładowo, w przypadku systemów automatyki przemysłowej, regularne przeglądy mogą obejmować sprawdzenie stanu czujników, przetestowanie oprogramowania oraz kontrolę elementów mechanicznych. Dobre praktyki branżowe wskazują, że przestrzeganie ustalonego planu przeglądów nie tylko zapewnia niezawodność i długowieczność systemów, ale także ma kluczowe znaczenie dla bezpieczeństwa pracy. Dodatkowo, stosowanie się do zasad wynikających z norm ISO, takich jak ISO 9001, podkreśla znaczenie regularnej konserwacji i przeglądów w systemach zarządzania jakością.

Pytanie 13

Jaka liczba w systemie heksadecymalnym odpowiada liczbie binarnej 1010110011BIN?

A. 1A4H
B. 10EH
C. 1F3H
D. 2B3H
Wybór innych odpowiedzi może wynikać z pewnych nieporozumień dotyczących konwersji między systemami liczbowymi. Na przykład, odpowiedź 1A4H sugeruje, że wartość binarna 1010110011 mogłaby być reprezentowana jako 1A4, co jest niepoprawne. Liczba heksadecymalna 1A4H odpowiada wartości dziesiętnej 420, która nie odpowiada liczbie 11 w zakresie bitów binarnych. Odpowiedź 10EH również nie jest właściwa, ponieważ jej wartość dziesiętna wynosi 270, co także nie zgadza się z naszymi obliczeniami. Możliwe, że problem wynika z nieprawidłowego założenia dotyczącego liczby cyfr wymaganych do konwersji lub błędnej interpretacji wartości poszczególnych cyfr szesnastkowych. Odpowiedzi te mogą też wskazywać na typowe błędy w obliczeniach związanych z mnożeniem potęg liczby 16, co jest kluczowym elementem zrozumienia konwersji. Prawidłowe podejście do tego zadania powinno polegać na zrozumieniu, że każda cyfra heksadecymalna odpowiada grupie 4 bitów, co oznacza, że przy 10 bitach konieczne jest odpowiednie zgrupowanie wartości, aby uzyskać dokładny wynik, a nie tylko poleganie na intuicji czy domysłach.

Pytanie 14

Jaki krok powinien być wykonany po edytowaniu programu, zanim zostanie on zapisany do PLC?

A. Komparację
B. Kompresję
C. Kompilację
D. Kompensację
Kompilacja jest kluczowym procesem w programowaniu aplikacji dla sterowników PLC, ponieważ przekłada kod źródłowy na format binarny, który jest bezpośrednio wykorzystywany przez urządzenie. W trakcie kompilacji, kod jest analizowany pod kątem błędów składniowych oraz logicznych, a następnie przetwarzany na kod maszynowy. Taki proces zapewnia, że program jest zoptymalizowany i zgodny z architekturą konkretnego sterownika. Przykładowo, w przypadku programowania w języku LAD (Ladder Logic), kompilacja pozwala na przekształcenie graficznego przedstawienia logiki w zrozumiały dla PLC kod binarny, co umożliwia prawidłowe wykonanie procesu automatyzacji w zakładzie produkcyjnym. Zgodnie z najlepszymi praktykami, kompilacja powinna być przeprowadzana po każdej modyfikacji kodu, aby zminimalizować ryzyko wystąpienia błędów w działaniu systemu. Dodatkowo, wiele narzędzi programistycznych oferuje funkcjonalność automatycznej kompilacji, co znacząco ułatwia pracę programisty.

Pytanie 15

Ile poziomów kwantyzacji oraz jaka jest rozdzielczość napięciowa przetwornika A/C w urządzeniu mechatronicznym o zakresie pomiarowym 0÷10 V i rozdzielczości 10 bitów?

A. 256 poziomów kwantyzacji i rozdzielczość napięciowa 39,06 mV
B. 2048 poziomów kwantyzacji i rozdzielczość napięciowa 4,88 mV
C. 1024 poziomy kwantyzacji i rozdzielczość napięciowa 9,76 mV
D. 512 poziomów kwantyzacji i rozdzielczość napięciowa 19,53 mV
Przetwornik A/C o rozdzielczości 10 bitów jest w stanie wygenerować maksymalnie 1024 poziomy kwantyzacji. W przypadku skali pomiarowej 0÷10 V, napięcie to musi być podzielone na 1024 poziomy. Aby obliczyć rozdzielczość napięciową, można skorzystać ze wzoru: Rozdzielczość = Zakres napięcia / Liczba poziomów kwantyzacji. W tym przypadku: 10 V / 1024 = 0,00976 V, co odpowiada 9,76 mV. Takie parametry są kluczowe w aplikacjach mechatronicznych, gdzie precyzyjne pomiary napięcia są niezbędne, na przykład w systemach automatyki czy robotyce. Dzięki odpowiedniej rozdzielczości można dokładniej monitorować i regulować procesy, co jest zgodne z najlepszymi praktykami branżowymi w zakresie projektowania systemów pomiarowych i kontrolnych. Wzrost liczby poziomów kwantyzacji pozwala na uzyskanie dokładniejszych i bardziej stabilnych pomiarów, co jest istotne dla efektywności działania nowoczesnych urządzeń mechatronicznych.

Pytanie 16

Jaki jest cel użycia oscyloskopu w diagnostyce układów elektronicznych?

