Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 18 lipca 2025 19:39
  • Data zakończenia: 18 lipca 2025 19:52

Egzamin zdany!

Wynik: 26/40 punktów (65,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Przyczyną uszkodzenia regulatora jest błąd w obwodzie czujnika temperatury odniesienia. Kod błędu to

Nr błęduPrzyczynaŚrodek zaradczy
ErANiespełnione warunki samonastrajaniaNaciśnij dowolny przycisk. Sprawdź czy wartość mierzona jest mniejsza o 20% od wartości zadanej i czy nie zmienia się więcej niż 1% na minutę.
Er1Zwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er2Rozwarcie czujnikaSprawdź i popraw podłączenie czujnika.
Er3Błąd w obwodzie termoelementu - czujnika temperatury odniesieniaSprawdź i ewentualnie wymień czujnik.
A. Er1
B. Er2
C. Er3
D. ErA
Odpowiedź 'Er3' jest poprawna, gdyż zgodnie z dokumentacją techniczno-ruchową regulatora, kod 'Er3' wskazuje na błąd w obwodzie termoelementu, który jest odpowiedzialny za pomiar temperatury odniesienia. W praktyce, błędy w obwodzie czujnika temperatury mogą prowadzić do nieprawidłowych pomiarów, co z kolei może skutkować niewłaściwym funkcjonowaniem całego systemu automatyki. Zarówno w przemyśle, jak i w aplikacjach domowych, prawidłowy pomiar temperatury jest kluczowy dla zapewnienia efektywności energetycznej i bezpieczeństwa. Należy regularnie sprawdzać stan czujników oraz dokonywać ich kalibracji, aby unikać sytuacji, w których błędne odczyty mogą prowadzić do awarii sprzętu lub zagrożeń dla użytkowników. Zgodnie z dobrą praktyką, warto również wdrożyć procedury monitorowania i diagnostyki systemów, co pozwala na wczesne wykrycie potencjalnych usterek.

Pytanie 2

Pracownik upadł na twardą nawierzchnię z wysokości 4 metrów i doznał drobnego urazu głowy, jednak jest przytomny i odczuwa mrowienie w kończynach. Co należy zrobić w pierwszej kolejności?

A. posadzić poszkodowanego na krześle i opatrzyć ranę głowy
B. pozostawić poszkodowanego w pozycji leżącej i wezwać pomoc
C. przenieść poszkodowanego w bezpieczne miejsce i wezwać pomoc
D. podnieść poszkodowanego i opatrzyć ranę głowy
W sytuacji, gdy pracownik doznał urazu po upadku z wysokości, kluczowe jest zapewnienie mu bezpieczeństwa oraz niedopuszczenie do pogorszenia jego stanu. Pozostawienie poszkodowanego w pozycji leżącej minimalizuje ryzyko poważniejszych obrażeń, takich jak uraz kręgosłupa czy wstrząs mózgu. W takiej pozycji można również monitorować jego stan oraz ułatwić dostęp do oddechu, co jest istotne w przypadku potencjalnych problemów z oddychaniem. Natychmiastowe wezwanie pomocy medycznej jest niezbędne, ponieważ tylko wykwalifikowany personel medyczny może przeprowadzić szczegółową ocenę stanu poszkodowanego oraz zapewnić odpowiednie leczenie. Dobre praktyki w zakresie pierwszej pomocy podkreślają, że nie należy przemieszczać poszkodowanego, chyba że grozi mu bezpośrednie niebezpieczeństwo, takie jak pożar czy wybuch. Na przykład, w przypadku urazów głowy, stabilizacja kręgosłupa jest absolutnie priorytetowa. Zastosowanie standardów pierwszej pomocy, takich jak ABC (Airway, Breathing, Circulation), pozwala na efektywne zarządzanie sytuacją, zapewniając bezpieczeństwo i komfort poszkodowanego do czasu przybycia służb medycznych.

Pytanie 3

Czy panewka stanowi część składową?

A. łożyska kulkowego
B. zaworu pneumatycznego
C. sprzęgła sztywnego tulejowego
D. łożyska ślizgowego
Wybór łożyska kulkowego, zaworu pneumatycznego lub sprzęgła sztywnego tulejowego jako elementów składowych panewki jest niepoprawny i wynika z nieporozumień dotyczących funkcji i konstrukcji tych komponentów. Łożyska kulkowe, bazujące na kulkach jako elementach tocznych, działają na zasadzie redukcji tarcia dzięki rozdzieleniu powierzchni kontaktowych, co różni się od funkcji panewki w łożyskach ślizgowych, które polegają na bezpośrednim kontakcie między powierzchniami, ale przy zastosowaniu odpowiednich materiałów redukujących tarcie. Zawory pneumatyczne to zupełnie inna kategoria podzespołów, które służą do kontrolowania przepływu powietrza w systemach pneumatycznych, co nie ma związku z funkcją panewki. Sprzęgła sztywne, z kolei, są używane do łączenia wałów w taki sposób, że nie absorbują drgań, co również nie dotyczy panewki, która ma na celu umożliwienie ruchu wału w sposób kontrolowany. Te nieprawidłowe odpowiedzi pokazują typowe błędy myślowe wynikające z braku zrozumienia podstawowych zasad działania mechanizmów w maszynach oraz specyfiki poszczególnych komponentów. Kluczowe jest zrozumienie, że każdy element ma swoją unikalną funkcję i zastosowanie, a ich zrozumienie jest fundamentem inżynierii mechanicznej. W branży inżynieryjnej a także w codziennej praktyce technicznej, znajomość charakterystyki i zastosowania poszczególnych elementów jest niezbędna do prawidłowego projektowania i eksploatacji maszyn.

Pytanie 4

Napięcie wyjściowe zasilacza zasilającego sterownik PLC zainstalowany w urządzeniu mechatronicznym, zgodnie z parametrami przedstawionymi w tabeli, może wynosić

Parametry techniczne sterownika
Normy i przepisyIEC 61131-2
Typ produktuSterownik kompaktowy
Liczba wejść dyskretnych6
Napięcie wejść dyskretnych24 V DC
Liczba wyjść dyskretnych4 przekaźnikowe
Typ wyjśćprzekaźnikowe
Sygnalizacja stanówLED
Napięcie zasilania24 V DC
Dopuszczalny zakres napięcia zasilania21,2÷28,8 V DC
Tętnienia<5%
A. 20 V DC
B. 30 V DC
C. 25 V DC
D. 15 V DC
Odpowiedź 25 V DC jest zgodna z parametrami napięcia zasilania sterownika PLC, które wynosi od 21,2 V DC do 28,8 V DC. Wybierając napięcie w tym zakresie, zapewniamy stabilną pracę urządzenia mechatronicznego, co jest kluczowe dla prawidłowego działania systemów automatyki. Przykładowo, w systemach przemysłowych będziemy mieli do czynienia z zasilaczami, które dostarczają napięcia 24 V DC, co jest standardem w wielu aplikacjach. Wybór 25 V DC nie tylko mieści się w zalecanym zakresie, ale także minimalizuje ryzyko uszkodzeń komponentów elektronicznych, które mogą wystąpić przy zasilaniu napięciem poza określonym zakresem. W praktyce, stosowanie napięcia zasilania zgodnego z dokumentacją techniczną zapewnia dłuższą żywotność urządzeń oraz ich niezawodność w działaniu. W przypadku stosowania zasilaczy, ważne jest również, aby były one zgodne z normami bezpieczeństwa i zapewniały odpowiednie zabezpieczenia przeciwprzepięciowe.

