Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 24 sierpnia 2025 21:58
  • Data zakończenia: 24 sierpnia 2025 22:12

Egzamin zdany!

Wynik: 22/40 punktów (55,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Rozmiar plamki na ekranie monitora LCD wynosi

A. rozmiar obszaru, w którym możliwe jest wyświetlenie wszystkich kolorów obsługiwanych przez monitor
B. odległość pomiędzy początkiem jednego a początkiem kolejnego piksela
C. rozmiar obszaru, na którym wyświetla się 1024 piksele
D. rozmiar jednego piksela wyświetlanego na ekranie
No więc, plamka monitora LCD to właściwie odległość między początkiem jednego piksela a początkiem kolejnego. To ważne, bo plamka dotyczy tego, jak widzimy pojedyncze piksele na ekranie. Każdy piksel ma swoje subpiksele: czerwony, zielony i niebieski. Im mniejsza odległość, tym lepsza jakość obrazu, bo więcej szczegółów możemy zobaczyć. Na przykład w monitorach Full HD (1920x1080) wielkość plamki ma ogromne znaczenie dla ostrości obrazu, bo wpływa na to, jak dobrze widzimy detale. Jak dla mnie, im mniejsze plamki, tym lepiej, bo pozwalają na wyświetlenie większej liczby szczegółów w małej przestrzeni, co jest super w grach, filmach czy grafice. Dobra plamka to klucz do jakości, a technologie ciągle idą do przodu, żeby pokazać jak najlepszy obraz w małych formatach.

Pytanie 2

Który z zapisów adresu IPv4 z maską jest niepoprawny?

A. 16.1.1.1/5
B. 192.168.0.1, maska 255.250.255.0
C. 100.0.0.0/8
D. 18.4.0.0, maska 255.0.0.0
Zapis adresu IPv4 192.168.0.1 z maską 255.250.255.0 jest nieprawidłowy ze względu na to, że maska podsieci nie jest zgodna z konwencjami adresowania. Maska 255.250.255.0 nie tworzy poprawnego podziału sieci, ponieważ jej reprezentacja binarna zawiera '0' w środkowej części, co wskazuje na nieciągłość w maskowaniu. W praktyce oznacza to, że nie można efektywnie wydzielić podsieci i przypisać adresów IP bez ryzyka konfliktów. Zgodnie z zasadami CIDR (Classless Inter-Domain Routing), maski muszą być w postaci ciągłej serii '1' w części sieciowej, a następnie '0' w części hosta. Przykładem poprawnej maski dla danego adresu IP może być 255.255.255.0, co pozwala na utworzenie 256 adresów w sieci lokalnej. W kontekście praktycznym, prawidłowe maskowanie jest kluczowe dla efektywnego zarządzania adresami IP oraz zapewnienia odpowiedniej komunikacji w sieci.

Pytanie 3

Administrator sieci komputerowej pragnie zweryfikować na urządzeniu z systemem Windows, które połączenia są aktualnie ustanawiane oraz na jakich portach komputer prowadzi nasłuch. W tym celu powinien użyć polecenia

A. ping
B. netstat
C. arp
D. tracert
Wybór odpowiedzi innych niż 'netstat' wskazuje na brak zrozumienia funkcji i zastosowania poszczególnych poleceń w administracji systemami operacyjnymi. Polecenie 'arp' służy do wyświetlania lub modyfikacji tablicy ARP, co jest użyteczne w kontekście identyfikacji adresów MAC powiązanych z adresami IP, ale nie dostarcza informacji o bieżących połączeniach sieciowych ani otwartych portach. Z kolei 'ping' jest narzędziem do diagnozowania dostępności hosta w sieci, mierząc czas odpowiedzi, ale nie pokazuje szczegółów dotyczących aktywnych połączeń ani portów. 'tracert' natomiast umożliwia analizę trasy pakietów do docelowego hosta, co jest przydatne w badaniu opóźnień w sieci, ale również nie dostarcza informacji o bieżących połączeniach. Te polecenia mają swoje zastosowania w diagnozowaniu problemów sieciowych, jednak nie są odpowiednie do monitorowania aktywnych połączeń i portów na komputerze. Typowym błędem jest mylenie diagnostyki połączeń z innymi aspektami zarządzania siecią, co może prowadzić do niewłaściwego doboru narzędzi w analizie problemów sieciowych.

Pytanie 4

Na przedstawionym schemacie wtyk (złącze męskie modularne) stanowi zakończenie kabla

Ilustracja do pytania
A. światłowodowego
B. koncentrycznego
C. U/UTP
D. F/UTP
Złącza światłowodowe mają zupełnie inną konstrukcję niż wtyki RJ-45, które są stosowane do kabli miedzianych, a nie światłowodowych. Złącza światłowodowe, takie jak LC, SC czy ST, służą do przesyłania danych za pomocą światła, co wymaga innych materiałów i kształtu złącza. Złącze koncentryczne jest typowym zakończeniem dla kabli koncentrycznych, które są używane do przesyłania sygnałów telewizyjnych czy w sieciach kablowych. Mają one jeden centralny przewód otoczony izolacją i ekranem, co znacznie różni się od konstrukcji kabla skręconego i jego złącza. Kable U/UTP są nieekranowanymi parami skręconymi, co oznacza brak jakiejkolwiek formy ekranowania. Chociaż są podobne do F/UTP pod względem zastosowania, brak folii ekranowej sprawia, że są mniej odporne na zakłócenia elektromagnetyczne. U/UTP są zwykle stosowane w mniej wymagających środowiskach, gdzie zakłócenia nie są problemem, ale nadal różnią się od F/UTP, które mimo nieekranowanych par, mają dodatkową ochronę całego kabla. Pomyłka w rozróżnieniu tych typów kabli prowadzi do nieodpowiedniego doboru okablowania, co może skutkować problemami z jakością sygnału w bardziej wymagających środowiskach sieciowych. Dlatego ważne jest zrozumienie różnic w konstrukcji i zastosowaniach różnych typów kabli i ich złącz, aby zapewnić optymalne działanie sieci. Każdy typ kabla ma swoje specyficzne zastosowania, a ich właściwy dobór jest kluczowy w projektowaniu i utrzymaniu infrastruktury sieciowej.

Pytanie 5

Jakie jest nominalne wyjście mocy (ciągłe) zasilacza o parametrach przedstawionych w tabeli?