A. Zwiększenie częstotliwości sygnałów
B. Zasilanie obwodów niskim napięciem
C. Obserwacja kształtu sygnałów elektrycznych
D. Pomiar rezystancji izolacji
Oscyloskop to niezwykle przydatne narzędzie w diagnostyce układów elektronicznych, ponieważ pozwala na obserwację kształtu sygnałów elektrycznych. Dzięki temu możemy wizualizować przebiegi czasowe, co jest kluczowe dla zrozumienia, jak sygnały przepływają przez układ. Wyobraź sobie, że masz do czynienia z układem, który nie działa prawidłowo. Dzięki oscyloskopowi możesz zidentyfikować, gdzie dokładnie występuje problem, czy to w postaci zakłóceń, zniekształceń, czy też nietypowych amplitud sygnałów. To narzędzie umożliwia również pomiar parametrów takich jak częstotliwość, amplituda, czas narastania czy opóźnienia sygnału. W praktyce inżynierskiej, umiejętność korzystania z oscyloskopu jest niezbędna, zwłaszcza w dziedzinach takich jak automatyka przemysłowa, elektronika użytkowa czy inżynieria telekomunikacyjna. Moim zdaniem, to jedno z tych narzędzi, które każdy inżynier powinien umieć obsługiwać, ponieważ daje ono wgląd w działanie układów na poziomie, którego nie można osiągnąć za pomocą innych urządzeń pomiarowych.

Pytanie 17

Jakie ciśnienie powietrza powinno panować w komorze siłownika jednostronnego działania o powierzchni tłoka A = 0,005 m2 oraz sprawności η = 0,7, aby siła przenoszona przez tłoczysko wynosiła F = 2100 N? (F = η· p · A)

A. 5 bar
B. 7 bar
C. 8 bar
D. 6 bar
Odpowiedź 6 bar jest poprawna, ponieważ zgodnie z równaniem F = η·p·A możemy obliczyć ciśnienie powietrza w komorze siłownika. W naszym przypadku mamy siłę F równą 2100 N, sprawność η równą 0,7 oraz powierzchnię tłoka A równą 0,005 m². Podstawiając te wartości do wzoru, otrzymujemy p = F / (η·A) = 2100 N / (0,7·0,005 m²) = 6 bar. Dzięki tym obliczeniom możemy stwierdzić, że ciśnienie 6 bar jest wystarczające do przeniesienia zadanego obciążenia. Takie obliczenia są kluczowe w projektowaniu układów hydraulicznych, gdzie precyzyjne oszacowanie ciśnienia roboczego pozwala na zapewnienie efektywności oraz bezpieczeństwa działania siłowników. W praktyce, odpowiednie ciśnienie ma wpływ na dynamikę ruchu oraz na żywotność komponentów systemu, a także na oszczędność energii.

Pytanie 18

Podczas szacowania czasu potrzebnego na realizację zadania, na początku uwzględnia się

A. warunki przydzielania urlopu wypoczynkowego
B. normy czasochłonności wykonania zadania
C. innowacyjność metod pracy
D. ponadnormatywne przerwy w pracy
Choć przerwy w pracy, innowacyjność metod oraz warunki przydzielania urlopu wypoczynkowego mogą wpływać na czas realizacji zadań, nie powinny być one brane pod uwagę jako pierwsze w procesie szacowania. W rzeczywistości, skupienie się na ponadnormatywnych przerwach może prowadzić do błędów w planowaniu, ponieważ nie uwzględnia się rzeczywistych czasów potrzebnych na wykonanie zadania. Przerwy, choć istotne dla zachowania efektywności i dobrego samopoczucia pracowników, są zmiennymi, które mogą się różnić w zależności od warunków pracy, i nie są właściwym punktem wyjścia w procesie szacowania. Innowacyjność metod pracy, choć z pewnością wartościowa, powinna być uwzględniana na etapie oceny efektywności, a nie w początkowej fazie szacowania czasu. Z kolei warunki przydzielania urlopu wypoczynkowego należą do elementów organizacyjnych, które wpływają na dostępność pracowników, a nie na sam czas realizacji konkretnego zadania. Kluczowym błędem jest zatem mylenie czynników wpływających na realizację projektu z tymi, które powinny być brane pod uwagę w pierwszej kolejności podczas szacowania. Aby skutecznie zarządzać czasem i zasobami w projektach, ważne jest, aby opierać się na rzetelnych danych bazujących na normach czasochłonności, które stanowią fundament efektywnego planowania.

Pytanie 19

Przegląd konserwacji napędów elektrycznych nie uwzględnia

A. czyszczenia żeber radiatorów
B. wymiany zabrudzonego komutatora wirnika
C. sprawdzania połączeń elektrycznych
D. sprawdzania napięć silnika
Dobra decyzja, wybierając odpowiedź o wymianie zabrudzonego komutatora wirnika. Wiesz, przegląd konserwacyjny napędów elektrycznych to głównie rutynowe zadania, jak czyszczenie czy kontrola, a nie jakieś skomplikowane prace wymagające rozkręcania całego silnika. Robimy takie rzeczy jak sprawdzanie napięć silnika czy czyszczenie radiatorów, które są fundamentalne dla tego, żeby wszystko działało jak należy. Wymiana komutatora wirnika to już inna bajka – trzeba mieć specjalistyczne umiejętności, narzędzia i trochę więcej czasu. Takie konkretne wymiany najlepiej załatwiać w ramach większych przeglądów serwisowych, a nie przy każdej rutynowej kontroli, żeby nie marnować czasu i zachować sprawność urządzeń.

Pytanie 20

W mechatronicznym urządzeniu uszkodzony został sterownik LOGO 12/24RC. W tabeli przedstawiono producenta informacje dotyczące stosowanych oznaczeń. Które dane odpowiadają uszkodzonemu sterownikowi?

