Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 7 sierpnia 2025 20:54
  • Data zakończenia: 7 sierpnia 2025 21:10

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

Zawarte w tabeli dane techniczne dotyczą czujki

Typ czujkiNC
Dwa tory detekcjiPIR+MW
Wymiary obudowy65 x 138 x 58 mm
Zakres temperatur pracy-40°C...+55°C
Zalecana wysokość montażu2,4 m
Maksymalny pobór prądu20 mA
Zasięg działania15 m
A. akustycznej.
B. ruchu.
C. czadu.
D. zalania.
Czujki ruchu są kluczowymi elementami nowoczesnych systemów zabezpieczeń, a ich działanie opiera się na technologii detekcji PIR (pasywnej podczerwieni) oraz MW (mikrofali). W przedstawionej tabeli, informacja o "dwóch torach detekcji PIR+MW" jasno wskazuje, że czujka jest zaprojektowana do wykrywania ruchu. Technologia PIR jest odpowiedzialna za detekcję zmian w promieniowaniu podczerwonym, co jest skuteczne w monitorowaniu obiektów emitujących ciepło, takich jak ludzie. Z kolei technologia mikrofalowa pozwala na wykrywanie ruchu w większym zakresie, co zwiększa niezawodność czujnika. Praktyczne zastosowanie czujek ruchu znajduje się w systemach alarmowych, automatyce budynkowej oraz inteligentnych domach, gdzie mogą służyć do automatycznego włączenia oświetlenia lub alarmu, gdy wykryją obecność. Zastosowanie takich czujników jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i komfortu użytkowania, co czyni je niezbędnymi w nowoczesnych instalacjach.

Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Aby wymienić uszkodzony rezystor, należy

A. zmierzyć jego rezystancję
B. odczytać wartość jego rezystancji z dokumentacji lub schematu
C. przygotować rezystor o tych samych wymiarach
D. przygotować rezystor o rezystancji o 50% mniejszej
Aby prawidłowo wymienić uszkodzony rezystor, kluczowym krokiem jest odczytanie wartości jego rezystancji ze schematu lub dokumentacji. Taki dokument zawiera szczegółowe informacje na temat wszystkich komponentów elektronicznych w danym układzie, w tym ich specyfikacji, takich jak wartość rezystancji, tolerancja oraz moc znamionowa. Stosując się do schematu, możemy uniknąć zastosowania niewłaściwego rezystora, co mogłoby doprowadzić do dalszych uszkodzeń w układzie. W praktyce, rezystory są często klasyfikowane według standardowych kodów kolorów, które również mogą być wykorzystane do szybkiej identyfikacji ich wartości. Warto także pamiętać, że zastosowanie rezystora o nieodpowiedniej rezystancji może wpłynąć na działanie całego obwodu, prowadząc do nieprawidłowego funkcjonowania urządzenia. Dlatego precyzyjne odczytywanie dokumentacji i schematów jest częścią dobrych praktyk w elektronice, która zapewnia niezawodność i bezpieczeństwo systemów elektronicznych.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Który z wymienionych scalonych stabilizatorów napięcia powinien być użyty do zasilania systemów zaprojektowanych w technologii TTL?

A. LM7908
B. LM7915
C. LM7812
D. LM7805
Wybór innych stabilizatorów napięcia, takich jak LM7908, LM7812 czy LM7915, na pewno prowadzi do niewłaściwego zasilania układów TTL, z racji ich nieodpowiednich parametrów. LM7908 jest stabilizatorem, który dostarcza napięcie ujemne (-8V), co jest niezgodne z wymaganiami układów TTL, które wykorzystywane są w obwodach zasilanych dodatnim napięciem. Z kolei LM7812 stabilizuje napięcie na poziomie 12V, co również przekracza wymagane napięcie zasilania dla TTL, mogąc prowadzić do uszkodzenia układów. Natomiast LM7915, podobnie jak LM7908, dostarcza napięcie ujemne (-15V). Użycie tych stabilizatorów mogłoby skutkować nie tylko uszkodzeniem układów, ale także nieprawidłowym działaniem całego systemu. Te błędne koncepcje często wynikają z braku zrozumienia podstawowych zasad działania układów scalonych oraz ich wymagań dotyczących zasilania. W praktyce, stosowanie stabilizatorów o napięciu innym niż 5V dla TTL jest nieopłacalne i stwarza ryzyko, które można łatwo uniknąć, przestrzegając standardów projektowania obwodów elektronicznych. Zrozumienie parametrów komponentów oraz ich zastosowań w kontekście całego systemu to klucz do uniknięcia takich błędów.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

W dokumentacji serwisowej kamery znajduje się informacja: "kamerę zasilać napięciem stałym U = 12 V /15 W". Który zasilacz pozwoli na jednoczesne działanie czterech takich kamer?

