Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 28 czerwca 2025 18:42
  • Data zakończenia: 28 czerwca 2025 18:56

Egzamin zdany!

Wynik: 24/40 punktów (60,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Typowym elementem konstrukcji siłownika, przygotowanego do współpracy z bezdotykowymi czujnikami położenia krańcowego, jest

A. magnes stały
B. membrana
C. zawór dławiący
D. tłumik
Wybór innych opcji, takich jak zawór dławiący, membrana czy tłumik, nie jest adekwatny do kontekstu bezdotykowych sensorów położeń krańcowych w siłownikach. Zawór dławiący ma na celu regulację przepływu cieczy w układach hydraulicznych, co związane jest z kontrolą prędkości ruchu, ale nie ma zastosowania w pomiarze pozycji. Membrana, często używana w siłownikach pneumatycznych, odpowiada za separację mediów i nie jest elementem, który mógłby współpracować z sensorami położeń. Tłumik natomiast służy do zmniejszania drgań i hałasu, a nie do monitorowania lokalizacji siłownika. Takie myślenie może wynikać z nieporozumienia co do funkcji poszczególnych komponentów w systemach automatyzacji. Kluczowe jest zrozumienie, że bezdotykowe sensory opierają się na interakcji z polem magnetycznym, co czyni magnesy stałe niezbędnymi dla ich działania. Użycie niewłaściwych elementów prowadzi do błędów w projekcie systemów automatyki, co może skutkować obniżoną efektywnością i zwiększonym ryzykiem awarii. W kontekście projektowania systemów warto kierować się zasadami inżynieryjnymi oraz najlepszymi praktykami, które stawiają na efektywność, niezawodność i łatwość w utrzymaniu.

Pytanie 2

Prąd jałowy transformatora wynosi około 10% prądu znamionowego. Aby precyzyjnie zmierzyć prąd jałowy transformatora o parametrach SN = 2300 VA, U1N = 230 V, U2N = 10 V, należy zastosować amperomierz prądu przemiennego o zakresie pomiarowym

A. 3,6 A
B. 15,0 A
C. 1,2 A
D. 0,6 A
Wybór amperomierza o zakresie 15,0 A, 0,6 A lub 3,6 A nie jest odpowiedni do pomiaru prądu jałowego transformatora. Prąd jałowy wynoszący około 1 A z całą pewnością nie zostanie należycie odzwierciedlony w przypadku użycia amperomierza o zbyt dużym zakresie, jak 15 A. Taki amperomierz może nie mieć wystarczającej precyzji i w niektórych przypadkach może nie być w stanie wykryć tak małych wartości prądu, co prowadzi do błędnych odczytów oraz możliwości nieodpowiedniej analizy stanu technicznego transformatora. Z drugiej strony, wybór amperomierza o zakresie 0,6 A lub 3,6 A również jest nieodpowiedni, ponieważ nie zapewniają one wystarczającego marginesu dla, co może prowadzić do uszkodzenia urządzenia pomiarowego. Często popełnianym błędem jest założenie, że amperomierz z najwyższym zakresem pomiarowym jest najlepszym rozwiązaniem, co jest nieprawdziwe. W praktyce, stosowanie urządzeń pomiarowych z zakresami, które są zbyt oddalone od rzeczywistych wartości prądów może prowadzić do nieefektywnych pomiarów oraz wprowadzać w błąd, co do stanu technicznego systemu. Dlatego tak ważne jest uwzględnienie dokładnych parametrów transformatora i wymagań pomiarowych przy wyborze odpowiedniego sprzętu, co jest zgodne z najlepszymi praktykami inżynierskimi.

Pytanie 3

Wyłącznik silnikowy może zadziałać na skutek

A. uruchomienia silnika przy niewielkim obciążeniu
B. połączenia uzwojeń silnika w gwiazdę zamiast w trójkąt
C. braku jednej fazy zasilającej silnik
D. użycia stałego napięcia w obwodzie sterowania silnika
Brak jednej fazy zasilającej silnik jest jedną z najczęstszych przyczyn zadziałania wyłącznika silnikowego. Silniki asynchroniczne, zwłaszcza te zasilane prądem trójfazowym, są zaprojektowane do pracy w równowadze, co oznacza, że każda z faz dostarcza równą część energii. Gdy jedna z faz przestaje działać, silnik może zacząć pracować w trybie niepełnym, co prowadzi do nadmiernych prądów w pozostałych fazach. W stanach awaryjnych silnik nie ma wystarczającej mocy do rozpoczęcia pracy lub może się przegrzewać, co skutkuje zadziałaniem wyłącznika silnikowego w celu ochrony samego silnika oraz systemu zasilającego. W praktyce, zapobieganie takim sytuacjom jest kluczowe i wymaga stosowania odpowiednich przekaźników zabezpieczających, które wykrywają brak fazy i automatycznie wyłączają silnik. Dobre praktyki obejmują regularne monitorowanie stanu zasilania oraz instalację systemów alarmowych, które informują o ewentualnych przerwach w zasilaniu.

Pytanie 4

Jakim przyrządem mierzy się czas trwania skoku siłownika elektrycznego?

A. stoperem
B. czujnikiem zegarowym
C. mikrometrem
D. miliwoltomierzem
Czas wykonania skoku siłownika elektrycznego mierzy się za pomocą stopera, ponieważ jest to narzędzie umożliwiające dokładne i precyzyjne określenie czasu trwania określonego zdarzenia. W przypadku siłowników elektrycznych, które są często wykorzystywane w automatyce i robotyce, czas reakcji oraz czas skoku mają kluczowe znaczenie dla efektywności pracy całego systemu. Stoper pozwala na mierzenie czasu z wysoką dokładnością, co jest niezbędne w procesach, gdzie synchronizacja ruchów jest istotna. W praktyce, w laboratoriach oraz w zakładach produkcyjnych, zastosowanie stopera w badaniach wydajności siłowników elektrycznych pozwala na optymalizację pracy maszyn oraz zwiększenie ich niezawodności. Takie pomiary mogą być również wykorzystywane do analizy wpływu różnych parametrów, takich jak obciążenie, napięcie zasilania czy rodzaj zastosowanej mechaniki, na czas odpowiedzi siłownika. Dzięki temu można wprowadzać usprawnienia oraz dostosowywać parametry pracy do specyficznych wymagań procesów technologicznych.

Pytanie 5

Efektor zainstalowany na końcu ramienia robota przede wszystkim pełni funkcję

A. przemieszczania obiektu w przestrzeni
B. chronienia ramienia robota przed przeciążeniem
C. ochrony ramienia robota przed kolizjami z operatorem
D. chwytania obiektu z odpowiednią siłą
Efektor, umieszczony na końcu ramienia robota, odgrywa kluczową rolę w jego funkcjonowaniu, zwłaszcza w kontekście automatyzacji procesów produkcyjnych. Jego głównym zadaniem jest chwytanie elementów z odpowiednią siłą, co jest istotne w wielu zastosowaniach przemysłowych, takich jak montaż, pakowanie czy transport materiałów. Efektory mogą mieć różne formy – od prostych chwytaków pneumatycznych, po zaawansowane systemy z czujnikami siły, które umożliwiają precyzyjne dostosowanie siły chwytu do rodzaju i wagi chwytanego obiektu. Dzięki tym technologiom możliwe jest minimalizowanie uszkodzeń delikatnych komponentów oraz zwiększenie efektywności produkcji. Dobre praktyki w zakresie projektowania efektorów obejmują uwzględnienie materiałów, które zapewniają odpowiednią przyczepność i trwałość, a także zastosowanie systemów kontroli, które pozwalają na monitorowanie siły chwytu w czasie rzeczywistym, co może być zgodne z normami ISO 10218 dotyczącymi robotów przemysłowych.