Pytanie 5

Znamionowe napięcie międzyfazowe uzwojenia stojana silnika asynchronicznego, trójfazowego, o danych znamionowych podanych w tabelce jest równe

Δ400V5,9A
2,5kWS1cosφ = 0,8
1425obr/min50Hz
Y240V6,6A
Izol. – Kl.B/FIP3335kg
A. 240 V
B. 400 V
C. 230 V
D. 380V
Poprawna odpowiedź to 400 V, co jest zgodne z danymi podanymi na tabliczce znamionowej silnika asynchronicznego. Znamionowe napięcie międzyfazowe dla silników trójfazowych standardowo wynosi 400 V w układzie Δ (delta). To napięcie jest kluczowe przy projektowaniu i użytkowaniu instalacji elektrycznych, ponieważ określa, jakie napięcie będzie występować pomiędzy poszczególnymi fazami. Znajomość tych wartości jest niezbędna dla inżynierów i techników zajmujących się instalacjami oraz konserwacją urządzeń elektrycznych. W praktyce, przy podłączeniu silnika do zasilania, napięcie międzyfazowe musi być zgodne z jego znamionowym napięciem, aby zapewnić prawidłowe działanie i wydajność silnika. Ponadto, znajomość tego napięcia jest istotna przy dobieraniu odpowiednich zabezpieczeń oraz urządzeń kontrolnych, co wpływa na bezpieczeństwo i efektywność systemu.

Pytanie 6

W trakcie pracy z urządzeniem hydraulicznym pracownik poślizgnął się na plamie oleju i doznał zwichnięcia kostki. Jakie czynności należy podjąć, aby udzielić pierwszej pomocy poszkodowanemu?

A. Podać leki przeciwbólowe
B. Zabandażować kostkę i przewieźć pacjenta do lekarza
C. Przyłożyć zimny okład na zwichnięty staw i unieruchomić go
D. Nastawić staw i zabandażować kostkę
Jak masz zwichnięty staw, to schłodzenie go zimnym okładem i unieruchomienie to naprawdę istotne kroki. Zimny okład zmniejsza obrzęk i ból, co jest zgodne z zasadami pierwszej pomocy, które mówią, że lód trzeba stosować w ciągu pierwszych 48 godzin po kontuzji. Zimno powoduje, że naczynia krwionośne się kurczą, przez co przepływ krwi do uszkodzonego miejsca jest mniejszy, a to znaczy, że obrzęk się nie powiększa. Unieruchomienie stawu to też ważna sprawa, bo pomaga zapobiec dalszym uszkodzeniom i stabilizuje kontuzjowany obszar, co zmniejsza ból. W praktyce powinieneś użyć elastycznego bandaża, żeby dobrze zabezpieczyć kostkę, bo to standard w takich sytuacjach. Nie zapomnij też monitorować stanu poszkodowanego i jeśli coś jest nie tak, to skontaktować się z lekarzem. Dobra pierwsza pomoc opiera się na wytycznych organizacji zajmujących się zdrowiem, więc możesz zwiększyć szansę na szybki powrót do zdrowia.

Pytanie 7

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika prądu stałego o napięciu 400 V
B. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
C. Silnika jednofazowego o napięciu 230 V
D. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
Odpowiedzi wskazujące na inne urządzenia, takie jak silnik jednofazowy o napięciu 230 V, transformator trójfazowy o napięciu górnym 400 V, czy silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V skojarzonego w Δ, sugerują pewne nieporozumienia dotyczące zasilania elektrycznego i charakterystyki tych urządzeń. Silnik jednofazowy o napięciu 230 V nie może być podłączony do systemu 400 V bez zastosowania transformatora obniżającego napięcie, ponieważ może to prowadzić do uszkodzenia silnika. Transformator trójfazowy, mimo że może być zasilany napięciem 400 V, wymaga poprawnego doboru napięcia, a jego skojarzenie Dy5 oznacza, że napięcie międzyfazowe wynosi 400 V, co czyni go odpowiednim do pracy w tym systemie. Silnik trójfazowy klatkowy o napięciu międzyfazowym 400 V jest zaprojektowany do pracy w systemach trójfazowych i bywa używany w wielu aplikacjach przemysłowych. Niezrozumienie tych podstawowych zasad zasilania prowadzi często do niebezpiecznych sytuacji w praktyce, takich jak niewłaściwe podłączenie urządzeń do źródeł energii, co może skutkować zarówno uszkodzeniem sprzętu, jak i zagrożeniem dla bezpieczeństwa operatorów. Każde urządzenie powinno być zasilane zgodnie z jego specyfikacją techniczną oraz odpowiednimi normami, aby uniknąć problemów eksploatacyjnych.

Pytanie 8

Silnik komutatorowy był narażony na długotrwałe przeciążenie, co doprowadziło do pojawienia się zwarć międzyzwojowych. Proces naprawy silnika polega na wymianie

A. komutatora.
B. uzwojenia.
C. łożysk.
D. szczotek.
Odpowiedzi takie jak wymiana łożysk, komutatora czy szczotek mogą wydawać się logiczne, jednak nie rozwiązują problemu zwarć międzyzwojowych. Łożyska, choć istotne dla prawidłowego funkcjonowania silnika, dotyczą przede wszystkim mechanicznego aspektu pracy silnika. Ich wymiana nie wpłynie na problemy elektryczne wynikające z uszkodzenia uzwojenia. Komutator w silniku komutatorowym odpowiada za przełączanie prądu w uzwojeniu wirnika, jednak jego wymiana nie eliminuje problemów z samym uzwojeniem, które są źródłem zwarć. W przypadku szczotek, ich rola polega na przewodzeniu prądu do komutatora, ale uszkodzenie uzwojenia wymaga bardziej kompleksowego podejścia, które nie ogranicza się do wymiany elementów pośrednich. Typowym błędem myślowym jest niepełna diagnoza usterki, co prowadzi do nieefektywnych napraw. Należy zrozumieć, że każdy z tych elementów ma swoją specyfikę oraz funkcję, a ich wymiana nie usuwa przyczyny problemu. Aby skutecznie naprawić silnik, konieczne jest skupienie się na rdzeniu problemu, a więc na uzwojeniu, które jest kluczowe dla jego właściwego działania. W praktyce, zignorowanie tego aspektu może prowadzić do powtarzających się awarii i większych kosztów eksploatacji.

Pytanie 9

Przed przystąpieniem do wymiany zaworu elektropneumatycznego, który jest sterowany przez PLC, należy zająć się zasilaniem pneumatycznym.

A. dezaktywować zasilanie pneumatyczne, odłączyć przewody od cewki elektrozaworu i przewody
B. wprowadzić sterownik PLC w tryb STOP, odłączyć zasilanie elektryczne oraz pneumatyczne układu
C. odłączyć przewody zasilające sterownik oraz przewody pneumatyczne od elektrozaworu
D. wyłączyć dopływ sprężonego powietrza, odłączyć siłownik oraz wyłączyć PLC
Poprawna odpowiedź wskazuje na kluczowe etapy przygotowania do wymiany zaworu elektropneumatycznego, który jest zintegrowany z systemem sterowania PLC. Wprowadzenie sterownika PLC w tryb STOP jest niezbędne, aby zapobiec niekontrolowanemu działaniu systemu podczas przeprowadzania prac serwisowych. Wyłączenie zasilania elektrycznego oraz pneumatycznego całego układu eliminuje ryzyko wystąpienia niebezpiecznych sytuacji, takich jak przypadkowe uruchomienie czy wyciek sprężonego powietrza, co mogłoby prowadzić do uszkodzeń sprzętu lub zagrożenia dla operatorów. Dobrym przykładem jest procedura serwisowa w przemyśle automatyzacyjnym, gdzie przed wymianą komponentów pneumatycznych zawsze stosuje się blokady i procedury bezpieczeństwa, zgodne z normami ISO 13849, które regulują bezpieczeństwo maszyn. Praktyczne zastosowanie tej wiedzy zwiększa bezpieczeństwo operacji oraz efektywność pracy, minimalizując ryzyko awarii i wypadków.