Napięcie wyjściowe+5 V+3.3 V+12 V1+12 V2-12 V+5 VSB
Prąd wyjściowy18,0 A22,0 A18,0 A17,0 A0,3 A2,5 A
Moc wyjściowa120 W336 W3,6 W12,5 W
A. 472,1 W
B. 456,0 W
C. 336,0 W
D. 576,0 W
Odpowiedź 472,1 W jest trafna, bo moc wyjściowa zasilacza to nic innego jak suma mocy dla wszystkich napięć, gdzie są już przypisane odpowiednie prądy. Dla każdego napięcia moc P można policzyć ze wzoru P = U * I, gdzie U to napięcie, a I to prąd. Jeśli spojrzeć na obliczenia, to mamy: dla +5 V moc wynosi 5 V * 18 A = 90 W, dla +3.3 V moc to 3.3 V * 22 A = 72.6 W, następnie dla +12 V1 moc daje 12 V * 18 A = 216 W, dla +12 V2 to 12 V * 17 A = 204 W, zaś dla -12 V mamy -12 V * 0.3 A = -3.6 W. Ostatnia moc to dla +5 VSB, czyli 5 V * 2.5 A = 12.5 W. Jak to wszystko zsumujesz, wychodzi 90 W + 72.6 W + 216 W + 204 W - 3.6 W + 12.5 W = 572.5 W. Ale uwaga, bo zasilacz ma dwa napięcia +12 V, więc ich łączna moc to 216 W + 204 W = 420 W. Dlatego moc wyjściowa zasilacza to 90 W + 72.6 W + 420 W - 3.6 W + 12.5 W = 472,1 W. To podejście do obliczeń jest zgodne z tym, co jest uznawane za dobre praktyki w projektowaniu zasilaczy, gdzie trzeba brać pod uwagę zarówno dodatnie, jak i ujemne napięcia.

Pytanie 6

W nowoczesnych panelach dotykowych prawidłowe działanie wyświetlacza zapewnia mechanizm rozpoznający zmianę

A. pola elektromagnetycznego
B. położenia ręki dotykającej ekranu z zastosowaniem kamery
C. pola elektrostatycznego
D. oporu pomiędzy przezroczystymi diodami wtopionymi w ekran
Wykrywanie dotyku w ekranach dotykowych można realizować za pomocą wielu różnych mechanizmów, jednak odpowiedzi, które wprowadziły Cię w błąd, opierają się na niepoprawnych założeniach dotyczących działania tych technologii. Na przykład, opór między przezroczystymi diodami wtopionymi w ekran nie jest podstawowym mechanizmem wykrywania dotyku. Dioda, działająca w sposób przewodnictwa, nie jest w stanie dostarczyć precyzyjnych informacji o lokalizacji dotyku; takie rozwiązania są zbyt mało czułe i nie są stosowane w nowoczesnych urządzeniach. Z kolei pola elektromagnetyczne, chociaż mogą być stosowane w niektórych urządzeniach, nie są standardem w ekranach dotykowych, które w większości polegają na interakcji z polem elektrostatycznym. Ponadto, zastosowanie kamery do wykrywania położenia ręki również nie jest powszechnym rozwiązaniem w ekranach dotykowych. Techniki oparte na obrazowaniu mogą wprowadzać dodatkowe opóźnienia oraz problemy z precyzją, co czyni je mniej pożądanymi w kontekście szybkiej reakcji, której oczekuje użytkownik. W praktyce, głównym celem ekranów dotykowych jest zapewnienie jak najszybszej i najdokładniejszej interakcji, co najlepiej osiąga się poprzez technologie pojemnościowe i wykrywanie zmian pola elektrostatycznego. Zrozumienie tych mechanizmów pozwala na lepsze dostosowanie się do dynamicznie rozwijającego się rynku technologicznym i zastosowań interaktywnych.

Pytanie 7

Ile hostów można zaadresować w podsieci z maską 255.255.255.248?

A. 246 urządzeń.
B. 6 urządzeń.
C. 4 urządzenia.
D. 510 urządzeń.
Wiele osób myli się przy obliczaniu liczby dostępnych hostów w podsieciach, co może prowadzić do błędnych wniosków. Odpowiedzi sugerujące, że w podsieci z maską 255.255.255.248 można zaadresować 246 lub 510 hostów, opierają się na niepoprawnym zrozumieniu zasad adresacji IP. W rzeczywistości, aby obliczyć liczbę dostępnych adresów dla hostów, należy wziąć pod uwagę ilość bitów zarezerwowanych dla adresów w podsieci. Dla maski /29, 3 bity są przeznaczone na adresy hostów, co daje 2^3 = 8 możliwych adresów. Z tych adresów, 2 są zawsze zarezerwowane: jeden dla adresu sieci, a drugi dla adresu rozgłoszeniowego, co efektywnie pozostawia 6 adresów do wykorzystania przez urządzenia w sieci. Odpowiedzi wskazujące na 4 hosty również są błędne, ponieważ także nie uwzględniają poprawnego obliczenia dostępnych adresów. Typowe błędy polegają na nieprawidłowym dodawaniu hostów lub myleniu zasad dotyczących rezerwacji adresów w danej podsieci. Dlatego, aby uniknąć podobnych pomyłek, ważne jest zrozumienie podstaw działającej logiki adresacji IP oraz umiejętność poprawnego stosowania masek podsieci w praktyce. Właściwe przeszkolenie w zakresie adresacji IP i praktyk sieciowych jest niezwykle istotne dla specjalistów IT, co zapewnia efektywne projektowanie i zarządzanie nowoczesnymi sieciami komputerowymi.

Pytanie 8

Według specyfikacji JEDEC, napięcie zasilania dla modułów pamięci RAM DDR3L wynosi

A. 1,35 V
B. 1,85 V
C. 1,5 V
D. 1,9 V
Odpowiedzi, które wskazują na inne wartości napięcia, jak 1,9 V, 1,85 V czy 1,5 V, są błędne, bo nie mają nic wspólnego z tym, co oferuje DDR3L. Na przykład 1,9 V to standard dla starszych pamięci jak DDR2, a użycie tego w nowszych modułach mogłoby je po prostu zniszczyć przez przegrzanie. Wartość 1,85 V również nie ma miejsca w specyfikacji JEDEC dla DDR3L. Co do 1,5 V, to dotyczy DDR3, który jest po prostu mniej efektywny energetycznie. Często błędy w wyborze napięcia wynikają z niezrozumienia różnic między standardami pamięci, a także tego, jak ważne są wymagania zasilania. Wiedząc o tym, możemy uniknąć problemów z kompatybilnością i wydajnością, dlatego warto znać specyfikacje techniczne przy pracy ze sprzętem komputerowym.