 — 12/24: zasilanie napięciem 12/24 V DC
 — 230: zasilanie napięciem 115 ÷ 240 V AC/DC
 — R: wyjścia przekaźnikowe (brak symbolu R - wyjścia tranzystorowe)
 — C: wbudowany zegar tygodniowy
 — o: wersja bez wyświetlacza (LOGO! Pure)
 — DM: binarny moduł rozszerzenia
 — AM: analogowy moduł rozszerzenia
 — CM: komunikacyjny moduł zewnętrzny (np. moduły EIB/KNX)
 — TD: Panel tekstowy
A. Napięcie zasilania 115 ÷ 240 V AC, wyjścia przekaźnikowe, analogowy moduł rozszerzenia, wersja bez wyświetlacza.
B. Napięcie zasilania 12 V lub 24 V AC, wyjścia tranzystorowe, binarny moduł rozszerzenia, wersja z wyświetlaczem.
C. Napięcie zasilania 12 V lub 24 V DC, wyjścia przekaźnikowe, wbudowany zegar tygodniowy, wersja z wyświetlaczem.
D. Napięcie zasilania 115 ÷ 240 V AC, wyjścia tranzystorowe, wbudowany zegar tygodniowy, wersja bez wyświetlacza.
Niestety, wybrana odpowiedź nie odpowiada rzeczywistej specyfikacji sterownika LOGO 12/24RC, co może prowadzić do poważnych błędów w projektowaniu systemów automatyki. W przypadku napięcia zasilania, większość z wymienionych opcji podaje wartości AC, co jest niezgodne z charakterystyką urządzenia, które wymaga napięcia stałego 12 V lub 24 V DC. Stosowanie zasilania AC zamiast DC w tym kontekście może skutkować uszkodzeniem komponentów sterownika oraz urządzeń, które są pod jego kontrolą. Typ wyjść również jest kluczowym elementem – wyjścia tranzystorowe i przekaźnikowe różnią się pod względem możliwości obciążeniowych. Wyjścia tranzystorowe są stosowane w aplikacjach, gdzie ważna jest szybkość przełączania i mniejsze obciążenia, podczas gdy wyjścia przekaźnikowe są bardziej odpowiednie do obsługi większych obciążeń. Dodatkowo, obecność zegara tygodniowego jest istotna z perspektywy funkcjonalności, ponieważ pozwala na programowanie okresów aktywności urządzenia. Wersja z wyświetlaczem jest również ważna dla użytkowników, którzy potrzebują prostego interfejsu do monitorowania i diagnostyki. Ignorowanie tych szczegółów może prowadzić do nieefektywności systemu oraz zwiększenia kosztów operacyjnych, co jest szczególnie istotne w kontekście projektów automatyzacyjnych wymagających niezawodności i precyzji.

Pytanie 21

W dokumentacji dotyczącej obsługi i konserwacji sieci komunikacyjnej sterowników PLC, które współpracują z urządzeniami mechatronicznymi, powinno się zawrzeć zalecenie dotyczące

A. stosowania tylko przewodów nieekranowanych
B. układania przewodów komunikacyjnych równolegle do przewodów zasilających
C. wykorzystania przewodów o dużej pojemności wzajemnej żył
D. dodawania dodatkowego przewodu do wyrównywania potencjałów pomiędzy żyłami
Prowadzenie przewodów komunikacyjnych równolegle do przewodów zasilających jest kluczowym zaleceniem w kontekście minimalizacji zakłóceń elektromagnetycznych. Takie podejście pozwala na skuteczne oddzielanie sygnałów komunikacyjnych od potencjalnych źródeł zakłóceń, co jest szczególnie istotne w aplikacjach mechatronicznych, gdzie stabilność działania urządzeń ma kluczowe znaczenie. W praktyce, stosowanie tej metody przyczynia się do zwiększenia jakości przesyłu danych i zmniejszenia ryzyka błędów komunikacyjnych. W branży automatyki istnieje wiele standardów, takich jak IEC 61158, które podkreślają znaczenie odpowiedniego prowadzenia przewodów w kontekście interoperacyjności i niezawodności systemów. Warto również pamiętać, że zgodnie z wytycznymi producentów, stosowanie tej techniki w instalacjach przemysłowych umożliwia lepsze dostosowanie do zmieniających się warunków pracy oraz poprawia ogólną wydajność systemów. Dlatego właściwe prowadzenie przewodów komunikacyjnych powinno być integralnym elementem projektowania i implementacji systemów mechatronicznych.

Pytanie 22

Jakiego narzędzia należy użyć, aby zidentyfikować instrukcję, która wywołuje nieprawidłowe działanie programu?

A. Kompilatorem
B. Deasemblerem
C. Debuggerem
D. Asemblerem
Debugger to naprawdę przydatne narzędzie dla programistów, bo pozwala im dokładnie śledzić, co się dzieje w kodzie. Jego główną funkcją jest to, że można zobaczyć, jak program działa krok po kroku, co bardzo pomaga w zrozumieniu zmian w zmiennych i logice aplikacji. Na przykład, gdy coś nie działa jak powinno albo występuje błąd, można wstrzymać program w danym momencie, żeby sprawdzić, co poszło nie tak. Programista ma wtedy możliwość zbadać wartości zmiennych, zobaczyć, które instrukcje już się wykonały i gdzie leży problem. To bardzo cenne w pracy, bo pozwala na szybsze znalezienie błędów i ich naprawę, co jest zgodne z tym, co mówią najlepsi w branży – testowanie i debugowanie kodu to klucz do sukcesu. Używając debuggera, można również ustawić punkty przerwania, które zatrzymują działanie programu w określonym miejscu. Dzięki temu łatwiej jest znaleźć problemy, szczególnie w bardziej skomplikowanych aplikacjach.