Pytanie 10

Co należy zrobić w pierwszej kolejności, gdy poszkodowany w wypadku jest nieprzytomny i nie wykazuje oznak oddychania?

A. wezwać pomoc i zapewnić drożność dróg oddechowych poszkodowanego
B. pozostawić poszkodowanego w aktualnej pozycji i zatelefonować po pomoc
C. przeprowadzić reanimację poszkodowanego i wezwać pomoc
D. wezwać pomoc i przeprowadzić sztuczne oddychanie
Dobrze, że wybrałeś odpowiedź, która mówi o wezwaniu pomocy i udrożnieniu dróg oddechowych. Wiesz, że w sytuacji, gdy ktoś jest nieprzytomny i nie oddycha, to właśnie drożność dróg oddechowych jest kluczowa? Zgodnie z wytycznymi ERC, najpierw powinniśmy upewnić się, że drogi oddechowe są drożne, co można zrobić na przykład metodą 'tilt-chin' albo 'jaw-thrust'. Jak już upewnimy się, że wszystko jest ok, wtedy dzwonimy po pomoc i kontynuujemy resuscytację. Przykład? Wyobraź sobie wypadek samochodowy – pierwsze co, to musimy zadbać, by poszkodowany mógł oddychać, inaczej może dojść do niedotlenienia mózgu. I pamiętaj, według aktualnych wytycznych, nie należy robić sztucznego oddychania, zanim nie udrożnimy dróg, bo inaczej powietrze nie dotrze do płuc i tylko pogorszy sytuację.

Pytanie 11

Siłownik hydrauliczny jest zasilany olejem pod ciśnieniem p = 60 barów oraz ma przepływ Q = 85 l/min. Jaka jest moc hydrauliczna, którą pobiera siłownik?

A. 51,0 kW
B. 85,0 kW
C. 8,5 kW
D. 5,1 kW
Obliczanie mocy hydraulicznej siłownika wymaga zrozumienia podstawowych wzorów oraz jednostek, co często prowadzi do błędnych interpretacji wśród osób mniej doświadczonych. Na przykład, przyjęcie mocy 5,1 kW bywa wynikiem nieprawidłowego przeliczenia ciśnienia lub natężenia przepływu. Niektórzy mogą błędnie zakładać, że ilość energii zużytej przez siłownik jest po prostu suma ciśnienia i przepływu bez uwzględnienia jednostek, co prowadzi do mylnych konkluzji. Z kolei odpowiedź 51,0 kW może wynikać z błędnego pomnożenia ciśnienia przez natężenie bez właściwej konwersji jednostek, co jest kluczowym krokiem w tego typu obliczeniach. Często w takich błędach ludzie zapominają, że moc hydrauliczna jest inna od mocy mechanicznej, co może prowadzić do nieporozumień przy projektowaniu systemów hydraulicznych. Ostatecznie, ignorując odpowiednie konwersje jednostek oraz właściwe zastosowanie wzorów, można nadmiernie ocenić moc siłownika, co skutkuje niewłaściwym doborem komponentów i potencjalnymi problemami w operacyjności systemu hydraulicznego. W związku z tym, kluczowe jest, aby inżynierowie stosowali się do odpowiednich norm i dobrych praktyk, takich jak te zawarte w normach ISO oraz normach branżowych dotyczących hydrauliki, aby uniknąć takich pułapek w obliczeniach.

Pytanie 12

Które z poniższych sformułowań oznacza rozwinięcie skrótu CAM?

A. Komputerowe przygotowanie produkcji
B. Komputerowe wspomaganie wytwarzania
C. Komputerowa kontrola jakości
D. Komputerowe wspomaganie projektowania
Wybór niepoprawnych określeń wynikł z nieporozumienia dotyczącego terminologii związanej z projektowaniem i produkcją. 'Komputerowe wspomaganie projektowania' (CAD) odnosi się do oprogramowania używanego do tworzenia i modyfikacji modeli oraz rysunków inżynieryjnych. Chociaż CAD odgrywa kluczową rolę w procesie projektowania, nie jest to skrót związany z wytwarzaniem. 'Komputerowa kontrola jakości' odnosi się do procesów związanych z zapewnieniem jakości produktów, co jest bardzo ważnym aspektem w każdym zakładzie produkcyjnym, ale nie jest bezpośrednio związane ze wspomaganiem samego procesu wytwarzania. Z kolei 'komputerowe przygotowanie produkcji' to termin, który może odnosić się do różnych działań związanych z planowaniem i organizowaniem produkcji, ale nie skupia się bezpośrednio na aspekcie produkcyjnym, który jest kluczowy w CAM. Typowym błędem myślowym jest pomieszanie funkcji projektowania oraz wytwarzania, co prowadzi do mylnego utożsamiania tych dwóch obszarów. Ważne jest, aby zrozumieć, że CAM koncentruje się na automatyzacji procesów produkcyjnych, a nie na fazie projektowania czy kontroli jakości.

Pytanie 13

Wskaż, który rodzaj siłownika można wykorzystać w układzie zasilanym sprężonym powietrzem o ciśnieniu p = 0,8 MPa, jeśli wymagana jest siła teoretyczna 50 daN oraz przemieszczenie 10 cm?

A. D32, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
B. D32, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
C. D12, pmax = 10 bar, skok standardowy: 25, 50, 80, 100,125, 160, 200
D. D25, pmax = 10 bar, skok standardowy: 16, 32, 50, 80, 125, 200
Wybór niewłaściwego siłownika, takiego jak D25, D12 czy D32 z niewłaściwym skokiem, może prowadzić do nieoptymalnych rezultatów w aplikacjach przemysłowych. Siłownik D25, mimo że posiada maksymalne ciśnienie 10 bar, może nie być w stanie wygenerować wymaganej siły teoretycznej 50 daN w kontekście zadanego przemieszczenia. W przypadku siłownika D12, jego parametry mogą być zbyt niskie dla tego zastosowania, przez co nie spełni on oczekiwań w zakresie siły i skoku. Siłownik D32 z nieodpowiednim skokiem (np. 16, 32, 50, 80, 125, 200 mm) również może nie dostarczyć wymaganego przemieszczenia 10 cm, co jest kluczowe dla efektywności operacji. Przykładowe błędy myślowe obejmują nieprzemyślane założenie, że każdy siłownik o podobnym ciśnieniu roboczym jest równoważny w aplikacji, co jest dalekie od rzeczywistości. W praktyce, parametry takie jak średnica tłoka, siła teoretyczna oraz skok mają bezpośredni wpływ na skuteczność działania układów pneumatycznych. Wybór odpowiedniego siłownika powinien być oparty na analizie wymagań konkretnej aplikacji oraz standardów branżowych, aby zapewnić optymalne działanie systemu.

Pytanie 14

Pralka automatyczna nie reaguje po naciśnięciu przycisku zasilania. Co może być przyczyną takiej sytuacji?