A. 12 V DC/ 4 A
B. 12 V AC/ 6 A
C. 12 V DC/ 6 A
D. 12 V AC/ 4 A
Zasilacz 12 V DC/ 6 A jest odpowiedni, ponieważ kamera wymaga napięcia 12 V i mocy 15 W. Aby obliczyć, ile prądu potrzebuje jedna kamera, można użyć wzoru: moc (W) = napięcie (V) x prąd (A). Przekształcając wzór, otrzymujemy prąd = moc / napięcie, co daje 15 W / 12 V = 1,25 A na kamerę. W przypadku czterech kamer, potrzebujemy 4 x 1,25 A = 5 A. Zasilacz 12 V DC/ 6 A dostarcza wystarczającą moc, ponieważ jego wydajność przewyższa wymogi energetyczne kamer. Dobrą praktyką jest zawsze wybierać zasilacz o nieco większej wydajności, aby zapewnić stabilną pracę urządzeń. Takie zasilacze są powszechnie stosowane w systemach monitoringu, gdzie wiele urządzeń wymaga zasilania z jednego źródła. Wybór odpowiedniego zasilacza jest kluczowy dla niezawodności i bezpieczeństwa systemu.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

Aby dokonać naprawy przetwornicy zasilającej w telewizorze, należy wykorzystać instrukcję

A. użytkownika
B. serwisową
C. programowania
D. instalacji
Poprawna odpowiedź to instrukcja serwisowa, ponieważ zawiera szczegółowe informacje dotyczące diagnostyki, naprawy oraz konserwacji urządzeń elektronicznych, w tym przetwornic zasilających w telewizorach. Instrukcje serwisowe są dostosowane do konkretnych modeli urządzeń i zazwyczaj zawierają schematy blokowe, opisy komponentów oraz procedury testowe. Przykładem zastosowania takiej instrukcji jest identyfikacja uszkodzonych elementów, takich jak kondensatory czy tranzystory, które mogą wpływać na funkcjonalność przetwornicy. Warto również zwrócić uwagę na dobre praktyki branżowe, takie jak korzystanie z oryginalnych części zamiennych oraz stosowanie odpowiednich narzędzi podczas naprawy, co zapewnia długotrwałą i bezpieczną eksploatację urządzenia. Ponadto, instrukcje serwisowe często zawierają informacje o wymaganiach dotyczących bezpieczeństwa, co jest kluczowe podczas pracy z urządzeniami elektrycznymi. Dlatego zawsze warto mieć tę dokumentację pod ręką podczas przeprowadzania napraw.

Pytanie 22

W urządzeniu elektronicznym uszkodzeniu uległ warystor MYG 10K-431 o napięciu znamionowym 275 V AC, 350 V DC, energii tłumienia 55 J/2 ms i rastrze 7,5 mm. Wykorzystując tabelę zamienników wskaż oznaczenie warystora, który można zastosować w zamian za uszkodzony?

Tabela zamienników
Oznaczenie warystoraNapięcie znamionoweEnergia tłumieniaRaster
TSV07D471300 V AC
375 V DC
40 J/2 ms5 mm
JVR07N431K275 V AC
350 V DC
33 J/2 ms5 mm
JVR14N431K275 V AC
350 V DC
132 J/2 ms7,5 mm
B72210S0301K101300 V AC
385 V DC
47 J/2 ms7,5 mm
A. B72210S0301K101
B. JVRO7N431K
C. JVR14N431K
D. TSV07D471
Wybór nieodpowiednich zamienników, takich jak JVRO7N431K, TSV07D471 czy B72210S0301K101, może prowadzić do poważnych problemów w funkcjonowaniu układów elektronicznych. Warystor JVRO7N431K, mimo że zbliżony do oryginalnego, ma inne napięcie znamionowe, co może skutkować jego niewłaściwym działaniem w obwodzie. W przypadku podania zbyt niskiego napięcia, warystor nie będzie w stanie skutecznie chronić układu przed przepięciami, co naraża inne komponenty na uszkodzenia. Z kolei TSV07D471, posiadający inne parametry, także nie spełnia wymaganych norm. Niewłaściwy dobór komponentów często wynika z błędnego zrozumienia ich oznaczeń oraz parametrów. W przypadku B72210S0301K101, różnice w energii tłumienia stanowią istotny problem, ponieważ zbyt niska wartość może prowadzić do niewystarczającej ochrony przed przepięciami. W praktyce zastosowanie komponentów, które nie są zgodne z wymaganiami technicznymi, może prowadzić do zwiększonego ryzyka awarii lub nawet pożaru w skrajnych przypadkach. Dlatego tak ważne jest przestrzeganie norm oraz dobrych praktyk w doborze zamienników. W każdym przypadku należy dokładnie analizować i porównywać parametry, aby zapewnić nieprzerwaną funkcjonalność oraz bezpieczeństwo układów elektronicznych.