Pytanie 9

Usługa umożliwiająca przechowywanie danych na zewnętrznym serwerze, do którego dostęp możliwy jest przez Internet to

A. Cloud
B. żadna z powyższych
C. PSTN
D. VPN
VPN (Virtual Private Network) to technologia, która pozwala na bezpieczne połączenie z Internetem poprzez szyfrowanie danych i ukrywanie adresu IP użytkownika. Choć VPN może być wykorzystywana do przesyłania danych w bezpieczny sposób, nie jest formą przechowywania zasobów na zewnętrznych serwerach. Niniejsze zrozumienie funkcji VPN prowadzi do typowego błędu myślowego, polegającego na utożsamianiu jej z chmurą obliczeniową, co jest mylne. PSTN (Public Switched Telephone Network) to natomiast tradycyjna sieć telefoniczna, która nie ma związku z przechowywaniem danych w Internecie. Z kolei wybór opcji 'żadna z powyższych' również jest niepoprawny, ponieważ chmura obliczeniowa stanowi odpowiedź na zadane pytanie. Mylenie tych pojęć wynika często z braku wiedzy na temat różnic między różnymi technologiami sieciowymi oraz ich zastosowaniami. Ostatecznie, właściwe zrozumienie funkcji chmury obliczeniowej, VPN i PSTN jest kluczowe dla efektywnego zarządzania zasobami IT oraz zapewnienia bezpieczeństwa i wydajności operacji.

Pytanie 10

W systemach Microsoft Windows komenda netstat -a pokazuje

A. tabelę trasowania
B. wszystkie aktywne połączenia protokołu TCP
C. aktualne ustawienia konfiguracyjne sieci TCP/IP
D. statystyki odwiedzin witryn internetowych
Analizując inne odpowiedzi, należy zwrócić uwagę na błędne przypisania funkcjonalności do polecenia netstat. Tablica trasowania, na przykład, jest zarządzana przez inne polecenia, takie jak route, które pokazują ścieżki wykorzystywane do przekazywania danych w sieci. To podejście do zarządzania trasami jest kluczowe dla zrozumienia, jak pakiety są kierowane w sieci, co jest zupełnie innym zagadnieniem niż monitorowanie aktywnych połączeń. Statystyka odwiedzin stron internetowych dotyczy analizy logów serwerów WWW, co jest związane z innymi technikami i narzędziami, takimi jak analityka webowa, i również nie ma związku z funkcjonalnością netstat. Temat konfiguracji sieci TCP/IP związany jest z innymi narzędziami, jak ipconfig w systemach Windows, które udostępniają informacje o aktualnych ustawieniach protokołu, ale nie dotyczą aktywnych połączeń, które netstat wyświetla. Warto zrozumieć, że błędne interpretacje wynikają często z mylnego utożsamiania różnych narzędzi i ich funkcji. Kluczowe jest, aby użytkownicy rozwijali swoją wiedzę poprzez praktyczne doświadczenia oraz badania dokumentacji technicznych, co pozwala na właściwe wykorzystanie narzędzi i metod w administracji sieci.

Pytanie 11

Która z poniższych opcji nie jest wykorzystywana do zdalnego zarządzania stacjami roboczymi?

A. program UltraVNC
B. program TeamViewer
C. program Wireshark
D. pulpit zdalny
Program Wireshark jest narzędziem do analizy ruchu sieciowego, które pozwala na monitorowanie i analizowanie danych przesyłanych przez sieci komputerowe. Używany jest głównie do diagnostyki problemów z siecią, analizy bezpieczeństwa oraz do nauki o protokołach komunikacyjnych. Wireshark działa na zasadzie przechwytywania pakietów, co pozwala na szczegółową analizę ruchu w czasie rzeczywistym. W kontekście zdalnego zarządzania stacjami roboczymi, Wireshark nie pełni funkcji umożliwiającej zdalną kontrolę nad komputerami. Zamiast tego, programy takie jak TeamViewer, pulpit zdalny czy UltraVNC są przeznaczone do tego celu, umożliwiając użytkownikom zdalny dostęp oraz interakcję z desktopem innego komputera. Warto podkreślić, że korzystając z Wiresharka, administratorzy sieci mogą identyfikować nieautoryzowane połączenia, co jest kluczowe dla utrzymania bezpieczeństwa infrastruktury IT.

Pytanie 12

Zamiana koncentratorów na switch'e w sieci Ethernet doprowadzi do

A. konieczności modyfikacji adresów IP
B. powiększenia domeny rozgłoszeniowej
C. redukcji liczby kolizji
D. zmiany struktury sieci
Wymiana koncentratorów na przełączniki w sieci Ethernet rzeczywiście prowadzi do zmniejszenia ilości kolizji. Koncentratory (huby) działają na poziomie fizycznym modelu OSI i po prostu transmitują dane do wszystkich portów, co powoduje, że urządzenia w sieci mogą jednocześnie nadawać dane, co skutkuje kolizjami. Przełączniki (switches) operują na poziomie drugiego poziomu OSI, czyli warstwie łącza danych, i inteligentnie zarządzają ruchem, kierując ramki tylko do docelowego portu. Dzięki temu, gdy jedno urządzenie nadaje, inne mogą odbierać, co eliminuje kolizje. Praktycznie oznacza to, że sieci oparte na przełącznikach mogą obsługiwać wyższe prędkości przesyłania danych oraz większą liczbę urządzeń, co jest kluczowe w nowoczesnych środowiskach pracy, gdzie wymagana jest wysoka wydajność przesyłu danych. Warto również wspomnieć o standardzie IEEE 802.3, który określa zasady działania sieci Ethernet i wprowadza różne techniki, jak pełnodupleksowy tryb pracy, który dodatkowo minimalizuje kolizje.