Pytanie 6

Aby zweryfikować ciągłość układów elektrycznych, wykorzystuje się

A. omomierz
B. watomierz
C. amperomierz
D. woltomierz
Omomierz jest urządzeniem pomiarowym, które służy do pomiaru rezystancji elektrycznej, a jego zastosowanie w zakresie sprawdzania ciągłości połączeń elektrycznych jest kluczowe. W praktyce, omomierz jest wykorzystywany do wykrywania ewentualnych przerw w obwodach oraz oceny jakości połączeń. Na przykład, w instalacjach elektrycznych, przed oddaniem do użytkowania, ważne jest, aby sprawdzić, czy wszystkie połączenia są prawidłowo wykonane i czy nie występują utraty kontaktu. Normy takie jak PN-IEC 60364-6 podkreślają znaczenie przeprowadzania pomiarów ciągłości przewodów ochronnych, co można zrealizować właśnie przy pomocy omomierza. Warto również zauważyć, że pomiar ciągłości powinien być wykonywany w stanie nieenergetycznym instalacji, co zapewnia bezpieczeństwo oraz dokładność pomiarów. Umiejętność posługiwania się omomierzem w kontekście sprawdzania połączeń elektrycznych jest istotna dla każdego elektryka, a także dla osób zajmujących się konserwacją i przeglądami instalacji elektrycznych.

Pytanie 7

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fototranzystorze
B. Fotoogniwie
C. Fotodiodzie
D. Fotorezystorze
Fotoogniwo jest urządzeniem, które przekształca energię promieniowania słonecznego na energię elektryczną poprzez zjawisko fotowoltaiczne. Proces ten polega na generowaniu par elektron-dziura w materiale półprzewodnikowym, takim jak krzem, w wyniku absorpcji fotonów. Kiedy foton uderza w atom w strukturze półprzewodnika, przekazuje swoją energię elektronowi, co prowadzi do jego wzbudzenia i możliwości swobodnego poruszania się w strukturze materiału. W rezultacie tego procesu powstaje prąd elektryczny. Fotoogniwa są szeroko stosowane w systemach energii odnawialnej, takich jak panele słoneczne montowane na dachach budynków czy farmach fotowoltaicznych, przyczyniając się do zrównoważonego rozwoju i redukcji emisji CO2. W branży energetycznej fotoogniwa zgodne są z normami IEC 61215 i IEC 61730, które dotyczą testowania modułów słonecznych, zapewniając ich jakość i bezpieczeństwo w eksploatacji.

Pytanie 8

W miarę wzrostu współczynnika lepkości oleju używanego w systemach hydraulicznych, jakie zmiany zachodzą w lepkości oleju?

A. w szerszym zakresie przy zmianach ciśnienia
B. w szerszym zakresie przy zmianach temperatury
C. w mniejszym zakresie przy zmianach ciśnienia
D. w mniejszym zakresie przy zmianach temperatury
Odpowiedź jest prawidłowa, ponieważ współczynnik lepkości oleju hydraulicznego ma kluczowe znaczenie dla jego właściwości w zmiennych warunkach eksploatacyjnych. Im wyższy współczynnik lepkości, tym bardziej stabilne są właściwości oleju w zakresie temperatury. W praktyce oznacza to, że oleje o wysokiej lepkości wykazują mniejsze zmiany lepkości w odpowiedzi na zmiany temperatury, co jest szczególnie istotne w układach hydraulicznych, gdzie stabilność parametrów roboczych jest kluczowa dla efektywności i bezpieczeństwa. Na przykład, w systemach hydraulicznych stosowanych w maszynach budowlanych, oleje o odpowiednio dobranym współczynniku lepkości zapewniają nie tylko efektywne przenoszenie mocy, ale także minimalizują zużycie komponentów. Dobór oleju hydraulicznego zgodnie z normami branżowymi, takimi jak ISO 6743, jest istotny dla zapewnienia optymalnych właściwości smarnych i wydajności systemu. Przy odpowiednim doborze lepkości można osiągnąć lepszą wydajność energetyczną, zmniejszyć ryzyko przegrzania oraz przedłużyć żywotność układów hydraulicznych.

Pytanie 9

Podaj właściwą sekwencję montażu składników w układzie przygotowania sprężonego powietrza, zaczynając od strony złożonego systemu pneumatycznego.

A. Reduktor, manometr, filtr powietrza, smarownica
B. Filtr powietrza, manometr, reduktor, smarownica
C. Smarownica, manometr, reduktor, filtr powietrza
D. Manometr, reduktor, smarownica, filtr powietrza
Odpowiedź, która wskazuje na kolejność smarownica, manometr, reduktor, filtr powietrza, jest poprawna, ponieważ odzwierciedla właściwą konfigurację montażu elementów w układzie przygotowania sprężonego powietrza. Smarownica jest pierwszym elementem, który powinien być zainstalowany bezpośrednio po źródle sprężonego powietrza. Jej zadaniem jest dostarczanie odpowiedniej ilości oleju do narzędzi i urządzeń pneumatycznych, co znacząco wpływa na ich żywotność i efektywność pracy. Następnie manometr, który monitoruje ciśnienie w układzie, powinien być zamontowany, aby umożliwić użytkownikowi bieżącą kontrolę ciśnienia roboczego. Reduktor, który reguluje ciśnienie, powinien być umieszczony w dalszej kolejności, co pozwala na dostosowanie ciśnienia do wymagań urządzeń zasilanych sprężonym powietrzem. Na końcu, filtr powietrza powinien oczyszczać powietrze przed jego dostarczeniem do urządzeń, co jest kluczowe dla zapewnienia ich prawidłowego funkcjonowania. Taka kolejność montażu jest zgodna z najlepszymi praktykami w dziedzinie pneumatyki, co gwarantuje niezawodność oraz efektywność całego układu.

Pytanie 10

Jakie zjawisko fizyczne wyróżnia przetwornik piezoelektryczny?

A. Wytwarzanie siły elektromotorycznej na granicy dwóch metali
B. Zmiana napięcia na końcach elementu przewodzącego prąd w wyniku działania pola magnetycznego
C. Wytwarzanie ładunku elektrycznego na powierzchni elementu pod wpływem zastosowanej siły kompresyjnej lub rozciągającej
D. Modyfikacja rezystancji przewodnika w reakcji na przyłożoną siłę rozciągającą
Przetworniki piezoelektryczne działają na zasadzie zjawiska piezoelektrycznego, które polega na generowaniu ładunku elektrycznego na powierzchni materiału pod wpływem przyłożonej siły mechanicznej, takiej jak ściskanie lub rozciąganie. Materiały piezoelektryczne, takie jak kwarc czy ceramika piezoelektryczna, wykazują unikalne właściwości, które pozwalają im przekształcać energię mechaniczną w elektryczną i odwrotnie. To zjawisko znajduje szerokie zastosowanie w technologii, na przykład w mikrofonach, głośnikach oraz czujnikach siły i drgań. W praktyce, gdy na przetwornik piezoelektryczny działa siła, np. podczas nacisku, atomy w materiale przesuwają się, co prowadzi do powstania różnicy potencjałów i wytworzenia ładunku elektrycznego. Przetworniki te są wykorzystywane w medycynie (np. w ultrasonografii) oraz w przemyśle motoryzacyjnym do monitorowania drgań i stanu technicznego pojazdów. Zarówno w projektowaniu, jak i w zastosowaniach inżynieryjnych, znajomość właściwości materiałów piezoelektrycznych oraz ich zastosowania w różnych dziedzinach jest kluczowa dla efektywnego wykorzystania tej technologii.

Pytanie 11

Jakiego rodzaju środek ochrony indywidualnej powinien w szczególności wykorzystać pracownik podczas wymiany tranzystora CMOS?