Pytanie 23

Gdy sprzęt komputerowy jest w trakcie pożaru i podłączony do zasilania, nie wolno go gasić

A. gaśnicą śniegową
B. gaśnicą proszkową
C. kocem gaśniczym
D. pianą
Prawidłowa odpowiedź to użycie piany do gaszenia płonącego sprzętu komputerowego. Piana ma zdolność izolowania źródła ognia od tlenu, co jest kluczowe w procesie gaszenia. Ponadto, piana chłodzi powierzchnię, na którą jest aplikowana, co zmniejsza ryzyko dalszego rozprzestrzeniania się ognia. Standardy bezpieczeństwa przeciwpożarowego w miejscach, gdzie używa się sprzętu elektronicznego, zalecają stosowanie środków gaśniczych, które minimalizują ryzyko uszkodzenia sprzętu. W przypadku sprzętu komputerowego, którego podzespoły są wrażliwe na działanie wody oraz substancji chemicznych, piana staje się najbardziej odpowiednim rozwiązaniem. Przykładowo, w centrach danych i serwerowniach, gdzie istnieje ryzyko pożarów związanych z elektroniką, zaleca się stosowanie systemów gaśniczych opartych na pianie, aby skutecznie i bezpiecznie opanować sytuację. Warto zatem znać i stosować tę metodę, aby zminimalizować straty materialne oraz zapewnić bezpieczeństwo osobom znajdującym się w pobliżu.

Pytanie 24

Jakie urządzenie stosuje się do pomiaru rezystancji izolacji w systemach mechatronicznych?

A. mostek pomiarowy
B. omomierz
C. induktor pomiarowy
D. multimetr
Pomiar rezystancji izolacji w urządzeniach mechatronicznych jest procesem, który wymaga zastosowania odpowiednich narzędzi, a wykorzystanie omomierza, mostka pomiarowego czy multimetru do tego celu jest niewłaściwe z wielu powodów. Omomierz, mimo że jest przyrządem dedykowanym do pomiaru rezystancji, nie jest w stanie sprostać wymaganiom związanym z pomiarem izolacji. W jego przypadku mogą występować problemy z niskimi wartościami rezystancji, co prowadzi do zniekształcenia wyników, a także do ryzyka uszkodzenia izolacji. Mostek pomiarowy, z drugiej strony, zazwyczaj stosowany jest w przypadku pomiarów precyzyjnych, ale jego zastosowanie do pomiaru rezystancji izolacji może być nieodpowiednie, gdyż nie jest zaprojektowany do wykrywania problemów związanych z izolacjami przy wysokich napięciach, co jest istotne w kontekście bezpieczeństwa. Multimetr to narzędzie wszechstronne, jednak jego pomiarowe ograniczenia dotyczące rezystancji izolacji i niskiej pewności pomiarowej w takich zastosowaniach sprawiają, że nie jest on odpowiedni do tego zadania. Niezrozumienie różnic między tymi urządzeniami może prowadzić do wniosków, które mogą zagrażać bezpieczeństwu urządzeń oraz ich użytkowników. Właściwe metody pomiaru są kluczowe dla zapewnienia długotrwałej i bezpiecznej pracy urządzeń mechatronicznych oraz zgodności z normami branżowymi.

Pytanie 25

Gdzie można znaleźć informacje na temat wymagań oraz częstotliwości realizacji prac konserwacyjnych dla konkretnego urządzenia mechatronicznego?

A. Na dokumencie gwarancyjnym
B. W kartach danych handlowych
C. Na tabliczce identyfikacyjnej
D. W instrukcji obsługi
Instrukcja obsługi jest kluczowym dokumentem, który zawiera szczegółowe informacje o konserwacji i użytkowaniu urządzeń mechatronicznych. Dzięki niej operatorzy oraz technicy mogą zrozumieć, jakie konkretne czynności konserwacyjne należy przeprowadzać, aby zapewnić optymalną wydajność i bezpieczeństwo urządzenia. Informacje te obejmują zarówno zalecany harmonogram konserwacji, jak i niezbędne procedury, co jest zgodne z najlepszymi praktykami w branży. W praktyce, regularne przeglądy i konserwacja zgodnie z instrukcją mogą znacznie wydłużyć żywotność urządzenia i zminimalizować ryzyko awarii, co jest kluczowe w kontekście produkcji przemysłowej. Przykładem zastosowania może być robot przemysłowy, którego instrukcja obsługi podaje harmonogram czyszczenia i smarowania, co pozwala na utrzymanie jego precyzji i niezawodności w długim okresie eksploatacji. Należy również pamiętać, że nieprzestrzeganie tych wytycznych może prowadzić do utraty gwarancji oraz zwiększonych kosztów napraw. Dlatego zawsze warto na bieżąco zapoznawać się z instrukcją obsługi.

Pytanie 26

Który z parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku
B. Powtarzalność pozycjonowania
C. Liczba wrzecion
D. Maksymalna prędkość ruchu dla poszczególnych osi
Gramatura wtrysku jest pojęciem związanym z procesem wtryskiwania tworzyw sztucznych, który nie ma żadnego związku z frezarkami numerycznymi. Frezarka numeryczna jest narzędziem wykorzystywanym w obróbce metalu i innych materiałów, gdzie kluczowe parametry obejmują liczbę wrzecion, maksymalną prędkość ruchu dla poszczególnych osi oraz powtarzalność pozycjonowania. Zrozumienie tych parametrów jest istotne dla optymalizacji procesu obróbczo-produkcyjnego. Na przykład, wyższa liczba wrzecion umożliwia jednoczesne przetwarzanie wielu elementów, co zwiększa efektywność. Wysoka maksymalna prędkość ruchu pozwala na szybsze przemieszczenie narzędzi w obrabianym materiale, co przyspiesza cały proces produkcji. Powtarzalność pozycjonowania jest kluczowym czynnikiem w zapewnieniu wysokiej jakości produkcji, gdyż pozwala na dokładność i eliminację błędów w każdej iteracji procesu. W związku z tym, gramatura wtrysku nie jest parametrem, który miałby zastosowanie w kontekście frezarek numerycznych, co czyni tę odpowiedź prawidłową.