A. brakiem zasilania elektrycznego
B. usterką silnika pralki
C. brakiem dopływu wody do urządzenia
D. niewłaściwym zerowaniem obudowy silnika pralki
Wybór odpowiedzi dotyczącej niesprawności silnika pralki, braku dopływu wody czy nieskutecznego zerowania korpusu silnika może być mylny, ponieważ wszystkie te czynniki wymagają, aby pralka była najpierw zasilana elektrycznością. W przypadku niesprawności silnika, pralka mogłaby wykazywać inne oznaki życia, takie jak hałas czy drżenie, a nie całkowity brak reakcji. Brak dopływu wody do pralki, choć istotny dla prawidłowego funkcjonowania urządzenia, nie jest przyczyną, dla której pralka nie włącza się. W takim przypadku, pralka mogłaby zasygnalizować problem poprzez odpowiednie diody LED lub błędy na wyświetlaczu, a nie przez całkowity brak reakcji. Nieskuteczne zerowanie korpusu silnika to również mało prawdopodobna przyczyna, ponieważ zjawisko to dotyczy bardziej zaawansowanych usterek, które manifestują się w czasie pracy pralki, a nie na etapie włączania. Typowym błędem myślowym jest zatem zakładanie, że usterki mechaniczne mogą wykluczyć zasilanie elektryczne, co jest fundamentalnym błędem w diagnostyce urządzeń elektrycznych.

Pytanie 15

Ciągłe sensory oraz wzmacniacze operacyjne stanowią standardowe komponenty systemu sterowania?

A. binarnego
B. analogowego
C. cyfrowego
D. programowalnego
Odpowiedź 'analogowego' jest na pewno trafna. Sensory, które działają ciągle, jak na przykład termistory czy fotorezystory, to istotne elementy układów analogowych. One przetwarzają różne fizyczne zmiany na sygnały, które płynnie się zmieniają. Potem te sygnały są wzmacniane przez wzmacniacze operacyjne, co jest naprawdę ważne, gdy potrzebujemy precyzyjnych pomiarów. W praktyce można je znaleźć w różnych systemach automatyzacji czy pomiarowych, gdzie dokładność ma kluczowe znaczenie. Dobrze jest też pamiętać o filtrowaniu sygnałów i ich kalibracji, żeby błędy pomiarowe były jak najmniejsze. W kontekście norm, układy analogowe są projektowane zgodnie z normami IEC, co zapewnia ich niezawodność. Moim zdaniem to bardzo ważne, żeby znać te zasady, bo są podstawą w inżynierii.

Pytanie 16

Parametr określający zakres roboczy działania siłownika to

A. skok siłownika
B. maksymalne ciśnienie
C. średnica cylindra
D. teoretyczna siła pchająca
Skok siłownika jest kluczowym parametrem w określaniu obszaru roboczego działania siłownika. Definiuje on maksymalną odległość, na jaką tłok siłownika może się poruszać, co bezpośrednio wpływa na zakres ruchu, który siłownik może wykonać. W praktyce oznacza to, że im większy skok, tym większa możliwość wykonania zadań, takich jak podnoszenie, przesuwanie czy wciskanie elementów. Przykładem może być zastosowanie siłowników hydraulicznych w maszynach budowlanych, gdzie skok siłownika wpływa na wysokość podnoszenia ładunków. W branży automatyki przemysłowej odpowiedni dobór skoku siłownika do aplikacji ma kluczowe znaczenie, aby zapewnić efektywność i precyzję operacji. W standardach branżowych, takich jak ISO 6020, zwraca się uwagę na konieczność odpowiedniego doboru skoku siłownika w kontekście jego zastosowania oraz oczekiwanych parametrów roboczych, co przekłada się na zwiększoną efektywność systemów automatyzacji.

Pytanie 17

Aby odkręcić śrubę z sześciokątnym gniazdem, konieczne jest zastosowanie klucza

A. imbusowego
B. nasadowego
C. płaskiego
D. nasadowego
Odpowiedź 'imbusowego' jest poprawna, ponieważ klucz imbusowy, znany również jako klucz sześciokątny, jest specjalnie zaprojektowany do pracy z elementami z gniazdem sześciokątnym. Tego typu gniazda, charakteryzujące się sześciokątnym otworem, są powszechnie stosowane w różnych zastosowaniach, od mechaniki samochodowej po dostępność w elektronice. W praktyce, klucz imbusowy zapewnia doskonałe dopasowanie do gniazda, co minimalizuje ryzyko uszkodzenia zarówno klucza, jak i śruby. Jego konstrukcja pozwala na aplikację większego momentu obrotowego, co jest kluczowe w przypadku śrub o dużych średnicach lub przy mocnych połączeniach. Używanie klucza imbusowego zgodnie z koncepcjami inżynieryjnymi i standardami, takimi jak ISO, zwiększa efektywność pracy oraz trwałość narzędzi. Ponadto, klucze imbusowe są dostępne w różnych rozmiarach, co pozwala na szeroki zakres zastosowań, od małych śrub w sprzęcie elektronicznym po duże elementy konstrukcyjne.

Pytanie 18

Jakie narzędzie należy zastosować do pomiaru luzów pomiędzy powierzchniami elementów konstrukcyjnych?

A. mikrometr
B. liniał
C. suwmiarka
D. szczelinomierz
Mikrometr, suwmiarka i liniał, mimo iż są powszechnie używanymi narzędziami pomiarowymi, nie są idealnymi wyborami do pomiaru luzów między powierzchniami elementów konstrukcyjnych. Mikrometr jest narzędziem przeznaczonym głównie do pomiarów grubości i średnic, gdzie wymagana jest wysoka precyzja w milimetrach lub mikrometrach. Zwykle nie jest w stanie dokładnie zmierzyć luzów w trudnych warunkach, ponieważ jego konstrukcja nie jest przystosowana do pomiarów szczelin. Suwmiarka, choć jest bardziej uniwersalnym narzędziem, również nie jest zalecana do pomiarów luzów. Jej dokładność może być niewystarczająca, a także istnieje ryzyko błędów wynikających z niewłaściwego użytkowania, zwłaszcza przy pomiarach w wąskich lub trudnodostępnych miejscach. Liniał, z kolei, jest narzędziem stosowanym do pomiarów liniowych, ale jego zastosowanie do precyzyjnych pomiarów luzów jest bardzo ograniczone, ponieważ nie pozwala na dokładne określenie niewielkich wartości. Typowym błędem myślowym w tym przypadku jest przekonanie, że każde narzędzie pomiarowe może być użyte zamiennie, co nie jest zgodne z zasadami inżynieryjnymi. Wiedza o właściwym doborze narzędzi do specyficznych pomiarów jest kluczowa w wielu dziedzinach inżynierii, a stosowanie niewłaściwych narzędzi może prowadzić do błędów w produkcji, które mogą mieć poważne konsekwencje dla bezpieczeństwa i efektywności mechanizmów.

Pytanie 19

Jakie narzędzie jest konieczne do wykonania gwintu zewnętrznego?