Pytanie 13

Na diagramie blokowym procesora blok funkcjonalny oznaczony jako SIMD to

Ilustracja do pytania
A. zestaw 128 bitowych rejestrów wymaganych do przeprowadzania instrukcji SSE procesora dla liczb stało- i zmiennoprzecinkowych
B. zestaw 256 bitowych rejestrów, który znacznie przyspiesza obliczenia dla liczb stałopozycyjnych
C. jednostka procesora odpowiedzialna za obliczenia zmiennoprzecinkowe (koprocesor)
D. moduł procesora wykonujący wyłącznie operacje związane z grafiką
Wygląda na to, że mogą być jakieś nieporozumienia co do tego, co SIMD naprawdę robi. Często myśli się, że SIMD działa tylko w kontekście grafiki, ale w rzeczywistości przyspiesza różne zadania dzięki równoległemu przetwarzaniu danych. Łatwo pomylić SIMD z FPU, czyli jednostką zmiennoprzecinkową. FPU skupia się na liczbach zmiennoprzecinkowych, a SIMD w zasadzie pozwala przetwarzać wiele danych tego samego typu na raz. I nie jest to zestaw 256-bitowych rejestrów, co się czasem mówi – to są inne rozszerzenia, jak AVX. Ludziska też często mylą SIMD wyłącznie z obliczeniami stało-pozycyjnymi. W rzeczywistości obsługuje zarówno liczby stało-, jak i zmiennoprzecinkowe, co czyni go naprawdę wszechstronnym narzędziem. Rozumienie tych rzeczy może pomóc lepiej wykorzystywać nowoczesne technologie i optymalizować kod, żeby sprzęt działał wydajniej.

Pytanie 14

Na schemacie blokowym funkcjonalny blok RAMDAC ilustruje

Ilustracja do pytania
A. przetwornik analogowo-cyfrowy z pamięcią RAM
B. przetwornik cyfrowo-analogowy z pamięcią RAM
C. pamięć RAM karty graficznej
D. pamięć ROM karty graficznej
RAMDAC nie jest pamięcią RAM karty graficznej, ponieważ jego rola nie polega na przechowywaniu danych obrazu, lecz na ich przekształcaniu. Pamięć RAM w kartach graficznych, znana jako VRAM, służy do magazynowania danych potrzebnych do renderowania grafiki. Mylenie RAMDAC z VRAM wynika często z samego podobieństwa nazw oraz historycznego kontekstu, kiedy to RAMDAC i VRAM były fizycznie blisko siebie na płytce PCB kart graficznych. Przetwornik analogowo-cyfrowy z pamięcią RAM nie opisuje poprawnie funkcji RAMDAC, gdyż RAMDAC zajmuje się konwersją danych cyfrowych na sygnały analogowe, nie odwrotnie. Takie błędne założenie może wynikać z nieporozumienia, czym są konwersje AD i DA w kontekście systemów wideo. Pamięć ROM karty graficznej, używana do przechowywania firmware, nie ma żadnej bezpośredniej roli w przetwarzaniu sygnałów wyjściowych wideo. Nieporozumienia te często wynikają z braku precyzyjnego zrozumienia architektury kart graficznych i funkcji poszczególnych komponentów. Zrozumienie roli RAMDAC jest kluczowe dla osób projektujących sprzęt wideo oraz tych zajmujących się jego diagnostyką, gdyż umożliwia optymalizację jakości sygnału i zapewnienie kompatybilności z różnymi urządzeniami wyjściowymi.

Pytanie 15

Pełna maska podsieci z prefiksem /25 to

A. 255.255.255.240
B. 255.255.255.224
C. 255.255.255.128
D. 255.255.255.192
Maska podsieci o prefiksie /25 oznacza, że 25 bitów jest używanych do identyfikacji sieci, pozostawiając 7 bitów na identyfikację hostów. Wartość ta odpowiada masce 255.255.255.128. Umożliwia to utworzenie 128 adresów IP w danej podsieci, z czego 126 może być użytych jako adresy hostów, ponieważ jeden adres jest zarezerwowany dla identyfikacji sieci, a drugi dla broadcastu. W praktyce, maski o prefiksie /25 są idealne dla średnich sieci, które nie wymagają zbyt wielu adresów IP, ale mogą być bardziej efektywne w zarządzaniu zasobami IP. W kontekście dobra praktyki, stosowanie odpowiednich masek podsieci pozwala na optymalne wykorzystanie dostępnych adresów, co jest istotne zwłaszcza w większych organizacjach, gdzie zarządzanie adresacją IP ma kluczowe znaczenie.

Pytanie 16

Wykonanie polecenia ipconfig /renew w trakcie ustawiania interfejsów sieciowych doprowadzi do

A. usunięcia zawartości bufora programu DNS
B. zwolnienia wszystkich dzierżaw adresów IP z DHCP
C. pokazania identyfikatora klasy DHCP dla adapterów sieciowych
D. odnowienia wszystkich dzierżaw adresów IP z DHCP
Polecenie 'ipconfig /renew' jest używane do odnowienia dzierżaw adresów IP przydzielonych przez serwer DHCP (Dynamic Host Configuration Protocol). Gdy komputer lub urządzenie sieciowe łączy się z siecią, serwer DHCP może przydzielić mu tymczasowy adres IP na określony czas, zwany dzierżawą. Użycie 'ipconfig /renew' informuje klienta DHCP, aby ponownie skontaktował się z serwerem i zaktualizował swoje ustawienia sieciowe, co pozwala przydzielić nowy adres IP lub odnowić istniejący, zapewniając ciągłość połączenia. Jest to szczególnie przydatne w sytuacjach, gdy adres IP wygasa lub gdy zmienia się konfiguracja sieci, na przykład przy przenoszeniu urządzenia do innej podsieci. W praktyce, administratorzy sieci często stosują to polecenie, aby szybko rozwiązać problemy z połączeniem sieciowym, a także w sytuacjach, gdy urządzenia muszą uzyskać nową konfigurację IP po dokonaniu zmian w infrastrukturze sieciowej. Warto również dodać, że polecenie to powinno być stosowane zgodnie z najlepszymi praktykami zarządzania siecią, aby minimalizować zakłócenia i zapewnić stabilność połączeń.

Pytanie 17

Jaką maksymalną ilość GB pamięci RAM może obsłużyć 32-bitowa edycja systemu Windows?

A. 2 GB
B. 12 GB
C. 4 GB
D. 8 GB
32-bitowa wersja systemu Windows ma ograniczenie dotyczące maksymalnej ilości pamięci RAM, do której może uzyskać dostęp, wynoszące 4 GB. Wynika to z architektury 32-bitowej, w której adresowanie pamięci jest ograniczone do 2^32, co daje łącznie 4 294 967 296 bajtów, czyli dokładnie 4 GB. W praktyce, ilość dostępnej pamięci może być mniejsza, ponieważ część adresów jest wykorzystywana przez urządzenia i system operacyjny. Warto zauważyć, że użytkownicy aplikacji, które wymagają więcej pamięci, mogą rozważyć przejście na 64-bitową wersję systemu operacyjnego, która obsługuje znacznie większą ilość RAM, nawet do 128 TB w najnowszych systemach. Dlatego dla aplikacji wymagających dużej ilości pamięci, jak oprogramowanie do obróbki wideo czy zaawansowane gry, wybór 64-bitowego systemu jest kluczowy dla wydajności i stabilności pracy.