Pytanie 27

W dokumentacji dotyczączej prasy pneumatycznej jako kluczowy parametr eksploatacji określono ciśnienie zasilające na poziomie 0,6 MPa ± 5%. Który z podanych pomiarów nie mieści się w akceptowalnym zakresie?

A. 630 000 Pa
B. 600 kPa
C. 0,58 MPa
D. 650 kPa
Odpowiedź '650 kPa' jest właściwa, ponieważ znajduje się poza dopuszczalnym zakresem ciśnienia zasilania dla prasy pneumatycznej. Zgodnie z dokumentacją, wartość ciśnienia nominalnego wynosi 0,6 MPa, a dopuszczalne odchylenie wynosi ± 5%. Oznacza to, że ciśnienie powinno mieścić się w przedziale od 0,57 MPa do 0,63 MPa. Wartość 650 kPa, co odpowiada 0,65 MPa, przekracza górną granicę tego zakresu, co może prowadzić do niebezpiecznych sytuacji podczas pracy urządzenia. Przykładowo, w przypadku nadmiernego ciśnienia dochodzi do zwiększonego ryzyka uszkodzenia elementów prasy, co może skutkować awarią maszyny oraz zagrożeniem dla operatorów. W praktyce, kontrola i monitorowanie ciśnienia zasilania jest kluczowe dla zapewnienia prawidłowej pracy i bezpieczeństwa urządzeń pneumatycznych. Przestrzeganie tych norm jest zgodne z wytycznymi branżowymi, które zalecają regularne kalibracje oraz audyty systemów ciśnieniowych.

Pytanie 28

Jaki rodzaj czujnika wykorzystuje się do pomiaru odległości w zastosowaniach przemysłowych?

A. Piezoelektryczny
B. Magnetyczny
C. Ultradźwiękowy
D. Temperaturowy
Czujniki ultradźwiękowe są często używane do pomiaru odległości w zastosowaniach przemysłowych. Działają one na zasadzie emitowania fal dźwiękowych o wysokiej częstotliwości i mierzenia czasu, jaki zajmuje odbicie tych fal od obiektu do czujnika. Dzięki temu można precyzyjnie określić odległość do badanego obiektu. Czujniki ultradźwiękowe są bardzo uniwersalne i mogą mierzyć odległości od kilku centymetrów do kilku metrów, w zależności od specyfikacji urządzenia. W przemyśle stosuje się je w automatyzacji procesów produkcyjnych, takich jak kontrola poziomu cieczy, wykrywanie obecności obiektów czy nawet w systemach bezpieczeństwa do detekcji zbliżających się obiektów. Znajdują one zastosowanie w różnych branżach, od motoryzacyjnej po spożywczą. Istotnym atutem tych czujników jest ich niezależność od koloru i materiału obiektu, co czyni je bardziej uniwersalnymi w porównaniu z czujnikami optycznymi. Ważne jest również to, że czujniki ultradźwiękowe są odporne na kurz i brud, co jest istotne w trudnych warunkach przemysłowych.

Pytanie 29

Jakie oprogramowanie komputerowe, które między innymi zajmuje się zbieraniem, wizualizacją, archiwizowaniem danych oraz alarmowaniem i kontrolą procesów, monitoruje przebieg procesów w systemach?

A. SCADA
B. CNC
C. CAD
D. CAM
SCADA, czyli Supervisory Control and Data Acquisition, to naprawdę fajne oprogramowanie, które ma kluczowe znaczenie w automatyzacji różnych procesów w przemyśle. Głównie zajmuje się zbieraniem danych z różnych czujników i urządzeń, a potem pokazuje je w zrozumiały sposób na ładnych interfejsach graficznych. W dodatku, SCADA archiwizuje te informacje, żeby można było je później analizować. Co ciekawe, jeżeli coś idzie nie tak, to potrafi alarmować operatorów, a także kontrolować urządzenia na bieżąco. Jest to mega ważne dla zachowania ciągłości i bezpieczeństwa. Na przykład, w energetyce SCADA monitoruje różne parametry, jak ciśnienie czy temperatura, co jest kluczowe dla prawidłowego działania. Jeśli chodzi o standardy, to ISA-95 mówi o tym, jak skutecznie integrować SCADA z innymi systemami, co naprawdę może poprawić efektywność i zminimalizować błędy.

Pytanie 30

Na schematach systemów pneumatycznych, siłowniki powinny mieć oznaczenie składające się z cyfry oraz litery

A. P
B. A
C. V
D. Z
Odpowiedź "A." jest poprawna, ponieważ w schematach układów pneumatycznych siłowniki są oznaczane symbolem literowym "A" oraz dodatkową liczbą, co jest zgodne z normami, takimi jak ISO 1219, które regulują oznaczanie elementów w schematach hydraulicznych i pneumatycznych. Oznaczenia te są istotne dla zrozumienia funkcji poszczególnych komponentów oraz ich właściwej identyfikacji w dokumentacji technicznej. Użycie liter i cyfr w taki sposób zapewnia jednoznaczność i ułatwia komunikację między inżynierami, technikami i innymi specjalistami. Przykładowo, siłownik pneumatyczny oznaczony jako A1 może wskazywać na specyfikę danego modelu oraz jego parametry, co jest kluczowe podczas projektowania układów automatyki przemysłowej. Właściwe oznaczenie komponentów wpływa na efektywność i bezpieczeństwo pracy systemów pneumatycznych oraz przyczynia się do ich dłuższej żywotności, co jest niezwykle istotne w kontekście nowoczesnej produkcji. Zatem, zrozumienie zasadności takiego oznaczenia jest fundamentem dla każdego inżyniera zajmującego się projektowaniem układów automatyki.