A. Narzynka
B. Tłocznik
C. Skrobak
D. Gwintownik
Dla nacinania gwintu zewnętrznego nie można zastosować gwintownika, ponieważ jest to narzędzie przeznaczone do wykonywania gwintów wewnętrznych. Gwintowniki są zaprojektowane tak, aby pasowały do otworów, w których gwint ma być wycinany, a ich konstrukcja oraz geometria skrawająca są dostosowane do tego celu. Użycie gwintownika do gwintu zewnętrznego prowadziłoby do nieprawidłowego kształtu gwintu oraz potencjalnych uszkodzeń elementów złącznych. Skrobak, z kolei, jest narzędziem stosowanym głównie do wygładzania powierzchni oraz usuwania nadmiaru materiału, nie ma jednak zastosowania w procesie nacinania gwintów. Tłoczniki są używane w procesach tłoczenia blach, a ich zastosowanie w gwintowaniu jest również nieadekwatne. Przykłady błędnych wniosków mogą wynikać z mylenia funkcji narzędzi skrawających. Niezrozumienie różnych typów gwintów oraz ich zastosowania w konkretnych operacjach może prowadzić do nieefektywności produkcji, a w skrajnych przypadkach do uszkodzenia maszyn. Dlatego istotne jest, aby każdy operator obrabiarek znał podstawy funkcjonalności narzędzi skrawających oraz ich poprawne zastosowanie w zależności od rodzaju gwintu, który zamierzają wykonać.

Pytanie 20

Jakiego koloru powinna być izolacja przewodu PE?

A. Żółto-zielony.
B. Brązowy.
C. Zielony.
D. Niebieski.
Przewód PE, czyli Protective Earth, powinien być w kolorze żółto-zielonym. To jest standard, który obowiązuje w normie IEC 60446 i w innych przepisach dotyczących instalacji elektrycznych. Przewód PE jest naprawdę ważny, bo chroni nas przed porażeniem prądem. Dlatego jasne oznaczenie tego przewodu jest kluczowe dla bezpieczeństwa ludzi i urządzeń. Dzięki żółto-zielonemu kolorowi elektrycy od razu wiedzą, jaka jest jego funkcja, co ułatwia pracę i sprawia, że wszystko jest zgodne z międzynarodowymi standardami. Kiedy coś się dzieje i awaria występuje, ten przewód powinien odprowadzać nadmiar prądu do ziemi, zmniejszając ryzyko porażenia lub uszkodzenia sprzętu. Oznaczenie w odpowiednim kolorze pozwala na szybkie zidentyfikowanie przewodów, co jest niezbędne podczas montażu czy serwisu. Właściwe oznaczenie to też kwestia ważna, bo prawo wymaga, żeby projektanci i wykonawcy przestrzegali tych norm.

Pytanie 21

W urządzeniu zmierzchowym fotorezystor pełni rolę

A. czujnika poziomu światła
B. wskaźnika działania systemu
C. ochrony prądowej systemu
D. przełącznika instalacyjnego systemu
Kiedy analizujemy inne odpowiedzi, łatwo zauważyć, dlaczego są one mylne. Na przykład, określenie fotorezystora jako sygnalizatora pracy układu jest nieprecyzyjne. Fotorezystor nie sygnalizuje stanu pracy układu, lecz reaguje na poziom światła. Takie myślenie może prowadzić do błędnej koncepcji działania wyłączników zmierzchowych, które mają na celu automatyzację oświetlenia na podstawie warunków świetlnych, a nie stanu operacyjnego układu. Ponadto, twierdzenie, że fotorezystor działa jako włącznik instalacyjny, jest również błędne. Włącznik instalacyjny to urządzenie, które manualnie kontroluje przepływ energii do urządzenia, a fotorezystor automatycznie dostosowuje działanie w zależności od otoczenia. W tym kontekście, pomylenie tych funkcji może skutkować niezrozumieniem procesu automatyzacji oświetlenia. Również koncepcja, że fotorezystor pełni rolę zabezpieczenia prądowego, jest nieprawidłowa, ponieważ zabezpieczenia prądowe mają na celu ochronę obwodów przed przeciążeniem lub zwarciem, co jest całkowicie odrębne od funkcji detekcji światła. Wszelkie nieporozumienia w tych kwestiach mogą prowadzić do nieefektywnego projektowania systemów oświetleniowych, a także zwiększać ryzyko awarii sprzętu lub nieprawidłowego działania instalacji. Ważne jest, aby dobrze rozumieć różnice między tymi rolami, aby móc prawidłowo zaprojektować i zastosować systemy automatyzacji w praktyce.

Pytanie 22

Podaj kolejność działań prowadzących do demontażu siłownika dwustronnego działania z układu pneumatycznego, który jest sterowany elektrozaworem 5/2 oraz posiada dwa czujniki kontaktronowe zamontowane na cylindrze.

A. Wyłączenie zasilania, odkręcenie siłownika od podstawy, odłączenie zasilania sprężonym powietrzem, odłączenie przewodów pneumatycznych od siłownika
B. Wyłączenie zasilania oraz odłączenie sprężonego powietrza, odłączenie przewodów pneumatycznych od siłownika, odłączenie przewodów czujników od układu sterującego, odkręcenie siłownika od podstawy
C. Wyłączenie zasilania sprężonym powietrzem, zdjęcie czujników, odłączenie przewodów pneumatycznych od siłownika, wyłączenie zasilania
D. Wyłączenie zasilania, zdjęcie czujników z cylindra, odkręcenie siłownika od podstawy, odłączenie przewodów pneumatycznych, wyłączenie zasilania sprężonym powietrzem
Poprawna odpowiedź zakłada, że przed przystąpieniem do demontażu jakiegokolwiek elementu układu pneumatycznego należy przede wszystkim zapewnić bezpieczeństwo operacji. Wyłączenie napięcia oraz zasilania sprężonym powietrzem jest niezbędnym krokiem, który zapobiega przypadkowemu uruchomieniu systemu w trakcie pracy. Następnie, odłączenie przewodów pneumatycznych od siłownika pozwala na bezpieczne zdemontowanie elementu, eliminując ryzyko wycieków powietrza, które mogłyby prowadzić do niebezpiecznych sytuacji. Odłączenie przewodów czujników od układu sterowania jest również kluczowe, gdyż pozwala na uniknięcie uszkodzenia czujników oraz zapewnia, że nie będą one przeszkadzały w procesie demontażu. Na końcu, odkręcenie siłownika od podstawy może być przeprowadzone bez obaw o bezpieczeństwo, ponieważ wszystkie niebezpieczne źródła energii zostały wcześniej wyeliminowane. Takie podejście jest zgodne z zaleceniami dotyczącymi bezpieczeństwa pracy z systemami pneumatycznymi i elektrycznymi, co jest kluczowe w utrzymaniu dobrych praktyk branżowych.

Pytanie 23

W układzie zastosowano przetworniki ciśnienia o prądowych sygnałach wyjściowych. Na podstawie danych katalogowych przetworników oraz wyników przeprowadzonych pomiarów wskaż, który z przetworników nie działa prawidłowo.

PrzetwornikZakres sygnału
wejściowego
[MPa]
Zakres sygnału
wyjściowego [mA]
Wartość sygnału
wejściowego
[MPa]
Wartość sygnału
wyjściowego [mA]
10 ÷ 10 ÷ 200,5010
20 ÷ 20 ÷ 200,505
30 ÷ 14 ÷ 200,5012
40 ÷ 24 ÷ 200,505
A. Przetwornik 3
B. Przetwornik 2
C. Przetwornik 4
D. Przetwornik 1
Decyzja o wyborze innych przetworników, jak Przetwornik 1, 2 lub 3, wskazuje na błędne zrozumienie podstawowych zasad działania tych urządzeń. Każdy przetwornik ciśnienia ma swoje specyfikacje i charakterystyki wyjściowe, które muszą być zgodne z wartościami ciśnienia, jakie są mierzone. Nieprawidłowe przypisanie funkcji lub wartości sygnałów wyjściowych prowadzi do redukcji efektywności systemu pomiarowego oraz może wprowadzać niepewności w dalszych analizach danych. Problemy te mogą wynikać z niepełnej interpretacji danych katalogowych lub nieuwagi przy analizie wyników pomiarów. W praktyce, przetworniki ciśnienia powinny zawsze działać w określonych granicach tolerancji, a ich sygnały powinny być ściśle monitorowane, aby zapewnić dokładność. Ponadto, nieprawidłowe założenia dotyczące działania przetworników mogą prowadzić do sytuacji, w których błędne decyzje operacyjne są podejmowane na podstawie niedokładnych danych. Warto zwrócić uwagę na standardy branżowe, takie jak normy ISO, które podkreślają znaczenie kalibracji i weryfikacji urządzeń pomiarowych. Niezrozumienie tych zasad może prowadzić do błędnych konkluzji i obniżenia jakości całego procesu technologicznego.