Pytanie 18

Które złącze w karcie graficznej nie stanowi interfejsu cyfrowego?

A. D-SUB 15pin
B. HDMI
C. DVI-D
D. Display Port
DVI-D, DisplayPort oraz HDMI to złącza, które korzystają z technologii cyfrowej, co oznacza, że przesyłają sygnał wideo w formie cyfrowych danych, co pozwala na uzyskanie lepszej jakości obrazu w porównaniu do złącza D-SUB. DVI-D (Digital Visual Interface - Digital) przesyła tylko sygnał cyfrowy, co czyni je bardziej odpornym na straty jakości sygnału niż analogowe złącza. Jest to standard, który znaleźć można w wielu nowoczesnych monitorach oraz kartach graficznych. DisplayPort to kolejny przykład interfejsu cyfrowego, który oferuje większą elastyczność i wsparcie dla wyższych rozdzielczości oraz większej liczby monitorów podłączonych w jednym czasie. HDMI (High-Definition Multimedia Interface) jest powszechnie stosowane w telewizorach, konsolach do gier i komputerach, oferując jednocześnie przesył dźwięku oraz obrazu w jednej linii. Wiele osób może błędnie uważać, że wszystkie złącza wideo są podobne, jednak kluczowe różnice w technologii przesyłania sygnału mogą wpływać na jakość i kompatybilność wyjść wideo. Dlatego przy wyborze odpowiedniego złącza dla swojego systemu multimedialnego, warto zrozumieć różnice między nimi oraz ich odpowiednie zastosowanie w zależności od potrzeb.

Pytanie 19

Adres IP 192.168.2.0/24 został podzielony na cztery mniejsze podsieci. Jaką maskę mają te nowe podsieci?

A. 255.255.255.224
B. 225.225.225.240
C. 255.255.255.192
D. 255.255.255.128
Wybór jednej z pozostałych odpowiedzi nie jest prawidłowy z kilku powodów. Maska 255.255.255.224 odpowiada notacji /27, co pozwala na podział na 8 podsieci, a nie 4. Przesunięcie granicy maski w prawo o dodatkowe 3 bity powoduje, że mamy 32 adresy w każdej podsieci, z czego tylko 30 może być używanych przez hosty. Taki nadmiar segmentacji nie byłby konieczny w przypadku czterech podsieci, prowadząc do marnotrawienia adresów IP. Z kolei maska 255.255.255.128 (czyli /25) pozwala na utworzenie zaledwie 2 podsieci, co jest również sprzeczne z wymaganiami zadania. Wreszcie, odpowiedź 225.225.225.240 jest niepoprawna z przyczyn technicznych, gdyż ta wartość nie jest ani zrozumiała, ani stosowana w kontekście masek podsieci. Odpowiedzi te mogą prowadzić do powszechnych błędów w zrozumieniu mechanizmów adresacji w sieci, w szczególności w kontekście podziału na podsieci, co jest kluczowym zagadnieniem w planowaniu i zarządzaniu sieciami komputerowymi. Właściwe zrozumienie tego tematu jest niezbędne dla specjalistów IT, aby uniknąć problemów z wydajnością lub brakiem dostępnych adresów IP w rozwijających się sieciach.

Pytanie 20

Wskaż złącze, które nie jest stosowane w zasilaczach ATX?

A. MPC
B. SATA Connector
C. PCI-E
D. DE-15/HD-15
Złącze DE-15/HD-15, znane również jako złącze VGA, jest interfejsem analogowym używanym głównie do przesyłania sygnału wideo z komputera do monitora. Nie jest to złącze stosowane w zasilaczach ATX, które są projektowane z myślą o zasilaniu komponentów komputerowych, a nie o przesyłaniu sygnałów wideo. Zasilacze ATX wykorzystują złącza takie jak 24-pinowe złącze główne, złącza 4/8-pinowe do procesora, złącza SATA do dysków twardych oraz złącza PCI-E do kart graficznych. Przykładem zastosowania złącza DE-15/HD-15 jest podłączanie starszych monitorów CRT lub projektorów, podczas gdy w nowoczesnych systemach dominują złącza cyfrowe, takie jak HDMI czy DisplayPort. Zrozumienie różnorodnych typów złączy i ich zastosowania w praktyce jest kluczowe dla prawidłowego montażu oraz diagnostyki komputerów.

Pytanie 21

Interfejs, którego magistrala kończy się elementem przedstawionym na ilustracji, jest typowy dla

Ilustracja do pytania
A. UDMA
B. SATA
C. ATAPI
D. SCSI
SATA jest nowoczesnym interfejsem zaprojektowanym do podłączania dysków twardych i napędów optycznych wewnątrz komputerów głównie przeznaczonym do użytku osobistego w komputerach stacjonarnych i laptopach SATA korzysta z cienkich kabli charakteryzujących się mniejszymi złączami co ułatwia prowadzenie kabli wewnątrz obudowy i poprawia przepływ powietrza jednak nie korzysta z masywnych złączy widocznych na obrazku ATAPI to kolejny standard często mylony z SCSI ponieważ jest używany do podłączania napędów optycznych do magistrali IDE stanowi rozwinięcie standardu ATA do obsługi urządzeń takich jak napędy CD/DVD jednak nie korzysta z prezentowanego złącza UDMA to technologia przesyłu danych wykorzystywana w interfejsach ATA i ATAPI podnosząca ich wydajność pod względem prędkości przesyłania danych nie jest to jednak fizyczny interfejs ani typ złącza jak ukazano na obrazku Błędne interpretacje mogą wynikać z pomylenia fizycznych złączy z protokołami przesyłania danych oraz braku rozróżnienia między interfejsami wewnętrznymi i zewnętrznymi co podkreśla konieczność zrozumienia specyficznych zastosowań i budowy poszczególnych technologii interfejsów komputerowych

Pytanie 22

Jaką topologię fizyczną sieci komputerowej przedstawia załączony rysunek?