Pytanie 31

Który z literowych symboli zastosowanych w programie do sterowania, według normy IEC 61131, reprezentuje fizyczne wyjście kontrolera PLC?

A. Q
B. R
C. I
D. S
Odpowiedź "Q" jest poprawna, ponieważ zgodnie z normą IEC 61131, symbol ten oznacza fizyczne wyjścia programowalnych sterowników logicznych (PLC). W praktyce, wyjścia PLC są komponentami, które sterują innymi elementami systemu automatyki, takimi jak przekaźniki, zawory czy silniki. Każde fizyczne wyjście jest zazwyczaj powiązane z określonym portem wyjściowym na sterowniku, co pozwala na precyzyjne kontrolowanie różnorodnych urządzeń. Na przykład, w systemach automatyki przemysłowej, wykorzystanie wyjść "Q" umożliwia załączenie lub wyłączenie urządzeń w odpowiedzi na zdefiniowane warunki. Kluczowe jest zrozumienie, że stosowanie odpowiednich symboli zgodnie z normą IEC 61131 nie tylko ułatwia programowanie, ale również zapewnia zgodność z międzynarodowymi standardami, co jest istotne dla jakości i bezpieczeństwa systemów automatyki. Zdefiniowane symbole, takie jak "I" dla wejść cyfrowych czy "R" dla funkcji rejestracyjnych, pomagają w integralności kodu i jego późniejszym utrzymaniu.

Pytanie 32

Jaka jest minimalna liczba bitów przetwornika A/C, która powinna być użyta w układzie, aby dla zakresu pomiarowego 0 mA ÷ 20 mA uzyskać rozdzielczość równą 0,01 mA?

A. 11 bitowy
B. 16 bitowy
C. 12 bitowy
D. 10 bitowy
Odpowiedź 11-bitowa jest poprawna, ponieważ aby osiągnąć wymaganą rozdzielczość 0,01 mA w zakresie 0-20 mA, musimy najpierw obliczyć liczbę poziomów kwantyzacji. Zakres pomiarowy wynoszący 20 mA podzielony przez rozdzielczość 0,01 mA daje nam 2000 poziomów. Następnie, aby określić wymaganą liczbę bitów w przetworniku A/C, stosujemy wzór 2^n ≥ 2000. Logarytm z podstawą 2 z 2000 wynosi około 10,97, co po zaokrągleniu w górę daje 11. Przetwornik 11-bitowy, oferując 2048 poziomów, spełnia wymogi co do rozdzielczości, ponieważ zapewnia wystarczającą ilość poziomów do uchwycenia zmian w sygnale. W praktyce przetworniki o takiej rozdzielczości są powszechnie stosowane w systemach automatyki przemysłowej, gdzie precyzyjny pomiar prądu jest kluczowy dla monitorowania i kontrolowania procesów. Dobrą praktyką jest również użycie przetworników A/C zgodnych z normami IEC 61000, które zapewniają wysoką jakość pomiarów w trudnych warunkach przemysłowych.

Pytanie 33

Na wyświetlaczu panelu operatorskiego falownika wyświetla się kod błędu F005. Określ na podstawie tabeli z instrukcji serwisowej co może być przyczyną sygnalizowania wystąpienia błędu.

Kod błęduOpis uszkodzeniaCzynności naprawcze
F001PrzepięcieSprawdź czy wielkość napięcia zasilania jest właściwe dla znamion falownika i sterowanego silnika.
Zwiększyć czas opadania częstotliwości (nastawa P003).
Sprawdź czy moc hamowania mieści się w dopuszczalnych granicach.
F002PrzetężenieSprawdź czy moc falownika jest odpowiednia do zastosowanego silnika.
Sprawdź czy długość kabli zasilających silnika nie jest zbyt duża.
Sprawdź czy nie nastąpiło przebicie izolacji uzwojeń silnika lub przewodów kabli zasilających.
Sprawdź czy wartości nastaw P081 - P086 są zgodne z wartościami danych znamionowych silnika.
Sprawdź czy wartość nastawy P089 jest zgodna z wielkością rzeczywistej rezystancji uzwojeń stojana silnika.
Zwiększ czas narastania częstotliwości wyjściowej P002.
Zmniejsz wielkości forsowania częstotliwości (wartość nastaw P078 i P079).
Sprawdź czy wał silnika nie jest zablokowany lub przeciążony.
F003PrzeciążenieSprawdź czy silnik nie jest przeciążony.
Zwiększ częstotliwość maksymalną (wartość nastawy P013) w przypadku gdy używany jest silnik o dużym poślizgu znamionowym.
F005Przegrzanie falownika
(zadziałanie wewnętrznego termistora PTC)
Sprawdź czy temperatura otoczenia przekształtnika nie jest zbyt wysoka.
Sprawdź czy wloty i wyloty powietrza chłodzącego obudowy falownika nie są przysłonięte przez elementy sąsiadujące.
Sprawdź czy wentylator chłodzący funkcjonuje prawidłowo.
F008Przekroczenie okresu oczekiwania na sygnał z łącza szeregowegoSprawdź poprawność łącza szeregowego.
Sprawdź prawidłowość ustawienia parametrów komunikacji łącza szeregowego (wartości nastaw P091 - P093).
A. Za małe obciążenie na wale silnika.
B. Za duża temperatura otoczenia.
C. Za duża moc silnika.
D. Za mała częstotliwość.
Odpowiedź "Za duża temperatura otoczenia." jest prawidłowa, ponieważ kod błędu F005, wskazujący na przegrzanie falownika, jednoznacznie sugeruje, że warunki otoczenia są niewłaściwe. Przegrzanie falownika może prowadzić do poważnych uszkodzeń urządzenia, co w dłuższym czasie może skutkować jego awarią. W praktyce, aby zapobiec takim sytuacjom, ważne jest zapewnienie odpowiedniego chłodzenia i wentylacji falownika w jego miejscu instalacji. Zastosowanie wentylatorów lub systemów klimatyzacyjnych jest kluczowe w zapewnieniu optymalnych warunków pracy. Warto również regularnie monitorować temperaturę otoczenia oraz stan termistora PTC, co pozwoli na wczesne wykrywanie problemów z przegrzewaniem. W przypadku wykrycia wysokiej temperatury otoczenia, należy rozważyć zmianę lokalizacji falownika lub poprawę jego chłodzenia, zgodnie z wytycznymi producenta, co jest zgodne z najlepszymi praktykami branżowymi.