Pytanie 24

Jakie napięcie musi być zastosowane do zasilania prostowniczego układu sześciopulsowego?

A. trójfazowym 230 V/400 V
B. stałym 110 V
C. stałym 24 V
D. jednofazowym symetrycznym 2 x 115 V
Układ prostowniczy sześciopulsowy jest systemem, który przekształca prąd przemienny w prąd stały, wykorzystując sześć diod do realizacji prostowania. Aby zapewnić efektywną pracę tego układu, wymagane jest zasilanie trójfazowe o napięciu 230 V/400 V. Taki typ zasilania pozwala na uzyskanie stabilnego i wydajnego prostowania, co jest kluczowe w wielu zastosowaniach przemysłowych, takich jak zasilanie napędów elektrycznych, systemów zasilania awaryjnego czy też w aplikacjach w automatyce. Warto zauważyć, że standardowe zasilanie trójfazowe w systemach przemysłowych jest powszechnie stosowane, co sprzyja kompatybilności urządzeń. Dobre praktyki w projektowaniu systemów elektrycznych zalecają użycie prostowników o odpowiednich parametrach zgodnych z wymaganiami odbiorników, co zapewnia ich długotrwałą i niezawodną pracę.

Pytanie 25

W maszynach wirujących można zdiagnozować nieosiowe położenie wałów, niewyważenie mas wirujących lub ugięcie wałów

A. tachometrem
B. testerem izolacji
C. analizatorem drgań
D. rejestratorem prądu
Analizator drgań jest kluczowym narzędziem w diagnostyce maszyn wirujących, ponieważ umożliwia szczegółową analizę drgań generowanych przez maszyny, co pozwala na wykrycie nieprawidłowości związanych z ich ustawieniem, wyważeniem czy ugięciem wałów. Pomiar drgań jest istotnym elementem monitorowania stanu technicznego maszyn, zgodnie z normami ISO 10816 dotyczącymi oceny stanu maszyn na podstawie pomiarów drgań. Analizator drgań może wykryć różne rodzaje nieprawidłowości, takie jak niewyważenie, które prowadzi do nadmiernych drgań i może skutkować uszkodzeniami łożysk czy innych komponentów. Przykładowo, w przypadku silników elektrycznych, analiza drgań może pomóc w ocenie ich wyważenia oraz identyfikacji problemów z łożyskami, co pozwala na wczesne podjęcie działań serwisowych. W praktyce, regularne monitorowanie drgań może znacznie wydłużyć żywotność maszyn, a także zredukować koszty związane z nieplanowanymi przestojami i naprawami.

Pytanie 26

W siłowniku działającym w obie strony o średnicy tłoka D = 20 mm oraz efektywności 0,8, zasilanym ciśnieniem p = 0,6 MPa, teoretyczna siła przy wysunięciu siłownika wynosi około

A. 130 N
B. 140 N
C. 160 N
D. 150 N
Aby obliczyć teoretyczną siłę wysunięcia siłownika dwustronnego działania, możemy skorzystać z następującego wzoru: F = p * A, gdzie F to siła, p to ciśnienie, a A to pole powierzchni tłoka. Pole powierzchni tłoka można obliczyć ze wzoru A = π * (D/2)², gdzie D to średnica tłoka. Dla D = 20 mm, A wynosi około 3,14 * (0,02/2)² = 3,14 * 0,01 = 0,0314 m². Przy ciśnieniu p = 0,6 MPa (czyli 600 kPa), obliczamy siłę: F = 600 kPa * 0,0314 m² = 18,84 kN. Jednakże ze względu na sprawność siłownika, musimy pomnożyć tę wartość przez 0,8. Ostatecznie otrzymujemy F = 18,84 kN * 0,8 = 15,07 kN, co w przeliczeniu na jednostki N daje 150 N. Tego rodzaju obliczenia są niezbędne w projektowaniu i analizie systemów pneumatycznych i hydraulicznych, a znajomość wzorów i jednostek jest kluczowa w praktyce inżynieryjnej.

Pytanie 27

Nie można zrealizować regulacji prędkości obrotowej silników indukcyjnych poprzez zmianę

A. wartości skutecznej napięcia zasilania stojana
B. liczby par biegunów
C. kolejności faz
D. wartości częstotliwości napięcia zasilającego
Kolejność faz w silnikach indukcyjnych nie wpływa na prędkość obrotową, a jedynie na kierunek obrotów. Dostosowanie prędkości obrotowej silnika indukcyjnego można osiągnąć poprzez zmianę częstotliwości napięcia zasilającego, co jest zgodne z zasadą, że prędkość obrotowa silnika jest proporcjonalna do częstotliwości napięcia. Również zmianę liczby par biegunów, co wymaga zmiany konstrukcji silnika. Przykłady zastosowania tej wiedzy obejmują systemy napędowe, gdzie kontrola prędkości jest kluczowa, takie jak pompy czy wentylatory, gdzie za pomocą falowników przekształca się częstotliwość zasilania. Standardy jak IEC 60034-1 regulują takie aspekty, zapewniając wydajność i bezpieczeństwo operacyjne. Zrozumienie, że kolejność faz nie wpływa na prędkość, jest kluczowe w prawidłowym projektowaniu i eksploatacji systemów elektrycznych.

Pytanie 28

Po przeprowadzeniu napraw w szafie sterowniczej numerycznej obrabiarki, pracownik doznał porażenia prądem. Jest nieprzytomny, lecz oddycha. W pierwszej kolejności, po odłączeniu go od źródła prądu, powinno się wykonać następujące kroki:

A. ułożyć poszkodowanego na noszach w wygodnej pozycji i przetransportować go do lekarza w celu oceny stanu zdrowia
B. ustawić poszkodowanego w stabilnej pozycji bocznej i wezwać pomoc medyczną
C. wezwać pomoc medyczną, położyć poszkodowanego na plecach i rozpocząć sztuczne oddychanie
D. ustawić poszkodowanego na boku, zapewnić mu świeże powietrze i rozpocząć sztuczne oddychanie
Odpowiedź, w której porażony zostaje ułożony w pozycji bocznej ustalonej, jest prawidłowa, ponieważ zapewnia to drożność dróg oddechowych i minimalizuje ryzyko aspiracji. Pozycja ta jest kluczowa w przypadku osób nieprzytomnych, które oddychają, ponieważ pozwala na swobodne wydostawanie się ewentualnych wydzielin, a jednocześnie chroni przed zadławieniem. Wzywając pomoc lekarską, dbamy o to, aby profesjonalna interwencja mogła zostać podjęta jak najszybciej, co jest szczególnie ważne w przypadku porażenia prądem, które może prowadzić do poważnych uszkodzeń wewnętrznych. W praktyce, osoby pracujące w środowisku przemysłowym powinny być przeszkolone w zakresie udzielania pierwszej pomocy, co jest zgodne z normą ISO 45001 dotyczącą zarządzania bezpieczeństwem i zdrowiem w pracy. Przykładowo, jeśli pracownik ulegnie porażeniu, niezwłocznie należy ocenić jego stan, a po umieszczeniu go w odpowiedniej pozycji, regularnie kontrolować jego oddech i reakcje, co jest kluczowe do oceny jego stanu przed przybyciem służb medycznych.