A. Ochronne okulary
B. Fartuch ochronny z bawełny
C. Opaskę uziemiającą
D. Buty z izolującą podeszwą
Opaska uziemiająca to kluczowy element ochrony indywidualnej, szczególnie podczas pracy z wrażliwymi komponentami elektronicznymi, takimi jak tranzystory CMOS. Te elementy są szczególnie podatne na uszkodzenia spowodowane wyładowaniami elektrostatycznymi (ESD). Uziemienie pozwala na odprowadzenie ładunków elektrycznych, które mogłyby uszkodzić delikatne układy. W praktyce, noszenie opaski uziemiającej jest standardowym wymogiem w branży elektroniki, aby zapewnić, że operatorzy nie wprowadzą niepożądanych ładunków podczas manipulacji elementami. Przykładowo, w laboratoriach i zakładach produkcyjnych, gdzie pracuje się z urządzeniami wrażliwymi na ESD, stosowanie tych opasek jest obligatoryjne i często wymaga ich podłączenia do odpowiednich gniazd uziemiających. Warto również dodać, że zgodność z normami, takimi jak ANSI/ESD S20.20, podkreśla znaczenie stosowania środków ochrony ESD, w tym opasek uziemiających, w celu minimalizacji ryzyka uszkodzeń. Dzięki temu można znacznie zwiększyć niezawodność i żywotność urządzeń elektronicznych.

Pytanie 12

Siłownik hydrauliczny o parametrach znamionowych zamieszczonych w tabeli, w warunkach nominalnych zasilany jest czynnikiem roboczym o ciśnieniu

Parametry siłownika hydraulicznego
TłokØ 25 mm ÷ Ø 500 mm
TłoczyskoØ 16 mm ÷ Ø 250 mm
Skokdo 5000 mm
Ciśnienie nominalnePn = 35 MPa (350 bar)
Ciśnienie próbnePp = 1,5 x Pn
Prędkość przesuwu tłokaVmax = 0,5 m/s
Temperatura czynnika roboczego-25°C ÷ +200°C (248 K ÷ 473 K)
Temperatura otoczenia-20°C ÷ +100°C (253 K ÷ 373 K)
A. 70 bar
B. 525 bar
C. 350 bar
D. 35 bar
Wybór odpowiedzi 350 bar jako poprawnej opiera się na danych przedstawionych w tabeli parametrów siłownika hydraulicznego. Według tych danych, ciśnienie nominalne (Pn) wynosi 35 MPa, co jest równoważne 350 bar. Zastosowanie siłowników hydraulicznych o odpowiednich parametrach ciśnienia jest kluczowe w wielu branżach, takich jak budownictwo, przemysł motoryzacyjny czy robotyka, gdzie precyzyjne działanie i niezawodność są niezbędne. W praktyce, jeśli siłownik jest zasilany ciśnieniem przekraczającym jego parametry nominalne, może to prowadzić do uszkodzenia urządzenia, a w rezultacie do awarii systemu. Często w zastosowaniach inżynieryjnych zaleca się stosowanie marginesu bezpieczeństwa, aby uniknąć sytuacji, w której ciśnienie robocze zbliża się do maksymalnych wartości znamionowych. Dobrą praktyką jest również regularne monitorowanie stanu siłowników oraz ich parametrów, aby zapewnić ich prawidłową pracę i wydajność. Znajomość specyfikacji technicznych i właściwości materiałów, z których wykonane są siłowniki, ma bezpośredni wpływ na ich długowieczność i efektywność w działaniu.

Pytanie 13

Jakiego typu przewód jest zalecany do komunikacji w magistrali CAN?

A. Skrętki czteroparowej, ekranowanej
B. Przewodu koncentrycznego
C. Skrętki dwuprzewodowej
D. Przewodu dziewięciożyłowego
Skrętka dwuprzewodowa jest preferowanym wyborem do komunikacji w magistrali CAN (Controller Area Network) ze względu na jej zdolność do minimalizacji zakłóceń oraz zapewnienia odpowiedniej jakości sygnału. W systemach CAN, które są często używane w automatyce przemysłowej i motoryzacji, ważne jest, aby przewód miał niską impedancję i był odporny na zakłócenia elektromagnetyczne. Skrętka dwuprzewodowa, dzięki swoim właściwościom, pozwala na zastosowanie metody różnicowej, co oznacza, że sygnał jest przesyłany na dwóch przewodach o przeciwnych napięciach. Takie rozwiązanie znacząco poprawia odporność na zakłócenia zewnętrzne oraz pozwala na dłuższe odległości transmisji, co jest kluczowe w systemach, gdzie urządzenia mogą być rozmieszczone na dużych przestrzeniach. W przypadku komunikacji w magistrali CAN, standardy takie jak ISO 11898 określają parametry techniczne, które muszą być spełnione przez przewody, co dodatkowo podkreśla znaczenie wyboru właściwego typu kabla. Dobrze wykonana instalacja z użyciem skrętki dwuprzewodowej zapewnia stabilność sieci oraz wysoką niezawodność przesyłanych danych.

Pytanie 14

Prędkość ruchu tłoczyska w siłowniku hydraulicznym ma odwrotną zależność od

A. wydajności siłownika
B. natężenia przepływu medium roboczego do siłownika
C. efektywności siłownika
D. powierzchni roboczej tłoka
Wybór odpowiedzi dotyczącej sprawności siłownika, mocy wyjściowej lub natężenia przepływu czynnika roboczego jako czynników wpływających na prędkość tłoczyska siłownika hydraulicznego ilustruje kilka błędnych koncepcji w zakresie zrozumienia zasad hydrauliki. Sprawność siłownika odnosi się do efektywności przetwarzania energii hydraulicznej na energię mechaniczną, która nie ma bezpośredniego wpływu na prędkość tłoczyska, a raczej na to, jak efektywnie siłownik wykonuje pracę w danym cyklu. Można zauważyć, że wysoka sprawność może prowadzić do lepszej wydajności systemu, ale nie zmienia samego związku między natężeniem przepływu a prędkością tłoczyska. Z kolei moc wyjściowa siłownika, która jest produktem ciśnienia i wydajności, również nie jest bezpośrednio powiązana z prędkością tłoczyska, ponieważ moc może być zachowana przy różnych prędkościach w zależności od warunków pracy. Ostatecznie, natężenie przepływu czynnika roboczego jest zwarcie związane z prędkością tłoczyska, jednak to powierzchnia tłoka decyduje o tym, jak to natężenie wpływa na ruch tłoczyska. W wielu przypadkach, błędne wnioski prowadzą do nieoptymalnych wyborów w projektowaniu układów hydraulicznych, co może skutkować zmniejszoną efektywnością i zwiększonym zużyciem energii.

Pytanie 15

Sensory indukcyjne działające w trybie zbliżeniowym nie mogą być używane do detekcji elementów stworzonych

A. ze stali
B. z polipropylenu
C. z aluminium
D. z miedzi
Odpowiedź 'z polipropylenu' jest prawidłowa, ponieważ zbliżeniowe sensory indukcyjne działają na zasadzie wykrywania zmian w polu elektromagnetycznym, które są generowane przez metalowe obiekty. Polipropylen, będący materiałem nieprzewodzącym i nieferromagnetycznym, nie wpływa na to pole, co uniemożliwia sensoryzm ich detekcję. Użycie takich materiałów w aplikacjach wymagających wykrywania obiektów jest istotne, na przykład w automatyce przemysłowej, gdzie potrzebne są nietypowe materiały, jak plastiki, do produkcji elementów maszyny. W rzeczywistości, sensory indukcyjne są szeroko stosowane w procesach automatyzacji, takich jak detekcja elementów wykonanych z metali, np. w liniach montażowych. W takich aplikacjach standardy, takie jak ISO 12100 dotyczące bezpieczeństwa maszyn, wymagają odpowiedniego doboru technologii detekcji, co potwierdza praktyczną przydatność sensorów indukcyjnych w przemyśle.