Ilustracja do pytania
A. Siatka
B. Magistrala
C. Gwiazda rozszerzona
D. Podwójny pierścień
Topologia podwójnego pierścienia jest stosowana w sieciach komputerowych, gdzie dwa pierścienie zapewniają redundancję i większą niezawodność. W przypadku awarii jednego z pierścieni, dane mogą być przekazywane w przeciwnym kierunku, co minimalizuje ryzyko przerwania komunikacji. Technologie takie jak FDDI (Fiber Distributed Data Interface) często wykorzystują podwójny pierścień, aby zapewnić szybkie i niezawodne przesyłanie danych na duże odległości w sieciach korporacyjnych. W praktyce topologia ta jest szczególnie użyteczna w sieciach o znaczeniu krytycznym, takich jak sieci bankowe czy systemy kontroli ruchu lotniczego, gdzie ciągłość działania jest kluczowa. Zgodnie z standardami IEEE, taka konfiguracja zwiększa przepustowość i odporność na błędy, przy jednoczesnym zachowaniu prostoty zarządzania. Dzięki dwóm niezależnym ścieżkom komunikacyjnym topologia ta umożliwia inteligentne zarządzanie ruchem sieciowym i zapewnia dodatkową warstwę ochrony przed utratą danych.

Pytanie 23

Usługa, umożliwiająca zdalną pracę na komputerze z systemem Windows z innego komputera z systemem Windows, który jest połączony z tą samą siecią lub z Internetem, to

A. DHCP
B. pulpit zdalny
C. FTP
D. serwer plików
Usługa pulpitu zdalnego pozwala użytkownikom na zdalny dostęp do komputerów z systemem Windows, co jest szczególnie użyteczne w kontekście pracy zdalnej, obsługi technicznej czy szkoleń online. Pulpit zdalny wykorzystuje protokół RDP (Remote Desktop Protocol), który umożliwia przesyłanie obrazu ekranu oraz danych wejściowych (takich jak mysz i klawiatura) pomiędzy komputerem lokalnym a zdalnym. Dzięki temu użytkownik może korzystać z pełnej funkcjonalności zdalnego systemu, jakby siedział bezpośrednio przed nim. Przykłady zastosowania obejmują umożliwienie pracownikom pracy zdalnej z biura, co zwiększa elastyczność i wydajność pracy, a także udzielanie wsparcia technicznego przez specjalistów IT. W praktyce, aby skonfigurować pulpit zdalny, użytkownicy muszą upewnić się, że odpowiednie ustawienia w systemie operacyjnym są aktywne, a także że porty sieciowe są odpowiednio skonfigurowane w zaporze sieciowej. Ponadto, stosowanie dobrych praktyk w zakresie bezpieczeństwa, takich jak korzystanie z silnych haseł oraz dwuskładnikowej autoryzacji, jest kluczowe dla ochrony danych podczas korzystania z pulpitu zdalnego.

Pytanie 24

Po włączeniu komputera wyświetlił się komunikat: Non-system disk or disk error. Replace and strike any key when ready. Co może być tego przyczyną?

A. uszkodzony kontroler DMA
B. brak pliku NTLDR
C. dyskietka włożona do napędu
D. skasowany BIOS komputera
Odpowiedź, którą zaznaczyłeś, dotyczy sytuacji, w której komputer ma problem z rozruchem przez obecność dyskietki w napędzie. Kiedy uruchamiasz system operacyjny, to najpierw sprawdza on BIOS, żeby zobaczyć, jakie urządzenia mogą być użyte do rozruchu. Jeśli napęd dyskietek jest ustawiony jako pierwsze urządzenie startowe i jest w nim dyskietka, komputer spróbuje z niego wystartować. Może to prowadzić do błędu, jeśli dyskietka nie ma właściwych plików do uruchomienia. Przykładowo, wysunięcie dyskietki lub zmiana ustawień bootowania w BIOS, żeby najpierw próbować uruchomić z twardego dysku, powinno załatwić sprawę. To się często zdarza w starszych komputerach, gdzie dyskietki były normą. Warto zawsze sprawdzać, jak jest skonfigurowany BIOS, żeby jakieś stare urządzenie, jak napęd dyskietek, nie przeszkadzało w uruchamianiu systemu.

Pytanie 25

Aby poprawić niezawodność i efektywność przesyłu danych na serwerze, należy

A. przechowywać dane na innym dysku niż ten z systemem
B. stworzyć punkt przywracania systemu
C. ustawić automatyczne tworzenie kopii zapasowych
D. zainstalować macierz dyskową RAID1
Zainstalowanie macierzy dyskowej RAID1 jest kluczowym krokiem w zwiększaniu niezawodności oraz wydajności transmisji danych na serwerze. RAID1, czyli macierz lustrzana, polega na duplikowaniu danych na dwóch dyskach twardych, co zapewnia wysoką dostępność i ochronę przed utratą danych. W przypadku awarii jednego z dysków, system kontynuuje działanie dzięki drugiemu, co minimalizuje ryzyko przestojów. Przykładem zastosowania RAID1 może być serwer obsługujący bazę danych, gdzie utrata danych mogłaby prowadzić do ogromnych strat finansowych. Dodatkowo, RAID1 poprawia wydajność odczytu danych, ponieważ system może jednocześnie odczytywać z dwóch dysków. W branży IT zaleca się stosowanie RAID1 w sytuacjach, gdzie niezawodność i dostępność danych są kluczowe, zgodnie z najlepszymi praktykami zarządzania danymi. Implementacja takiego rozwiązania powinna być częścią szerszej strategii zabezpieczeń, obejmującej również regularne wykonywanie kopii zapasowych.

Pytanie 26

Na rysunku przedstawiono ustawienia karty sieciowej urządzenia z adresem IP 10.15.89.104/25. Co z tego wynika?