Pytanie 29

Silnik krokowy dysponuje 4 uzwojeniami wzbudzającymi, z których każde ma 8 nabiegunników. Jakie będzie przesunięcie kątowe silnika przypadające na pojedynczy krok przy sterowaniu jednym uzwojeniem?

A. 11°15'
B. 2°49'
C. 22°30'
D. 5°38'
Odpowiedzi 22°30', 2°49' i 5°38' zawierają błędne obliczenia, które mogą wynikać z nieprawidłowego rozumienia działania silników krokowych oraz zasadności ich podziału na kroki. Odpowiedź 22°30' może sugerować, że osoba myśli o 18 krokach na obrót, co jest nieprawidłowe w kontekście tego silnika. Taki błąd może prowadzić do nieefektywnego stosowania silników krokowych w aplikacjach wymagających wysokiej precyzji. Z kolei opcja 2°49' sugeruje bardzo dużą liczbę kroków na pełny obrót, co z kolei implikuje, że liczba uzwojeń i nabiegunników została źle zinterpretowana. Odpowiedź 5°38' również wskazuje na zrozumienie mechanizmu działania silnika, ale z niewłaściwym wyliczeniem kroków na obrót, co może prowadzić do błędnych ustawień w systemach automatyzacji. Kluczowym aspektem przy pracy z silnikami krokowymi jest świadomość tego, że każde uzwojenie i nabiegunnik wpływa na dokładność i wydajność mechanizmu. W przemyśle i automatyce, gdzie precyzja jest krytyczna, błędy w obliczeniach mogą prowadzić do poważnych konsekwencji w procesach technologicznych, dlatego istotne jest, by dobrze rozumieć sposób obliczania kątów przesunięcia w silnikach krokowych.

Pytanie 30

Jaką kolejność powinny mieć poszczególne elementy zespołu przygotowania powietrza w instalacji pneumatycznej, zasilającej silnik pneumatyczny, patrząc od strony sprężarki?

A. Filtr powietrza, reduktor ciśnienia, układ smarowania, zawór sterujący
B. Układ smarowania, filtr powietrza, zawór sterujący, reduktor ciśnienia
C. Zawór sterujący, reduktor ciśnienia, układ smarowania, filtr powietrza
D. Reduktor ciśnienia, filtr powietrza, układ smarowania, zawór sterujący
Poprawna kolejność montażu elementów składowych zespołu przygotowania powietrza w układzie pneumatycznym zasilającym silnik pneumatyczny to filtr powietrza, reduktor ciśnienia, układ smarowania, a na końcu zawór sterujący. Filtr powietrza jest kluczowy, ponieważ usuwa zanieczyszczenia i wilgoć z powietrza, co chroni dalsze elementy układu przed uszkodzeniem i zapewnia ich dłuższą żywotność. Reduktor ciśnienia reguluje ciśnienie powietrza do odpowiedniego poziomu, co jest istotne dla prawidłowego działania silnika pneumatycznego. Następnie układ smarowania wprowadza odpowiednią ilość smaru, co jest niezbędne do prawidłowej pracy elementów ruchomych w silniku. Ostatnim elementem jest zawór sterujący, który umożliwia kontrolę nad przepływem powietrza do silnika. Taka struktura zapewnia optymalne warunki pracy i wydajność układu, zgodnie z najlepszymi praktykami branżowymi w zakresie automatyki i pneumatyki.

Pytanie 31

Czy rdzenie maszyn elektrycznych produkuje się z stali?

A. chromowych
B. krzemowych
C. chromowo-krzemowych
D. krzemowo-manganowych
Wybór stali chromowej, chromowo-krzemowej czy krzemowo-manganowej jako materiałów rdzeniowych dla maszyn elektrycznych świadczy o pewnym nieporozumieniu w kwestii zastosowania materiałów ferromagnetycznych. Stal chromowa, choć charakteryzująca się wysoką odpornością na korozję, nie jest optymalnym materiałem dla rdzeni magnetycznych ze względu na wysokie straty magnetyczne, które prowadzą do obniżenia efektywności energetycznej urządzeń. Z kolei stal chromowo-krzemowa, mimo że zawiera krzem, nie ma takich samych właściwości magnetycznych jak czysta stal krzemowa, co ogranicza jej zastosowanie w maszynach elektrycznych. Dodatkowo, stal krzemowo-manganowa również nie jest odpowiednia, gdyż mangan wpływa na właściwości magnetyczne w sposób negatywny, zwiększając straty energii. W praktyce, używanie tych rodzajów stali może prowadzić do problemów z wydajnością i przegrzewaniem się urządzeń, co jest sprzeczne z zasadami projektowania efektywnych maszyn elektrycznych. Kluczowe jest zrozumienie, że dobór odpowiednich materiałów w inżynierii elektrycznej nie jest przypadkowy, lecz oparty na szczegółowych badaniach właściwości fizycznych i chemicznych materiałów. Prawidłowe zrozumienie właściwości materiałów oraz ich zastosowania jest kluczowe dla projektowania nowoczesnych urządzeń elektrycznych, a wybór stali krzemowej jako materiału rdzeniowego jest potwierdzony przez liczne standardy branżowe.

Pytanie 32

Jaką metodę łączenia metali należy wybrać, gdy maksymalna temperatura w trakcie łączenia nie może przekroczyć 450OC?

A. Lutowanie twarde
B. Lutowanie miękkie
C. Spawanie elektryczne
D. Spawanie gazowe
Lutowanie twarde, spawanie gazowe oraz spawanie elektryczne to techniki, które ze względu na procesy, jakie wykorzystują, nie są odpowiednie w sytuacji, gdy temperatura nie może przekraczać 450°C. Lutowanie twarde polega na łączeniu materiałów przy użyciu stopów lutowniczych, których temperatura topnienia jest znacznie wyższa niż w przypadku lutowania miękkiego, zwykle przekraczająca 450°C. To sprawia, że materiały mogą ulegać nieodwracalnym zmianom, co jest niedopuszczalne w wielu aplikacjach. Spawanie gazowe oraz spawanie elektryczne to procesy, które polegają na wytwarzaniu wysokotemperaturowego łuku elektrycznego lub ognia, co prowadzi do miejscowego topnienia materiału i zmiany jego właściwości fizycznych. Przy tych metodach temperatura w miejscu łączenia często znacznie przekracza 450°C, co może prowadzić do odkształceń, utraty wytrzymałości oraz innych negatywnych skutków dla komponentów. Typowym błędem myślowym jest zakładanie, że każda z tych technik jest odpowiednia w każdej sytuacji. Niezrozumienie różnicy w temperaturach procesów lutowniczych i spawalniczych może prowadzić do nieodwracalnych uszkodzeń materiałów, a także do niezgodności z wymaganiami jakościowymi i standardami branżowymi, które regulują procesy łączenia w różnych gałęziach przemysłu.

Pytanie 33

Z czego wykonuje się rdzeń wirnika silnika indukcyjnego?