Pytanie 16

Woltomierz działający w trybie AC pokazuje wartość napięcia elektrycznego

A. maksymalną
B. chwilową
C. skuteczną
D. średnią
W przypadku pomiarów napięcia zmiennego (AC) niepoprawne jest utożsamianie odczytów woltomierza z pomiarami chwilowymi, średnimi czy maksymalnymi. Wartość chwilowa odnosi się do natychmiastowej wartości napięcia w danym momencie czasu, co jest bardziej użyteczne w analizie sygnałów niż w pomiarach efektywnej wartości napięcia. Z kolei wartość średnia, obliczana jako średnia arytmetyczna z szeregu wartości chwilowych, również nie jest odpowiednia w kontekście napięcia zmiennego, ponieważ dla sinusoidalnego przebiegu napięcia średnia wartość wynosi zero. To prowadzi do nieporozumień, gdyż można by sądzić, że średnia miałaby jakiekolwiek zastosowanie w praktycznych pomiarach. Maksymalna wartość napięcia, zwana także wartością szczytową, przedstawia najwyższy punkt napięcia w cyklu, ale również nie jest miarą efektywności działania obwodu elektrycznego. Prawidłowe rozumienie tych pojęć jest kluczowe dla analizy i diagnostyki systemów elektrycznych. W obliczeniach związanych z mocą oraz projektowaniem instalacji wykorzystuje się wartość skuteczną, co jest zgodne z ogólnymi praktykami branżowymi i normami, takimi jak IEC 60204, które podkreślają znaczenie właściwego pomiaru i interpretacji danych w kontekście działania urządzeń elektrycznych.

Pytanie 17

Co znaczy zaświecenie czerwonej diody oznaczonej skrótem BATF na panelu kontrolnym sterownika PLC?

A. Tryb wstrzymania CPU
B. Potrzeba zmian w parametrach programu
C. Tryb funkcjonowania CPU
D. Brak baterii podtrzymującej zasilanie
Wybierając odpowiedzi dotyczące trybów pracy CPU czy konieczności zmiany parametrów programu, można łatwo dojść do nieporozumień, które mogą wpływać na sposób, w jaki użytkownicy interpretują komunikaty sygnalizacyjne w sterownikach PLC. Tryb pracy CPU odnosi się do stanu, w którym procesor kontroluje różne operacje w systemie, a informacja o trybie zatrzymania CPU dotyczy momentu, gdy urządzenie nie wykonuje żadnych operacji. Obie te odpowiedzi są mylące, gdyż nie odnoszą się do problemu zasilania i nie wskazują na rzeczywistą przyczynę zamknięcia systemu. Stwierdzenie, że zaświecenie diody BATF oznacza konieczność zmiany parametrów programu, także może prowadzić do błędnych działań operacyjnych. Zmiana parametrów wymaga przemyślanej analizy i często nie wiąże się bezpośrednio z problemami zasilania. Użytkownicy mogą mylnie zakładać, że problemy związane z diodą oznaczają konieczność dostosowania ustawień, co w rzeczywistości może prowadzić do dalszych komplikacji w działaniu systemu. Kluczowe jest zrozumienie, że komunikaty diodowe na panelu sygnalizacyjnym są zaprojektowane do bezpośredniego informowania o konkretnych problemach, a ich interpretacja powinna się skupiać na podstawowych funkcjach urządzenia, takich jak podtrzymywanie pamięci przez baterię.

Pytanie 18

Jakie czynności trzeba wykonać, aby zamocować koło pasowe na wale przy użyciu pasowania?

A. Obniżyć temperaturę koła pasowego i wału
B. Podgrzać koło pasowe i schłodzić wał
C. Podgrzać koło pasowe oraz wał
D. Podgrzać wał i schłodzić koło pasowe
Wybór nieprawidłowych metod zamocowania koła pasowego na wale jest często wynikiem nieprawidłowego zrozumienia procesów fizycznych zachodzących podczas montażu. Schładzanie koła pasowego, jak sugeruje jedna z odpowiedzi, byłoby szkodliwe, ponieważ doprowadziłoby do zmniejszenia jego średnicy, co znacznie utrudniłoby, a wręcz uniemożliwiło, jego montaż na wałku. W przypadku rozgrzewania wału i schładzania koła pasowego, również nie osiągnęlibyśmy pożądanego efektu, ponieważ schłodzenie koła spowodowałoby, że jego średnica zmniejszyłaby się, co również prowadziłoby do trudności z montażem. Ponadto, pomysły na rozgrzanie obu elementów mogą wydawać się logiczne, jednak nie uwzględniają one zasady, że oba elementy muszą mieć różne temperatury, aby mogły ze sobą współdziałać. Metody te są sprzeczne z podstawowymi zasadami inżynierii mechanicznej oraz praktykami montażowymi, które zalecają różnicowanie temperatur w celu ułatwienia montażu. Efektywność procesów montażowych opiera się na zrozumieniu zachowań materiałów i ich reakcji na zmiany temperatury, co jest kluczowe dla zapewnienia prawidłowego funkcjonowania maszyn. Dlatego tak ważne jest przestrzeganie sprawdzonych procedur, które gwarantują nie tylko wygodę montażu, ale również długotrwałe i niezawodne działanie urządzeń.

Pytanie 19

Funkcją czujnika hallotronowego w urządzeniach do monitorowania i pomiarów jest detekcja

A. zmian wartości momentów skręcających
B. zmian wartości parametrów pola magnetycznego
C. wewnętrznych naprężeń
D. oporu przepływu płynów
Czujniki hallotronowe są specyficznymi urządzeniami wykrywającymi pola magnetyczne, a nie zmiany oporów cieczy, naprężeń wewnętrznych czy sił skręcających. W przypadku oporów przepływu cieczy, używane są zazwyczaj czujniki oparte na pomiarach hydraulicznych lub elektrycznych, które analizują zmiany w oporze elektrycznym w zależności od przepływu cieczy. To podejście jest całkowicie odmienne od zasad działania czujników hallotronowych, które nie mogą bezpośrednio mierzyć takich parametrów. Z kolei naprężenia wewnętrzne w materiałach są zazwyczaj badane przy użyciu tensometrów, które działają na zasadzie pomiaru deformacji materiału pod wpływem obciążenia. Zastosowanie czujników hallotronowych do tego celu jest nieadekwatne, ponieważ ich konstrukcja nie umożliwia pomiaru mechanicznych właściwości materiałów. Zmiany wartości sił skręcających również nie są wykrywane przez czujniki hallotronowe. W tym przypadku konieczne jest zastosowanie specjalistycznych urządzeń, takich jak czujniki momentu obrotowego, które są zaprojektowane do pomiaru skręcania. Zrozumienie różnic pomiędzy tymi technologiami jest kluczowe dla efektywnego projektowania systemów pomiarowych oraz doboru odpowiednich czujników do konkretnej aplikacji, aby uniknąć błędów w interpretacji danych oraz zapewnić wiarygodne wyniki pomiarów.

Pytanie 20

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
B. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
No cóż, wiesz, przygotowanie sprężonego powietrza to nie taka prosta sprawa. W swojej odpowiedzi pomyliłeś kolejność działań. Najpierw powinno się osuszyć i przefiltrować powietrze, a dopiero potem nasycać je olejem. Jak zrobisz to inaczej, to wprowadzasz zanieczyszczenia do układu, co może potem prowadzić do sporych problemów. Przykładowo, zanieczyszczony olej może zatykać elementy pneumatyczne, i później tylko kłopoty. A jeśli chodzi o redukcję ciśnienia, to też ważne jest, żeby zrobić to po osuszeniu, bo inaczej wilgoć zostaje w powietrzu, a to już w ogóle nie powinno mieć miejsca. Krytyczna jest ta kolejność, żeby zapewnić, że powietrze jest naprawdę czyste i gotowe do użycia, bo w przeciwnym razie to może zrobić więcej złego niż dobrego w systemie pneumatycznym.

Pytanie 21

W systemie mechatronicznym znajduje się 18 czujników cyfrowych, 4 przetworniki analogowe oraz 11 elementów wykonawczych działających w trybie dwustanowym. Jaką konfigurację modułowego sterownika PLC należy zastosować do zarządzania tym układem?