Ilustracja do pytania
A. adres IP jest błędny
B. adres maski jest błędny
C. adres domyślnej bramy pochodzi z innej podsieci niż adres hosta
D. serwer DNS znajduje się w tej samej podsieci co urządzenie
Odpowiedź jest poprawna, ponieważ adres domyślnej bramy jest z innej podsieci niż adres hosta. Kluczowym elementem jest zrozumienie, jak działają podsieci w sieciach komputerowych. Adres IP 10.15.89.104 z maską 255.255.255.128 oznacza, że sieć obejmuje adresy od 10.15.89.0 do 10.15.89.127. Adres bramy 10.15.89.129 jest poza tym zakresem, co oznacza, że należy do innej podsieci. To jest ważne, ponieważ brama domyślna musi być w tej samej podsieci co host, aby komunikacja wychodząca z lokalnej sieci mogła być prawidłowo przekierowana. W praktyce konfiguracje tego typu są istotne dla administratorów sieci, którzy muszą zapewnić, że urządzenia sieciowe są prawidłowo skonfigurowane. Zgodność adresacji IP z maską podsieci oraz prawidłowe przypisanie bramy są kluczowe dla unikania problemów z łącznością sieciową. Standardowe praktyki branżowe zalecają dokładną weryfikację konfiguracji, aby upewnić się, że wszystkie urządzenia mogą komunikować się efektywnie i bez zakłóceń. Prawidłowa konfiguracja wspiera stabilność sieci i minimalizuje ryzyko wystąpienia problemów związanych z routingiem danych.

Pytanie 27

Jakim poleceniem w systemie Linux można utworzyć nowych użytkowników?

A. useradd
B. usersadd
C. usermod
D. net user
Polecenie 'useradd' jest podstawowym narzędziem w systemach Linux do zakupu nowych użytkowników. Umożliwia ono administratorom systemu tworzenie kont użytkowników z określonymi atrybutami, takimi jak nazwa użytkownika, hasło, katalog domowy oraz powiązane grupy. W przeciwieństwie do 'usersadd', które jest literówką, 'useradd' jest standardowym poleceniem zgodnym z normami UNIX. Przykładowa komenda, aby dodać nowego użytkownika o nazwie 'janek', to 'sudo useradd janek'. Można także określić dodatkowe opcje, takie jak '-m' do utworzenia katalogu domowego lub '-s' do zdefiniowania domyślnej powłoki użytkownika. Dobre praktyki sugerują stosowanie opcji '-e' do ustalenia daty wygaśnięcia konta oraz '-G' do przypisania użytkownika do dodatkowych grup. Dzięki takim funkcjom, 'useradd' jest niezwykle elastycznym narzędziem, które pozwala na skuteczne zarządzanie użytkownikami w systemie. Zrozumienie jego działania jest kluczowe dla administracyjnych zadań w systemie Linux.

Pytanie 28

AC-72-89-17-6E-B2 to adres MAC karty sieciowej zapisany w formacie

A. heksadecymalnej
B. binarnej
C. dziesiętnej
D. oktalnej
Adres AC-72-89-17-6E-B2 to przykład adresu MAC, który jest zapisany w formacie heksadecymalnym. W systemie heksadecymalnym każda cyfra może przyjmować wartości od 0 do 9 oraz od A do F, co pozwala na reprezentację 16 różnych wartości. W kontekście adresów MAC, każda para heksadecymalnych cyfr reprezentuje jeden bajt, co jest kluczowe w identyfikacji urządzeń w sieci. Adresy MAC są używane w warstwie łącza danych modelu OSI i są istotne w takich protokołach jak Ethernet. Przykładowe zastosowanie adresów MAC to filtrowanie adresów w routerach, co pozwala na kontrolę dostępu do sieci. Zrozumienie systemów liczbowych, w tym heksadecymalnego, jest istotne dla profesjonalistów w dziedzinie IT, ponieważ wiele protokołów i standardów, takich jak IPv6, stosuje heksadecymalną notację. Ponadto, dobra znajomość adresowania MAC jest niezbędna przy rozwiązywaniu problemów z sieciami komputerowymi, co czyni tę wiedzę kluczową w pracy administratorów sieci.

Pytanie 29

Jaką długość ma maska sieci dla adresów z klasy B?

A. 24 bity
B. 8 bitów
C. 16 bitów
D. 12 bitów
Odpowiedź 16 bitów jest prawidłowa, ponieważ w klasie B adresy IP mają zdefiniowaną długość maski sieci wynoszącą 255.255.0.0, co odpowiada 16 bitom przeznaczonym na identyfikację sieci. Klasa B jest używana w dużych sieciach, gdzie liczba hostów w sieci jest znaczna. Zastosowanie tej długości maski pozwala na podział dużych przestrzeni adresowych, co jest istotne w kontekście efektywnego zarządzania adresami IP. W praktyce, adresy IP klasy B są często wykorzystywane w organizacjach oraz instytucjach posiadających wiele urządzeń w sieci. Przykładem zastosowania jest zbudowanie infrastruktury dla korporacji, gdzie adresy przypisane do różnych działów mogą być zarządzane w ramach tej samej sieci. Warto również zauważyć, że w standardach TCP/IP, klasy adresowe są klasyfikowane w sposób, który wspiera różnorodne scenariusze sieciowe, a znajomość długości maski jest kluczowa dla administratorów sieci.

Pytanie 30

Które z kart sieciowych o podanych adresach MAC zostały wytworzone przez tego samego producenta?

A. 00:17:B9:00:1F:FE oraz 00:16:B9:00:1F:FE
B. 00:16:B9:00:1F:FE oraz 00:16:B8:00:2F:FE
C. 00:17:B9:00:1F:FE oraz 00:16:B9:00:2F:FE
D. 00:16:B9:00:1F:FE oraz 00:16:B9:00:2F:FE
Błędne odpowiedzi często wynikają z mylących założeń dotyczących struktury adresów MAC oraz znaczenia OUI. Na przykład, odpowiedzi, w których OUI różni się w pierwszych trzech oktetach, mogą prowadzić do przekonania, że urządzenia są produkowane przez tego samego producenta, co jest nieprawdziwe. W przypadku adresów MAC 00:17:B9:00:1F:FE oraz 00:16:B9:00:2F:FE, różnica w OUI (00:17:B9 vs 00:16:B9) wskazuje, że są one produkowane przez różnych producentów, co może prowadzić do problemów z kompatybilnością. Kolejnym typowym błędem jest zakładanie, że adresy MAC są jedynym wskaźnikiem producenta, podczas gdy w rzeczywistości mogą one być fałszowane lub zmieniane. To wymaga od administratorów sieci ostrożności przy analizie sprzętu oraz przy ustalaniu procedur bezpieczeństwa. Istotne jest również zrozumienie, że adresy MAC są używane nie tylko do identyfikacji, ale także do zarządzania ruchem sieciowym. Właściwe przypisanie OUI wpływa także na protokoły sieciowe, co może mieć dalekosiężne skutki w kontekście rozwoju infrastruktury sieciowej i jej utrzymania.