Pytanie 34

Jakie polecenie w środowisku programowania sterowników PLC pozwala na przesłanie programu z urządzenia do komputera?

A. Upload
B. Download
C. Single Read
D. Chart Status
Polecenie Upload jest kluczowym elementem pracy z programowalnymi sterownikami logicznymi (PLC) i pozwala na przesyłanie programu z urządzenia do komputera. Dzięki temu inżynierowie mają możliwość archiwizacji, analizy i modyfikacji programów, co jest niezbędne w kontekście efektywnego zarządzania systemami automatyki. Przykładowo, w przypadku konieczności aktualizacji programu, operator może przesłać aktualną wersję na komputer, aby zachować wszelkie wprowadzone zmiany w bezpiecznym miejscu. Również w sytuacjach awaryjnych, gdy nastąpią nieprawidłowości w działaniu maszyny, przesyłanie programu może umożliwić szybszą diagnozę problemu. Zgodnie z dobrymi praktykami branżowymi, regularne wykonywanie operacji Upload jest niezbędne do zapewnienia bezpieczeństwa i niezawodności systemów automatyki, umożliwiając powrót do stabilnych wersji oprogramowania oraz umożliwiając zespołom inżynierskim analizowanie rozwoju projektu.

Pytanie 35

Falowniki używane w przetwornicach częstotliwości mają na celu regulację

A. kierunku obrotów silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
B. prędkości obrotowej silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
C. prędkości obrotowej silnika, poprzez modyfikację wartości prądu zasilającego silnik
D. mocy silnika, poprzez zmianę częstotliwości napięcia zasilającego silnik
Falowniki w przetwornicach częstotliwości odgrywają kluczową rolę w regulacji prędkości obrotowej silników. Poprzez zmianę częstotliwości napięcia zasilającego, falownik umożliwia dostosowanie prędkości obrotowej silnika do wymagań obciążenia, co jest istotne w wielu zastosowaniach przemysłowych, takich jak pompy, wentylatory czy taśmociągi. Dzięki tej technologii możliwe jest osiągnięcie większej efektywności energetycznej oraz redukcji kosztów operacyjnych. W przypadku silników asynchronicznych, zmiana częstotliwości zasilania bezpośrednio wpływa na prędkość obrotową, co pozwala na precyzyjne sterowanie procesami. W praktyce, zastosowanie falowników pozwala na unikanie skoków w prędkości obrotowej, co z kolei przekłada się na dłuższy czas eksploatacji urządzeń oraz zmniejszenie zużycia energii. Jest to zgodne z najlepszymi praktykami branżowymi, które promują zrównoważony rozwój oraz efektywność energetyczną w przemyśle.

Pytanie 36

Jakiej litery używamy do oznaczania na schematach systemów sterowania wyjść sterownika PLC?

A. X
B. I
C. Q
D. W
Litera Q jest standardowo używana do oznaczania wyjść w systemach sterowania opartych na sterownikach PLC, ponieważ pochodzi od angielskiego słowa "output". W praktyce oznaczenie to jest niezwykle ważne dla zachowania przejrzystości oraz jednoznaczności schematów. Użycie litery Q pomaga inżynierom i technikom w szybkiej identyfikacji elementów wyjściowych w skomplikowanych układach sterujących. Na przykład, w wielu projektach automatyzacji przemysłowej, takich jak sterowanie silnikami, zaworami czy innymi urządzeniami wykonawczymi, oznaczenia Q ułatwiają dokumentację oraz diagnostykę. Stosowanie standardów w oznaczeniach, takich jak IEC 61131-3, gwarantuje, że schematy są zgodne z przyjętymi normami branżowymi, co ułatwia współpracę między zespołami inżynieryjnymi oraz zapewnia efektywność komunikacji w projektach. Dodatkowo, stosując jednolite oznaczenia, inżynierowie mogą szybciej wprowadzać zmiany w układzie, co zwiększa elastyczność i skraca czas realizacji projektów.