A. DI32/DO8 oraz AI2
B. DI16/DO8 oraz AI4
C. DI32/DO16 oraz AI4
D. DI16/DO16 oraz AI2
Wybór złej konfiguracji w systemie PLC może naprawdę narobić kłopotów. Na przykład, DI16/DO16 oraz AI2 to kiepski pomysł, bo mają za mało wejść. W twoim układzie potrzeba przynajmniej 18 wejść, więc DI16 będzie niewystarczające. A te 2 analogowe na AI2? No, raczej nie podepniesz wszystkich 4 przetworników, co może spowodować, że nie będziesz mógł monitorować ważnych parametrów. Możesz pomyśleć, że DI32/DO8 oraz AI2 to dobry plan, bo DI32 ma odpowiednią liczbę wejść, ale 8 wyjść cyfrowych to za mało, żeby obskoczyć 11 elementów wykonawczych. To może być frustrujące, bo układ może nie działać jak należy. Podobna sytuacja jest z DI16/DO8 oraz AI4 – znowu te 16 wejść to za mało na wszystkie czujniki. Generalnie, dobierając konfigurację sterowników PLC, dobrze jest mieć na uwadze nadmiarowość i elastyczność, bo wtedy system łatwiej dostosować do przyszłych potrzeb.

Pytanie 22

Który z elementów nie wchodzi w skład systemu przygotowania sprężonego powietrza?

A. Smarownica
B. Sprężarka
C. Zawór redukcyjny
D. Filtr
Sprężarka to ważny element w systemie sprężonego powietrza, ale nie wchodzi w skład zespołu przygotowania. W tym zespole są inne części, takie jak zawory redukcyjne, filtry i smarownice. Te elementy mają swoje zadania, jak na przykład oczyszczanie powietrza, regulację jego ciśnienia i nawilżanie przed użyciem. Zawór redukcyjny dba o to, żeby ciśnienie było odpowiednie, co jest naprawdę ważne, żeby maszyny działały jak trzeba. Filtr zajmuje się usuwaniem zanieczyszczeń i wilgoci, a to prolonguje żywotność urządzeń i zwiększa ich efektywność. Smarownica z kolei dodaje odpowiednią ilość oleju, co zmniejsza tarcie i zapobiega uszkodzeniom. Jak dobrze się rozumie rolę każdego z tych elementów, to można lepiej zarządzać systemami pneumatycznymi i je optymalizować w przemyśle, co jest naprawdę ważne w tej branży.

Pytanie 23

Aby połączyć dwa stalowe elementy w procesie zgrzewania, należy

A. wprowadzić płynne spoiwo pomiędzy te elementy.
B. docisnąć je podczas podgrzewania miejsca łączenia.
C. stopić je w miejscu styku z użyciem spoiwa.
D. stopić je w miejscu zetknięcia bez użycia spoiwa.
Zgrzewanie elementów stalowych bez użycia odpowiedniego podgrzania oraz docisku prowadzi do nieefektywnego połączenia, co może skutkować osłabieniem struktury. Odpowiedzi sugerujące stopienie materiałów w miejscu styku bez dodawania spoiwa lub z dodatkiem spoiwa zakładają, że podstawowe zasady zgrzewania, takie jak generowanie ciepła poprzez opór, są pomijane. Proces ten wymaga precyzyjnego zarządzania temperaturą oraz siłą docisku, co jest kluczowe dla uzyskania wysokiej jakości połączenia. Zastosowanie ciekłego spoiwa w miejscu styku jest typowe dla lutowania, a nie zgrzewania, co jest fundamentalnym błędem w rozumieniu tych procesów. W rzeczywistości, w zgrzewaniu nie jest przewidziane stosowanie spoiw, ponieważ celem jest stopienie materiałów na krawędziach, co prowadzi do ich wzajemnego związania. Liczne standardy, takie jak AWS D1.1, podkreślają znaczenie odpowiednich warunków zgrzewania, które obejmują zarówno temperaturę, jak i nacisk. Ignorowanie tych parametrów może prowadzić do powstania wad strukturalnych, takich jak pęknięcia czy niepełne połączenia, co w konsekwencji zagraża bezpieczeństwu konstrukcji.

Pytanie 24

Niewielkie, drobne zarysowania na tłoczysku hydraulicznego siłownika eliminuje się za pomocą

A. napawania
B. spawania
C. lutowania
D. polerowania
Polerowanie to skuteczna metoda usuwania drobnych, niewielkich rys na tłoczysku siłownika hydraulicznego, ponieważ pozwala na wygładzenie powierzchni metalowej bez potrzeby dodawania materiału. W procesie polerowania wykorzystuje się różne materiały ścierne, takie jak pasty polerskie czy materiały ścierne o drobnych ziarnach, co umożliwia osiągnięcie wysokiej jakości wykończenia. Przykładem zastosowania polerowania w praktyce jest konserwacja siłowników hydraulicznych w maszynach budowlanych, gdzie ich długowieczność oraz niezawodność są kluczowe. Polerowanie nie tylko poprawia estetykę, ale również minimalizuje ryzyko dalszego uszkodzenia, zmniejszając tarcie i zużycie materiału. W branży hydraulicznej standardy jakości, takie jak ISO 9001, zalecają regularne kontrolowanie stanu tłoczysk i ich polerowanie w celu zapewnienia optymalnej wydajności oraz bezpieczeństwa operacyjnego urządzeń hydraulicznych. Warto również wspomnieć, że polerowanie przyczynia się do poprawy właściwości tribologicznych powierzchni, co wpływa na efektywność pracy siłowników.

Pytanie 25

Falownik to urządzenie przetwarzające moc, które konwertuje prąd

A. zmienny o regulowanej częstotliwości na prąd zmienny 50 Hz
B. stały na prąd zmienny o regulowanej częstotliwości
C. zmienny o częstotliwości 50 Hz na prąd stały
D. trój fazowy na prąd jednofazowy
Falownik jest kluczowym urządzeniem w systemach zasilania, które przekształca prąd stały (DC) na prąd zmienny (AC) o regulowanej częstotliwości. Ta funkcjonalność jest istotna w wielu zastosowaniach, w tym w napędach silników elektrycznych, gdzie regulacja prędkości i momentu obrotowego jest niezbędna do efektywnego działania. Falowniki są szeroko stosowane w przemyśle, na przykład w systemach HVAC (ogrzewanie, wentylacja, klimatyzacja), które wymagają elastycznej regulacji wydajności. Dzięki zastosowaniu falowników, użytkownicy mogą oszczędzać energię, co jest zgodne z zasadami zrównoważonego rozwoju oraz standardami efektywności energetycznej, takimi jak normy IEC 61800. Współczesne falowniki często wyposażone są w zaawansowane funkcje, takie jak kontrola wektora, co pozwala na osiąganie wysokiej precyzji w regulacji parametrów pracy. W praktyce, przekształcenie DC na AC umożliwia zasilanie różnych urządzeń zasilanych prądem zmiennym, co czyni falowniki niezbędnymi w nowoczesnych systemach automatyki oraz robotyki.

Pytanie 26

Siłownik, zasilany sprężonym powietrzem o ciśnieniu roboczym 8 bar, ma maksymalną liczbę cykli nmax = 50/min oraz zużywa 1,4 litra powietrza w trakcie jednego cyklu. Jakie parametry powinna mieć sprężarka tłokowa do zasilania tego siłownika?