Pytanie 23

W trakcie serwisowania instalacji antenowej zauważono błąd popełniony przez instalatora. Zamiast właściwego przewodu o impedancji falowej 75 Ω, podłączono przewód o impedancji falowej 300 Ω. W efekcie tego błędu sygnał, który docierał do odbiornika,

A. był stłumiony
B. był wzmocniony
C. nie uległ zmianie
D. był równy 0
Odpowiedź, że sygnał był stłumiony, jest prawidłowa, ponieważ różnica w impedancji falowej pomiędzy przewodem o impedancji 75 Ω a przewodem o impedancji 300 Ω powoduje poważne straty sygnału. W przypadku, gdy impedancja źródła i obciążenia nie jest zgodna, część sygnału jest odbijana na złączu, co prowadzi do zmniejszenia jego amplitudy. Praktycznie oznacza to, że efektywność transmisji sygnału jest znacznie obniżona. W przypadku instalacji antenowych, stosowanie przewodów o właściwej impedancji jest kluczowe dla zapewnienia optymalnej jakości odbioru sygnału. Zgodnie z normami branżowymi, takie jak IEC 61169, zachowanie odpowiednich wartości impedancji jest kluczowe dla minimalizacji strat transmisyjnych. Zastosowanie przewodów o nieodpowiedniej impedancji, jak w tym przypadku, często skutkuje stłumieniem sygnału, co może prowadzić do problemów z jakością odbioru, takich jak zniekształcenia czy zrywanie sygnału. Dlatego w praktyce zawsze należy upewnić się, że używane komponenty w instalacjach są zgodne z wymaganiami technicznymi.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

Temperatura złącza diody osiąga 80 °C przy mocy strat wynoszącej 100 mW, a temperatura otoczenia wynosi 20 °C. Jaką całkowitą rezystancję termiczną ma ta dioda od złącza przez obudowę do otoczenia?

A. 1 000 K/W
B. 800 K/W
C. 200 K/W
D. 600 K/W
Wybór niewłaściwej odpowiedzi może wynikać z nieporozumienia dotyczącego pojęcia rezystancji termicznej oraz błędnych obliczeń. Wiele osób może mylnie zakładać, że rezystancja termiczna jest bezpośrednio proporcjonalna do mocy strat, co prowadzi do nadinterpretacji obliczeń. Na przykład, odpowiedzi takie jak 800 K/W czy 1000 K/W mogą być wynikiem pomyłki przy odczycie różnicy temperatur lub nieprawidłowego zamiany jednostek, co jest częstym błędem w analizie termicznej. Ponadto, wybierając 200 K/W, można pomyśleć o błędnym założeniu zbyt niskiej rezystancji, co nie odpowiada rzeczywistym warunkom pracy diody. Ważne jest, aby zrozumieć, że rezystancja termiczna jest miarą zdolności do odprowadzania ciepła – im wyższa moc strat w porównaniu z różnicą temperatur, tym wyższa rezystancja. Kluczowe jest również zrozumienie standardów branżowych dotyczących zarządzania ciepłem w komponentach elektronicznych, które podkreślają znaczenie dokładnych obliczeń w celu zapewnienia optymalnej wydajności i niezawodności urządzeń. Warto również zwrócić uwagę na praktyczne aspekty, takie jak dobór odpowiednich materiałów i technik chłodzenia, które są kluczowe dla efektywnego działania diody w rzeczywistych aplikacjach.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

Która z technologii stosuje światło podczerwone do przesyłania danych?

A. IRDA
B. ZIGBEE
C. BLUETOOTH
D. WIMAX
IRDA, czyli Infrared Data Association, to taki fajny standard do komunikacji bezprzewodowej. Działa na zasadzie światła podczerwonego i jest wykorzystywany do przesyłania danych na krótkich dystansach. Sporo urządzeń korzysta z tej technologii, jak telefony, laptopy czy różne drukarki i skanery. Działa to tak, że urządzenia muszą być blisko siebie, zazwyczaj w odległości maksymalnie 1 metra, a nawet można przesyłać dane z prędkością do 4 Mbps. Przykładowo, można łatwo przesłać kontakty między telefonami, nawet bez kabli. IRDA jest też oszczędna pod względem energii, co czyni ją idealną dla urządzeń na baterie. Dzięki temu standardowi różne urządzenia od różnych producentów mogą ze sobą współpracować, co jest naprawdę ważne w dzisiejszym świecie komunikacji bezprzewodowej.