Pytanie 37

Podczas eksploatacji silnika prądu stałego zauważono iskrzenie szczotek spowodowane zanieczyszczeniem komutatora. Aby pozbyć się tej awarii, należy wyłączyć silnik, a potem

A. wyczyścić komutator i szczotki
B. przetrzeć komutator mokrą szmatką
C. oczyścić komutator i wypolerować papierem ściernym
D. nałożyć na komutator olej lub smar
Odpowiedź "oczyścić komutator i wypolerować papierem ściernym" jest prawidłowa, ponieważ usunięcie zabrudzeń z komutatora jest kluczowym krokiem w utrzymaniu silnika prądu stałego w dobrym stanie. Komutator, będący istotnym elementem silnika, pełni funkcję przełączania prądu w uzwojeniach wirnika. Zabrudzenia, takie jak resztki węgla ze szczotek czy inne zanieczyszczenia, mogą prowadzić do iskrzenia, co z kolei zwiększa ryzyko uszkodzenia zarówno komutatora, jak i szczotek. Wypolerowanie komutatora papierem ściernym pozwala na usunięcie nie tylko zabrudzeń, ale również nierówności, co zapewnia lepszy kontakt ze szczotkami. Ta procedura jest zgodna z najlepszymi praktykami w branży, które zalecają regularne czyszczenie i konserwację komutatorów w celu zapewnienia ich długotrwałej wydajności. Przykładem zastosowania tej techniki może być regularna konserwacja silników w aplikacjach przemysłowych, gdzie niezawodność pracy jest kluczowa. Dobrą praktyką jest również monitorowanie stanu komutatora i regularne jego czyszczenie, co pozwala na minimalizowanie ryzyka awarii oraz oszczędności związane z kosztami naprawy.

Pytanie 38

Aby zmienić wartość skoku gwintu, należy dostosować wartość numeryczną obok litery adresowej

N100 G00 X55 Z5
N110 T3 S80 M03
N120 G31 X50 Z-30 D-2 F3 Q3

A. Q (promień wodzący)
B. F (prędkość posuwu)
C. D (korektor narzędzia)
D. T (wybór narzędzia)
Zaznaczyłeś odpowiedź F dotycząca prędkości posuwu, co jest całkowicie trafne. Ten parametr F w kodzie G jest kluczowy, bo steruje prędkością, z jaką narzędzie się porusza podczas skanowania G31. Gdy zmieniamy skok gwintu w CNC, zwłaszcza przy toczeniu, musimy naprawdę uważać na prędkość posuwu, bo to ma ogromny wpływ na jakość gwintu. Jeśli posuw będzie za szybki, może wyjść zbyt płytki skok, a jak będzie za wolny, to narzędzia się szybciej zużyją i jakość wykonania będzie kiepska. Warto wziąć pod uwagę standardy przemysłowe, które mówią o tym, że prędkość posuwu powinna być dopasowana do materiału, którego używamy, i kształtu narzędzia, żeby wszystko działało jak najlepiej. Jak obrabiamy metale ferromagnetyczne i nieżelazne, to dobrze jest zerknąć na tabele prędkości skrawania, żeby wiedzieć, jakie wartości zastosować do konkretnej pracy. To klucz do dłuższej trwałości narzędzi i lepszego wykończenia detali.

Pytanie 39

Jaką linią należy zaznaczyć na rysunku technicznym miejsce urwania lub przerwania przedmiotu?

A. Cienką z długą kreską oraz kropką.
B. Grubą kreską.
C. Cienką ciągłą linią zygzakową.
D. Grubą linią punktową.
Cienka ciągła zygzakowa linia jest standardem stosowanym w rysunku technicznym do oznaczania urwań i przerwań przedmiotów. W praktyce inżynieryjnej, użycie tej linii pozwala na jasne i jednoznaczne przedstawienie elementów, które nie są w pełni widoczne, co jest kluczowe w dokumentacji technicznej. Zygzakowa linia wskazuje, że dany fragment obiektu nie jest przedstawiony w całości, co może mieć znaczenie podczas produkcji czy montażu. Warto pamiętać, że zgodnie z normami ISO, stosowanie odpowiednich linii ma kluczowe znaczenie w komunikacji wizualnej w inżynierii. Umożliwia to projektantom i inżynierom lepsze zrozumienie zamysłu konstrukcyjnego oraz uniknięcie błędów w realizacji projektu. To zastosowanie podkreśla rolę standardów w procesie projektowania, gdzie nawet drobne szczegóły, jak typ linii, mogą mieć duże znaczenie dla finalnej jakości i funkcjonalności produktu.

Pytanie 40

Który z parametrów nie jest uwzględniony w specyfikacji technicznej frezarki numerycznej CNC?

A. Dokładność pozycjonowania [mm]
B. Maksymalna prędkość ruchu dla poszczególnych osi [m/s]
C. Liczba wrzecion [szt.]
D. Gramatura wtrysku [g/cykl]
Freza numeryczna CNC jest zaawansowanym narzędziem wykorzystywanym w obróbce skrawaniem, a jej specyfikacja techniczna obejmuje kluczowe parametry, które wpływają na wydajność i precyzję obróbki. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi są przykładami kluczowych wskaźników, które bezpośrednio wpływają na jakość i efektywność procesu produkcyjnego. Na przykład, wyższa powtarzalność pozycjonowania skutkuje lepszą dokładnością wykonania detali, co jest niezbędne w przemysłowej produkcji precyzyjnych komponentów. Z kolei maksymalna prędkość ruchu osi określa, jak szybko maszyna może przemieszczać narzędzie robocze, co w przypadku produkcji seryjnej przekłada się na krótszy czas realizacji zleceń. Gramatura wtrysku [g/cykl] dotyczy procesów wtrysku tworzyw sztucznych, a nie obróbki skrawaniem, dlatego nie stanowi ona parametru specyfikacji frezarki CNC. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania i optymalizacji procesów produkcyjnych w zakładach przemysłowych.