A. wydajność 5,3 m3/h, ciśnienie maksymalne 1,0 MPa
B. wydajność 3,6 m3/h, ciśnienie maksymalne 0,7 MPa
C. wydajność 3,6 m3/h, ciśnienie maksymalne 1,0 MPa
D. wydajność 5,3 m3/h, ciśnienie maksymalne 0,7 MPa
Wybrane odpowiedzi nie spełniają wymagań dotyczących wydajności lub ciśnienia roboczego sprężarki, co może prowadzić do niedostatecznej efektywności zasilania siłownika. Na przykład, odpowiedzi z wydajnością 3,6 m3/h są niewystarczające, ponieważ całkowite zapotrzebowanie siłownika wynosi 4,2 m3/h. Użycie sprężarki o niższej wydajności skutkuje ryzykiem obniżenia ciśnienia w systemie, co może prowadzić do nieprawidłowego działania siłownika. Kolejnym błędem jest wybór sprężarki z maksymalnym ciśnieniem 0,7 MPa (7 bar), które jest niższe niż wymagane ciśnienie robocze 8 bar. Użycie sprężarki, która nie osiąga wymaganego ciśnienia, skutkuje brakiem możliwości wydajnego zasilania siłownika, co może prowadzić do jego uszkodzenia. W kontekście inżynierii mechanicznej i pneumatyki, kluczowe jest, aby sprzęt był dobrany do specyficznych wymagań aplikacji, w tym ciśnienia i wydajności, aby zapewnić optymalne działanie systemu. Wybierając sprężarkę, zawsze warto uwzględniać margines bezpieczeństwa, by uniknąć sytuacji, w których urządzenia mogą pracować na granicy swoich możliwości, co znacznie wpływa na ich żywotność oraz efektywność operacyjną. Zgodnie z normami i praktykami branżowymi, odpowiednia specyfikacja sprzętu jest kluczowa dla zapewnienia niezawodności systemu pneumatycznego.

Pytanie 27

Jakie napięcie wyjściowe dostarcza przetwornik ciśnienia, jeśli jego zakres napięcia wynosi od 0 V do 10 V dla ciśnienia w przedziale 0 kPa ... 600 kPa, a ciśnienie wynosi 450 kPa, przy założeniu liniowej charakterystyki przetwornika?

A. 3,0 V
B. 10,0 V
C. 4,5 V
D. 7,5 V
Odpowiedź 7,5 V jest prawidłowa, ponieważ przetwornik ciśnienia ma liniową charakterystykę wyjścia w zakresie od 0 V do 10 V dla ciśnienia od 0 kPa do 600 kPa. Aby obliczyć napięcie wyjściowe dla ciśnienia 450 kPa, należy zastosować proporcję. Wzór na obliczenie napięcia wyjściowego (V_out) w zależności od ciśnienia (P) jest następujący: V_out = (P / 600 kPa) * 10 V. Podstawiając wartość ciśnienia 450 kPa, otrzymujemy V_out = (450 / 600) * 10 V = 7,5 V. Tego typu przetworniki są powszechnie stosowane w systemach automatyki przemysłowej, gdzie ważne jest monitorowanie ciśnienia, na przykład w układach hydraulicznych czy pneumatycznych. W praktyce, wiedza ta jest niezbędna do prawidłowej konfiguracji systemów pomiarowych i zapewnienia ich właściwego działania. Przestrzeganie standardów branżowych, takich jak ISO 9001, podkreśla znaczenie precyzyjnych pomiarów ciśnienia w celu zapewnienia jakości i bezpieczeństwa procesów przemysłowych.

Pytanie 28

Jak definiuje się natężenie przepływu Q cieczy w rurociągu?

A. iloczyn prędkości cieczy oraz czasu jej przepływu.
B. stosunek objętości cieczy, która przechodzi przez przekrój do czasu, w jakim dokonuje się ten przepływ.
C. stosunek pola przekroju rurociągu do prędkości, z jaką ciecz przepływa.
D. iloczyn ciśnienia cieczy oraz pola przekroju rurociągu.
Poprawna odpowiedź definiuje natężenie przepływu Q jako stosunek objętości cieczy przepływającej przez przekrój poprzeczny rurociągu do czasu, w którym ta objętość przechodzi przez dany przekrój. Wzór na natężenie przepływu można zapisać jako Q = V/t, gdzie V to objętość cieczy, a t to czas. To podejście jest fundamentalne w hydraulice i inżynierii cieczy, ponieważ pozwala na dokładne określenie ilości cieczy przepływającej przez system. W praktyce, znajomość natężenia przepływu jest kluczowa przy projektowaniu systemów wodociągowych, kanalizacyjnych oraz instalacji przemysłowych, gdzie zachowanie odpowiednich parametrów przepływu jest niezbędne dla efektywności i bezpieczeństwa. W standardach branżowych, takich jak normy ISO dotyczące przepływu cieczy, definiuje się metody pomiaru Q, co podkreśla znaczenie tej wielkości w inżynierii fluidów. Właściwe obliczenie natężenia przepływu jest także kluczowe w kontekście zachowania energii w systemach hydraulicznych, co wpływa na dobór odpowiednich pomp oraz armatury.

Pytanie 29

Siłownik, który przesuwa tłok w jedną stronę dzięki sprężonemu powietrzu, a powrót tłoka jest wymuszany przez sprężynę, określamy jako siłownik pneumatyczny

A. jednostronnej pracy.
B. różnicowy.
C. dwustronnej pracy.
D. dwustronnej pracy, bez amortyzacji.
Siłownik jednostronnego działania to urządzenie, w którym sprężone powietrze działa na tłok jedynie w jednym kierunku, podczas gdy jego powrót do pozycji wyjściowej jest wymuszany przez sprężynę. Tego typu siłowniki są powszechnie stosowane w aplikacjach, gdzie nie jest wymagane ciągłe działanie w obie strony, co czyni je idealnym rozwiązaniem w systemach automatyki i pneumatyki. Przykładem zastosowania siłowników jednostronnego działania są chwytaki pneumatyczne, które chwytają obiekty w jednym kierunku, a następnie powracają do pozycji startowej dzięki sprężynie. Warto zwrócić uwagę, że siłowniki tego typu są często projektowane zgodnie z normami ISO, co zapewnia ich wysoką jakość i niezawodność. Dodatkowo, ograniczenie ruchu do jednej strony pozwala na oszczędność miejsca oraz efektywniejsze wykorzystanie sprężonego powietrza, co przekłada się na niższe koszty eksploatacyjne w dłuższej perspektywie czasowej.

Pytanie 30

Na podstawie wyników pomiarów rezystancji zestyków przycisków S1 i S2 przedstawionych w tabeli można wnioskować, że

Pomiar rezystancji zestyku w Ω
przycisku zwiernego S1przycisku rozwiernego S2
przed wciśnięciem przyciskupo wciśnięciu przyciskuprzed wciśnięciem przyciskupo wciśnięciu przycisku
00
A. przycisk S1 jest uszkodzony, przycisk S2 jest sprawny.
B. oba przyciski są uszkodzone.
C. oba przyciski są sprawne.
D. przycisk S1 jest sprawny, przycisk S2 jest uszkodzony.
Na podstawie analizy wyników pomiarów rezystancji zestyków przycisków S1 i S2, można jednoznacznie stwierdzić, że odpowiedź wskazująca na uszkodzenie obu przycisków jest prawidłowa. Przycisk S1, będący przyciskiem zwiernym, powinien wykazywać rezystancję bliską 0 Ω po wciśnięciu. W przypadku, gdy jego rezystancja wynosi nieskończoność, oznacza to, że mechanizm zwierny nie funkcjonuje prawidłowo. Analogicznie, przycisk S2 powinien mieć rezystancję nieskończoną przed wciśnięciem, jednak wartość 0 Ω wskazuje, że styk jest w ciągłym połączeniu, co również potwierdza jego uszkodzenie. Tego typu analizy są kluczowe w diagnostyce elektronicznej, ponieważ pozwalają na szybkie zidentyfikowanie i rozwiązanie problemów w układach sterowania. Dobre praktyki branżowe wymagają regularnego testowania komponentów w celu zapewnienia ich niezawodności i bezpieczeństwa operacyjnego. W przypadku awarii, niezbędna jest wymiana uszkodzonych elementów, a także dokładne sprawdzenie pozostałych komponentów w celu zapobieżenia dalszym problemom. Zrozumienie tych zasad jest istotne dla każdego technika zajmującego się serwisowaniem urządzeń elektronicznych.