A. z litego materiału magnetycznego anizotropowego
B. z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie
C. z litego materiału magnetycznego izotropowego
D. z pakietu blach elektrotechnicznych nie izolowanych od siebie
Rdzeń wirnika silnika indukcyjnego wykonany jest z pakietu blach elektrotechnicznych wzajemnie izolowanych od siebie, co jest powszechną praktyką w projektowaniu maszyn elektrycznych. Taki zabieg ma na celu minimalizację strat energetycznych, które występują w wyniku prądów wirowych. Wysokiej jakości blachy elektrotechniczne, produkowane zgodnie z normami, takimi jak EN 10106, charakteryzują się niską stratnością magnetyczną oraz wysoką przewodnością magnetyczną. Dzięki ich zastosowaniu, rdzeń wirnika jest bardziej efektywny w generowaniu pola magnetycznego, co przekłada się na lepsze parametry pracy silnika, mniejsze straty ciepła oraz wyższą efektywność energetyczną. Przykładem zastosowania tej technologii są silniki asynchroniczne, które są powszechnie wykorzystywane w przemyśle, automatyce oraz napędach elektrycznych. Prawidłowe wykonanie rdzenia wirnika z blach elektrotechnicznych ma kluczowe znaczenie dla żywotności i niezawodności silnika.

Pytanie 34

Podczas działania napędu zwrotnego z użyciem silnika prądu stałego zaobserwowano, że prędkość obrotowa silnika jest różna w obu kierunkach oraz że iskrzenie szczotek przy obrocie w jedną stronę jest znacznie większe niż przy obrocie w kierunku przeciwnym. Jakie kroki należy podjąć w celu naprawy silnika?

A. Znormalizować nacisk szczotek
B. Ustawić szczotki w strefie neutralnej
C. Obtoczyć oraz przeszlifować komutator
D. Zamienić łożyska
Ustawić szczotki w strefie neutralnej jest kluczowym działaniem w przypadku silników prądu stałego, które doświadczają nierówności prędkości obrotowej oraz nadmiernego iskrzenia szczotek. Strefa neutralna to obszar w komutatorze, w którym nie występuje pole magnetyczne, co minimalizuje zjawisko iskrzenia. Ustawienie szczotek w tej strefie pozwala na równomierne rozłożenie nacisku na komutator i zmniejszenie zużycia materiału szczotek. W praktyce, aby to osiągnąć, należy dokładnie wyregulować położenie szczotek względem komutatora, co wymaga precyzyjnych narzędzi pomiarowych. Przykładem zastosowania tej metody jest konserwacja silników w przemyśle, gdzie regularne kontrole i ustawienia szczotek wpływają na wydajność silnika oraz jego żywotność. Ponadto, poprawne ustawienie szczotek ma znaczenie w kontekście efektywności energetycznej silnika, co jest zgodne z aktualnymi standardami branżowymi dotyczącymi eksploatacji urządzeń elektrycznych.

Pytanie 35

Środek gaśniczy, który może być zastosowany do likwidacji wszystkich kategorii pożarów i nie powoduje znacznych, nieodwracalnych uszkodzeń, na przykład w przypadku gaszenia sprzętu komputerowego, to

A. piana gaśnicza
B. dwutlenek węgla
C. proszek gaśniczy
D. woda
Proszek gaśniczy to uniwersalny środek gaśniczy, który jest skuteczny w gaszeniu pożarów różnych grup, w tym grup A (materiały stałe), B (cieczy palnych) i C (gazy palne). Jego działanie polega na obniżeniu temperatury oraz odcięciu dopływu tlenu do ognia. Proszki gaśnicze, takie jak proszek ABC, są szczególnie polecane w miejscach, gdzie występuje ryzyko pożaru sprzętu elektronicznego, jak komputery czy serwery, ponieważ ich użycie nie powoduje uszkodzenia sprzętu przez wodę. Dodatkowo, proszki są wybierane w obiektach przemysłowych i magazynach, gdzie występuje wiele materiałów łatwopalnych. Warto zaznaczyć, że stosowanie proszków gaśniczych powinno odbywać się zgodnie z odpowiednimi normami, takimi jak PN-EN 2 dotycząca gaśnic przenośnych. Przykładem praktycznego zastosowania proszku gaśniczego może być akcja gaśnicza w serwerowni, gdzie zastosowanie wody mogłoby prowadzić do poważnych uszkodzeń sprzętu. Dlatego proszek gaśniczy jest rekomendowany jako najbezpieczniejsza opcja w takich sytuacjach.

Pytanie 36

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Klejenia
B. Zgrzewania
C. Spawania
D. Zaginania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 37

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. rozbijanie kropli oleju strumieniem sprężonego powietrza
B. spływ kondensatu wodnego do najniższego punktu instalacji
C. odfiltrowanie cząstek stałych z powietrza
D. rozchodzenie się mgły olejowej w instalacji
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 38

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. założyć poszkodowanemu opatrunek uciskowy na ranę
B. założyć poszkodowanemu opatrunek uciskowy poniżej rany
C. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
D. umieścić poszkodowanego w bezpiecznej pozycji bocznej
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 39

Jakie urządzenia oraz przyrządy pomiarowe są kluczowe do określenia parametrów filtrów pasmowych?

A. Częstościomierz i miernik uniwersalny
B. Amperomierz i oscyloskop
C. Generator fali stojącej oraz woltomierz
D. Generator i oscyloskop
Generator i oscyloskop to naprawdę ważne narzędzia, które pomagają w określaniu parametrów filtrów pasmowych. Generator wytwarza różne sygnały o różnych częstotliwościach, co jest super przydatne, bo pozwala na testowanie, jak filtr reaguje na różne pasma. Dzięki temu, można sprawdzić, które częstotliwości przechodzą, a które są tłumione. Oscyloskop natomiast wizualizuje te sygnały, więc dokładnie można analizować kształt i amplitudę sygnału wyjściowego filtru w odpowiedzi na sygnał wejściowy. Na przykład, kiedy analizujemy filtr dolnoprzepustowy, ustawiamy różne częstotliwości za pomocą generatora, a oscyloskop pokazuje, jak filtr tłumi sygnały, które są wyższe niż jego częstotliwość graniczna. To wszystko jest zgodne z najlepszymi praktykami w inżynierii elektronicznej i pozwala na precyzyjne projektowanie oraz testowanie układów elektronicznych.

Pytanie 40

Jaką jednostką prędkości kątowej posługujemy się w układzie SI?

A. obr/min
B. km/h
C. rad/s
D. m/s
Jednostką prędkości kątowej w układzie SI jest radian na sekundę (rad/s). Prędkość kątowa definiuje, jak szybko obiekt porusza się wokół osi obrotu, co jest kluczowe w wielu dziedzinach, takich jak inżynieria mechaniczna czy fizyka. Przykładem może być ruch planet wokół Słońca, gdzie prędkość kątowa pozwala opisać, jak szybko planeta przebywa kąt w przestrzeni kosmicznej. W zastosowaniach praktycznych, jak w silnikach elektrycznych, monitorowanie prędkości kątowej jest niezbędne do optymalizacji wydajności i zapewnienia bezpieczeństwa. Zastosowanie jednostki rad/s w obliczeniach jest zgodne z normami międzynarodowymi, co ułatwia porównywanie wyników oraz standaryzację procesów inżynieryjnych. Ponadto, prędkość kątowa jest często używana w analizie drgań, gdzie precyzyjne określenie prędkości obrotowej jest kluczowe dla poprawnego funkcjonowania struktur mechanicznych.