Pytanie 29

Obniżenie stałej czasowej T w regulatorze PI skutkuje

A. podwyższeniem przeregulowania oraz wydłużeniem czasu regulacji
B. podwyższeniem przeregulowania oraz obniżeniem czasu regulacji
C. obniżeniem przeregulowania oraz obniżeniem czasu regulacji
D. obniżeniem przeregulowania oraz wydłużeniem czasu regulacji
Błędne podejścia wskazują na nieporozumienia dotyczące wpływu stałej czasowej T na zachowanie regulatora PI. Przede wszystkim, zrozumienie roli stałej czasowej w kontekście regulatorów PI jest kluczowe. W sytuacji, gdy stała czasowa jest zwiększana, wiele osób może myśleć, że przeregulowanie maleje, co jest błędnym wnioskiem. W rzeczywistości, wydłużenie stałej czasowej T prowadzi do wolniejszej reakcji regulatora na zmiany sygnału wejściowego, co skutkuje dłuższym czasem regulacji oraz większym ryzykiem przeregulowania, gdyż system nie jest w stanie szybko dostosować się do nowej wartości zadanej. Takie podejście może prowadzić do sytuacji, w których na przykład w instalacjach przemysłowych zachodzi opóźnienie w odpowiedzi na zmiany, co z kolei może negatywnie wpływać na efektywność całego procesu produkcyjnego. W praktyce, aby zminimalizować przeregulowanie, inżynierowie często optymalizują wartości stałych czasowych, stosując techniki takie jak Ziegler-Nichols, które pozwalają na określenie optymalnych parametrów dla regulatora PI. Dlatego ważne jest, aby w analizie systemów automatyki unikać mylnych interpretacji związanych z wpływem stałej czasowej, które mogą prowadzić do błędnych decyzji projektowych i operacyjnych.

Pytanie 30

Standard umożliwiający bezprzewodową, optyczną transmisję danych zawiera interfejs

A. Bluetooth
B. WiFi
C. IrDa
D. LoRa
IrDa, czyli Infrared Data Association, to standard, który rzeczywiście zapewnia bezprzewodową, optyczną transmisję danych. W przeciwieństwie do innych standardów, takich jak Bluetooth, WiFi czy LoRa, które operują na falach radiowych, IrDa korzysta z podczerwieni do przesyłania informacji. Technologia ta była szeroko stosowana w urządzeniach, takich jak telefony komórkowe, laptopy czy drukarki, zwłaszcza w latach 90. i na początku 2000. Zastosowanie IrDa wymaga bezpośredniego widzenia między urządzeniami, co oznacza, że odległość i kąt widzenia mają kluczowe znaczenie dla jakości połączenia. Chociaż obecnie technologia ta jest mniej popularna na rzecz bardziej uniwersalnych standardów, takich jak Bluetooth, jej zalety obejmują niskie zużycie energii oraz bezpieczeństwo, ponieważ sygnał podczerwieni jest trudniejszy do przechwycenia niż fale radiowe. Warto także zauważyć, że IrDa był jednym z pierwszych standardów umożliwiających wymianę danych między urządzeniami bez użycia kabli, co miało ogromny wpływ na rozwój technologii mobilnych.

Pytanie 31

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 32

Ile wejść adresowych posiada multiplekser 8-wejściowy?

A. 4 wejścia adresowe
B. 3 wejścia adresowe
C. 5 wejść adresowych
D. 2 wejścia adresowe
Odpowiedzi sugerujące 2, 4 lub 5 wejść adresowych są błędne, ponieważ nie uwzględniają właściwości binarnych systemu adresowania w kontekście multiplekserów. Multiplekser 8-wejściowy z definicji musi mieć możliwość wyboru spośród ośmiu różnych sygnałów. Aby to osiągnąć, przeprowadzamy analizę binarną, która wskazuje, że potrzebujemy 3 bity adresowe. Dla 2 wejść adresowych moglibyśmy zarządzać tylko 4 sygnałami (2^2), co w pełni nie wykorzystałoby możliwości multipleksera przeznaczonego na 8 sygnałów. Odpowiedź mówiąca o 4 wejściach adresowych sugeruje, że moglibyśmy zarządzać 16 sygnałami (2^4), co również jest niepoprawne, gdyż w przypadku multipleksera 8-wejściowego nie ma możliwości ich dodatkowego rozszerzenia. Wybór 5 wejść adresowych również prowadzi do nadmiaru, ponieważ daje to 32 możliwe sygnały, co znacznie przekracza liczbę 8. Kluczowym błędem myślowym jest tutaj nieuwzględnienie podstawowych zasad logiki binarnej i zrozumienia zadania multipleksera. W praktycznych zastosowaniach w inżynierii elektronicznej, projektanci muszą starannie dobierać liczbę adresów do liczby sygnałów, co jest kluczowe w zapewnieniu optymalnej wydajności systemu. W kontekście standardów przemysłowych, niewłaściwe przypisanie adresów może prowadzić do nieefektywności w przesyłaniu danych oraz zwiększonego ryzyka błędów w komunikacji.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.