Pytanie 31

Zbyt mała lepkość oleju hydraulicznego może być wynikiem zbyt

A. niskiej temperatury oleju
B. wysokiego ciśnienia oleju
C. wysokiej temperatury oleju
D. niskiej ściśliwości oleju
Wysokie ciśnienie oleju hydraulicznego nie wpływa na jego lepkość w sposób, który prowadziłby do jej znacznego zmniejszenia. Ciśnienie w układzie hydraulicznym ma na celu przede wszystkim zapewnienie skutecznego przesyłu energii, a nie determinowanie właściwości reologicznych oleju. W kontekście układów hydraulicznych, zbyt wysokie ciśnienie może prowadzić do uszkodzeń elementów konstrukcyjnych, ale nie ma bezpośredniego związku z lepkością oleju jako taką. Niska ściśliwość oleju również nie jest czynnikiem wpływającym na jego lepkość. W rzeczywistości, ściśliwość odnosi się do zmiany objętości cieczy pod wpływem ciśnienia, co w większości przypadków nie ma istotnego wpływu na lepkość w normalnych warunkach pracy. Z kolei niska temperatura oleju może prowadzić do wzrostu lepkości, a nie jej spadku. Warto pamiętać, że lepkość oleju hydraulicznego jest zazwyczaj zmniejszana przez podwyższoną temperaturę, co jest zgodne z zasadami termodynamiki oraz reologii płynów. Dlatego identyfikowanie temperatury jako kluczowego czynnika w regulacji lepkości oleju hydraulicznego jest kluczowe dla zrozumienia działania układów hydraulicznych i ich prawidłowego funkcjonowania.

Pytanie 32

Który z poniższych elementów nagle obniża swoją rezystancję po osiągnięciu określonego poziomu napięcia na jego terminalach?

A. Tensometr.
B. Termistor.
C. Gaussotron.
D. Warystor.
Tensometr, będący czujnikiem, który przekształca odkształcenie mechaniczne w zmianę rezystancji, działa na zupełnie innych zasadach. Jego głównym zastosowaniem jest mierzenie sił i momentów, co czyni go niezwykle użytecznym w inżynierii do monitorowania naprężeń w konstrukcjach. Obserwując zmiany rezystancji w odpowiedzi na odkształcenia, tensometr nie reaguje na napięcia w sposób, w jaki robi to warystor. Termistor, z kolei, to element, którego rezystancja zmienia się w odpowiedzi na zmiany temperatury, a nie napięcia. Używając go w obwodach, możemy monitorować temperaturę oraz regulować różne procesy, ale nie ma związku z gwałtownym spadkiem rezystancji wskutek wzrostu napięcia. Gaussotron to z kolei rodzaj detektora, który działa na zasadzie zjawisk magnetycznych, a nie elektrycznych, co czyni go nieodpowiednim w kontekście analizowanego pytania. Zrozumienie różnicy pomiędzy tymi elementami jest kluczowe dla prawidłowego projektowania układów elektronicznych oraz systemów pomiarowych. Typowe błędy myślowe, które mogą prowadzić do pomyłek w takich pytaniach, obejmują mylenie funkcji zależnych od napięcia i temperatury, co pokazuje, jak ważna jest znajomość specyfiki działania każdego z tych komponentów w praktyce inżynieryjnej.

Pytanie 33

Metoda osuszania sprężonego powietrza, w której w pierwszej fazie usuwana jest para wodna oraz olej za pomocą węgla aktywowanego, a w drugiej następuje odessanie pary wodnej w kapilarach żelu krzemionkowego, określana jest jako

A. konwekcją
B. desorpcją
C. adsorpcją
D. absorpcją
W procesach związanych z osuszaniem sprężonego powietrza, niepoprawne odpowiedzi mogą być mylące, szczególnie dla osób mniej zaznajomionych z terminologią. Konwekcja odnosi się do transportu ciepła poprzez ruch płynów, a nie do procesu usuwania wilgoci. Absorpcja, choć wydaje się zbliżona, polega na wchłanianiu substancji przez inną substancję, co różni się od adsorpcji, gdzie cząsteczki są przyciągane do powierzchni materiału, a nie wnikają w jego objętość. Desorpcja z kolei to proces, w którym substancje, wcześniej adsorbowane, są uwalniane z powierzchni materiału, a więc nie jest to etap osuszania, a raczej proces przeciwny. Te nieścisłości mogą prowadzić do błędnych wniosków w kontekście doboru technologii osuszania w różnych aplikacjach przemysłowych. Zrozumienie różnic pomiędzy tymi procesami jest kluczowe dla efektywnego zaprojektowania systemów uzdatniania powietrza, które spełniają wymagania jakościowe oraz normy branżowe, takie jak ISO 8573. W związku z tym, aby skutecznie przeprowadzić proces usuwania wilgoci, należy skupić się na technikach adsorpcji, które zapewniają najwyższą efektywność oraz niezawodność w aplikacjach wymagających precyzyjnej kontroli warunków atmosferycznych.

Pytanie 34

Silnik bezszczotkowy (ang. BLDC Brushless Direct Current motor) jest zasilany napięciem

A. trójfazowym
B. stałym
C. dwufazowym
D. jednofazowym
Silnik bezszczotkowy (BLDC) zasilany jest napięciem stałym, co jest fundamentalną cechą jego konstrukcji. Ten typ silnika charakteryzuje się brakiem szczotek, co prowadzi do mniejszych strat energii i większej efektywności w porównaniu do tradycyjnych silników komutatorowych. W zastosowaniach przemysłowych, takich jak robotyka, drony czy napędy elektryczne w pojazdach, silniki BLDC zyskują na popularności dzięki swojej niezawodności i długowieczności. Przykładem zastosowania silników bezszczotkowych zasilanych napięciem stałym są napędy w elektrycznych hulajnogach, gdzie wymagane są wysoka wydajność oraz kontrola prędkości. W silnikach BLDC zastosowanie napięcia stałego pozwala na prostotę układów sterujących, które mogą być oparte na zaawansowanych systemach PWM (modulacja szerokości impulsu), co umożliwia precyzyjne dostosowanie momentu obrotowego i prędkości silnika. W praktyce, standardy takie jak IEC 60034 dotyczące maszyn elektrycznych podkreślają znaczenie efektywności energetycznej i niezawodności, które są kluczowe w projektowaniu systemów opartych na silnikach BLDC.

Pytanie 35

Jedną z kluczowych funkcji oscyloskopu dwukanałowego jest dokonywanie pomiaru

A. pojemności elektrycznej kondensatorów
B. natężenia pola elektrycznego
C. indukcyjności własnej cewki
D. przesunięcia fazowego napięciowych przebiegów sinusoidalnych
Odpowiedź dotycząca pomiaru przesunięcia fazowego napięciowych przebiegów sinusoidalnych jest prawidłowa, ponieważ oscyloskop dwukanałowy jest narzędziem niezwykle przydatnym w analizie sygnałów elektrycznych. W kontekście pomiarów, przesunięcie fazowe jest kluczowym parametrem, który może mieć istotny wpływ na działanie układów elektronicznych, zwłaszcza w aplikacjach audio, telekomunikacyjnych oraz w systemach zasilania. Przykładowo, w układach synchronizacji sygnałów, dokładne ustawienie fazy jest niezbędne do optymalnej wydajności. Oscyloskop umożliwia pomiar różnicy fazy pomiędzy dwoma sygnałami, co może być kluczowe w ocenie stabilności systemów oraz w diagnostyce usterek. Ponadto, zgodnie z najlepszymi praktykami w inżynierii elektronicznej, pomiar fazy powinien być częścią rutynowych testów układów, aby zapewnić ich prawidłowe funkcjonowanie i minimalizować zakłócenia.

Pytanie 36

Silnik elektryczny generuje hałas z powodu kontaktu wentylatora z osłoną wentylacyjną. Aby obniżyć poziom hałasu, należy

A. wyprostować skrzywiony wentylator lub osłonę
B. wymienić łożyska silnika
C. wycentrować wirnik w stojanie
D. dokręcić śruby mocujące osłonę wentylatora
Fajnie, że pomyślałeś o prostowaniu tego skrzywionego wentylatora albo osłony. To ważne, bo jak coś jest krzywe, to wentylator może się ocierać o osłonę i robić hałas. Kiedy wentylator jest dobrze wyważony i ma odpowiednią geometrię, to działa lepiej i nie drga tak. Można nawet użyć wyważarek dynamicznych, żeby dokładnie dopasować kształt i wagę wirnika. Z mojego doświadczenia, przed włączeniem silnika warto zrobić szybką inspekcję wizualną, żeby zobaczyć, czy wszystko wygląda w porządku. No i warto trzymać się norm ISO, bo regularna konserwacja wentylatorów jest kluczowa, żeby długo działały. Dobrze też zapisywać, co już się sprawdziło, bo wtedy łatwiej monitorować stan techniczny urządzenia i przewidywać, kiedy może być potrzebny serwis.

Pytanie 37

Do sposobów oceny stanu łożysk tocznych nie wlicza się pomiaru

A. szumów
B. prędkości
C. temperatury
D. drgań
Pomiar prędkości łożysk tocznych nie jest typową metodą oceny ich stanu, ponieważ w praktyce nie dostarcza jednoznacznych informacji o ich kondycji. Zamiast tego, standardowe metody oceny stanu łożysk obejmują pomiar drgań, szumów oraz temperatury. Pomiar drgań jest szczególnie istotny, ponieważ pozwala na wykrycie nieprawidłowości w pracy łożysk, takich jak uszkodzenia, niewłaściwe dopasowanie czy problemy z lubryfikacją. Metody oceny stanu oparte na pomiarze szumów mogą wskazywać na nieprawidłowości w działaniu lub zużycie łożysk. Z kolei pomiar temperatury łożysk tocznych jest kluczowy w ocenie warunków pracy, ponieważ podwyższona temperatura może być oznaką niewłaściwego smarowania lub nadmiernego obciążenia. W związku z tym, pomiar prędkości nie jest praktykowany jako metoda oceny stanu łożysk tocznych w kontekście monitorowania ich wydajności i trwałości.

Pytanie 38

Na podstawie tabeli z kodami paskowymi rezystorów określ rezystancję rezystora oznaczonego paskami w kolejności: pomarańczowy, niebieski, czarny.

kolor1. cyfra2. cyframnożnik
czarny00100
brązowy11101
czerwony22102
pomarańczowy33103
żółty44104
zielony55105
niebieski66106
fioletowy77107
szary88108
biały99109
A. 36 000 Ω
B. 360 Ω
C. 3600 Ω
D. 36 Ω
Wyniki, które wskazują na wartości takie jak 3600 Ω, 360 Ω czy 36 000 Ω, opierają się na błędnej interpretacji kodów kolorów rezystora. Kluczowym błędem jest zrozumienie, że każdy kolor na rezystorze ma przypisaną konkretną cyfrę, a także, że ostatni pasek odnosi się do mnożnika. Odpowiedzi wskazujące na 3600 Ω oraz 36 000 Ω sugerują, że za wartość rezystancji przyjęto niepoprawne wartości cyfr. W przypadku 3600 Ω, można zauważyć, że ktoś mógł pomylić kolor pomarańczowy z kolorem czerwonym, który oznaczałby 2 jako cyfrę, w efekcie uzyskując błędną wartość. Z kolei 360 Ω to wynik, który mógłby być mylnie obliczany, gdyby założono, że czarny pasek oznacza mnożnik 1. W rzeczywistości jednak czarny pasek wskazuje, że nie ma mnożnika, co obniża wartość do 36 Ω. W praktyce, zrozumienie tego systemu kodów jest niezmiernie ważne, ponieważ niewłaściwa wartość rezystora może prowadzić do nieprawidłowego działania obwodów, a w konsekwencji do uszkodzenia komponentów. Dlatego kluczowe jest dokładne zapoznanie się z normami i wytycznymi, które regulują oznaczanie wartości rezystorów, aby uniknąć takich pomyłek w przyszłości.

Pytanie 39

W wyniku kontaktu dłoni pracownika ze strumieniem wysoko sprężonego dwutlenku węgla doszło do odmrożenia drugiego stopnia (zaczerwienienie dłoni, pojawienie się pęcherzy). Jakie czynności należy podjąć udzielając pierwszej pomocy?

A. podać środki przeciwbólowe i przetransportować poszkodowanego do szpitala
B. smarować odmrożone miejsce tłustym kremem i przewieźć pracownika do domu
C. usunąć z palców poszkodowanego biżuterię, ogrzać dłoń i zastosować jałowy opatrunek
D. oblać dłoń wodą utlenioną i nałożyć opatrunek
Odpowiedź ta jest prawidłowa, ponieważ w przypadku odmrożenia drugiego stopnia kluczowe jest odpowiednie postępowanie mające na celu minimalizację uszkodzeń tkanek oraz wsparcie w procesie ich regeneracji. Zdjęcie biżuterii z palców poszkodowanego jest istotne, aby uniknąć dodatkowego ucisku na obrzęknięte obszary. Rozgrzewanie dłoni powinno odbywać się w sposób kontrolowany, najlepiej poprzez zastosowanie ciepłej wody (nie gorącej) oraz unikanie bezpośrednich źródeł ciepła, które mogą spowodować dalsze uszkodzenia tkanek. Nałożenie jałowego opatrunku ma na celu ochronę uszkodzonej skóry przed zakażeniem oraz wspieranie procesu gojenia. W przypadku odmrożeń istotne jest również monitorowanie stanu poszkodowanego i przekazanie mu informacji o konieczności wizyty u specjalisty, jeśli objawy się nasilają. W przypadku zastosowania tej procedury można skutecznie pomóc w przywróceniu prawidłowego funkcjonowania dłoni.

Pytanie 40

Czym charakteryzuje się filtr dolnoprzepustowy?

A. wzmacnia sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
B. przepuszcza sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
C. przepuszcza sygnały sinusoidalne o częstotliwości wyższej od częstotliwości granicznej
D. tłumi sygnały sinusoidalne o częstotliwości niższej od częstotliwości granicznej
Wiele osób myli funkcję filtrów dolnoprzepustowych, co prowadzi do błędnych wniosków. W przypadku pierwszej odpowiedzi, wskazanie, że filtr dolnoprzepustowy przepuszcza sygnały o częstotliwości większej od granicznej jest sprzeczne z definicją jego działania. Filtr dolnoprzepustowy ma na celu eliminację tych wyższych częstotliwości, a nie ich przepuszczanie. W praktyce, może to prowadzić do poważnych problemów w projektowaniu układów elektronicznych, gdzie konieczne jest zachowanie jakości sygnału. Z kolei odpowiedź mówiąca o wzmacnianiu sygnałów o częstotliwości mniejszej od granicznej jest również myląca. Filtry dolnoprzepustowe nie wzmacniają sygnałów, lecz je tłumią lub przepuszczają w zależności od ich częstotliwości. W realnych zastosowaniach, takie nieporozumienia mogą prowadzić do błędnych decyzji w konstrukcji układów, które nie będą działały zgodnie z zamierzeniem. Zrozumienie pracy filtrów dolnoprzepustowych jest kluczowe w inżynierii sygnałowej, gdzie efektywność filtracji wpływa na jakość końcowego sygnału oraz zgodność z normami branżowymi. Typowe błędy myślowe, takie jak mylenie funkcji wzmacniania z przepuszczaniem, mogą prowadzić do poważnych usterek w projektach elektronicznych, a także do obniżenia jakości usług w systemach komunikacyjnych.