Pytanie 31

Ustawienia wszystkich kont użytkowników na komputerze znajdują się w gałęzi rejestru oznaczonej akronimem

A. HKU
B. HKCC
C. HKLM
D. HKCR
Wybór HKCC, HKLM czy HKCR, mimo że związane z rejestrem Windows, nie dotyczą profili użytkowników. HKCC, to "HKEY_CURRENT_CONFIG" i tam są informacje o bieżącej konfiguracji sprzętowej, więc to nie ma wpływu na indywidualne ustawienia. Rozumienie tej gałęzi jest ważne przy monitorowaniu sprzętu, ale nie znajdziesz tam profili użytkowników. HKLM, czyli "HKEY_LOCAL_MACHINE", to dane o konfiguracji systemu oraz sprzętu, które są wspólne dla wszystkich, więc również nie dotyczy konkretnego konta. Rola HKLM w zarządzaniu systemem jest istotna, ale nie dla personalizacji. Z kolei HKCR, czyli "HKEY_CLASSES_ROOT", przechowuje informacje o typach plików i ich skojarzeniach, co też nie dotyczy użytkowników. Dlaczego tak się dzieje? Myślę, że można tu pomylić kontekst informacji w rejestrze i nie do końca zrozumieć, jak to działa. Dobra znajomość tych gałęzi rejestru jest kluczowa, żeby skutecznie zarządzać systemem Windows.

Pytanie 32

Protokół User Datagram Protocol (UDP) należy do

A. warstwy łącza danych bezpołączeniowej w modelu ISO/OSI
B. warstwy transportowej z połączeniem w modelu TCP/IP
C. transportowych protokołów bezpołączeniowych w modelu TCP/IP
D. połączeniowych protokołów warstwy łącza danych w ISO/OSI
User Datagram Protocol (UDP) jest bezpołączeniowym protokołem warstwy transportowej w modelu TCP/IP, co oznacza, że nie nawiązuje on dedykowanego połączenia przed przesyłaniem danych. To podejście pozwala na szybsze przesyłanie pakietów, co jest szczególnie korzystne w aplikacjach wymagających niskich opóźnień, takich jak transmisje wideo na żywo, gry online czy VoIP. W przeciwieństwie do połączeniowych protokołów, takich jak TCP, UDP nie zapewnia mechanizmów kontroli błędów ani ponownego przesyłania utraconych danych, co sprawia, że jest bardziej efektywny w warunkach dużego obciążenia sieciowego. Przykładem zastosowania UDP są protokoły takie jak DNS (Domain Name System), które wymagają szybkiej odpowiedzi, gdzie minimalizacja opóźnień jest kluczowa. W kontekście standardów branżowych, UDP jest zgodny z dokumentem RFC 768, który definiuje jego funkcje oraz zasady działania. Zrozumienie roli UDP w architekturze sieciowej jest fundamentalne dla inżynierów sieci i programistów aplikacji wymagających wysokiej wydajności.

Pytanie 33

Kiedy adres IP komputera ma formę 176.16.50.10/26, to jakie będą adres rozgłoszeniowy oraz maksymalna liczba hostów w danej sieci?

A. 176.16.50.36; 6 hostów
B. 176.16.50.62; 63 hosty
C. 176.16.50.63; 62 hosty
D. 176.16.50.1; 26 hostów
Odpowiedź 176.16.50.63; 62 hosty jest jak najbardziej trafna. Żeby ogarnąć adres rozgłoszeniowy i maksymalną liczbę hostów w sieci, trzeba się przyjrzeć masce podsieci. W tym przypadku mamy maskę /26, co znaczy, że 26 bitów jest zajętych na identyfikację sieci, a 6 bitów zostaje dla hostów. Można to obliczyć tak: 2 do potęgi n, minus 2, gdzie n to liczba bitów dla hostów. Dla 6 bitów wychodzi 2^6 - 2, czyli 64 - 2, co daje nam 62 hosty. Adres rozgłoszeniowy uzyskujemy ustawiając wszystkie bity hostów na 1. Więc w naszej sieci, z adresem IP 176.16.50.10 i maską /26, mamy zakres od 176.16.50.0 do 176.16.50.63, co wskazuje, że adres rozgłoszeniowy to 176.16.50.63. Te obliczenia to podstawa w projektowaniu sieci komputerowych, więc dobrze, że się z tym zapoznałeś!

Pytanie 34

W programie Explorator systemu Windows, naciśnięcie klawisza F5 zazwyczaj powoduje wykonanie następującej operacji:

A. otwierania okna wyszukiwania
B. uruchamiania drukowania zrzutu ekranowego
C. odświeżania zawartości bieżącego okna
D. kopiowania
Klawisz F5 w programie Explorator systemu Windows jest standardowo przypisany do czynności odświeżania zawartości bieżącego okna. Oznacza to, że naciśnięcie tego klawisza spowoduje ponowne załadowanie aktualnych danych wyświetlanych w folderze lub na stronie internetowej. Ta funkcjonalność jest szczególnie przydatna w sytuacjach, gdy chcemy upewnić się, że widzimy najnowsze informacje, na przykład po dodaniu lub usunięciu plików. W praktyce, odświeżanie okna pozwala na szybkie sprawdzenie zmian w zawartości, co jest nieocenione w codziennej pracy z plikami i folderami. Warto zaznaczyć, że jest to zgodne z ogólnym standardem interakcji użytkownika w systemach operacyjnych, gdzie klawisz F5 jest powszechnie używany do odświeżania. W kontekście dobrych praktyk, znajomość skrótów klawiaturowych, takich jak F5, przyczynia się do zwiększenia efektywności pracy i oszczędności czasu, stanowiąc istotny element przeszkolenia użytkowników w zakresie obsługi systemu Windows.

Pytanie 35

Aby wyświetlić informacje o systemie Linux w terminalu, jakie polecenie należy wprowadzić?

Ilustracja do pytania
A. hostname
B. uptime
C. uname -a
D. factor 22
Polecenie hostname w Linuksie służy do wyświetlania lub ustawiania nazwy hosta komputera w sieci. Jego głównym zastosowaniem jest identyfikacja urządzenia w sieci komputerowej co nie dostarcza szerokiego zakresu informacji o systemie operacyjnym jako całości. Polecenie factor 22 natomiast oblicza czynniki liczby 22 co jest użyteczne w matematycznych operacjach ale nie ma żadnego związku z diagnostyką systemu operacyjnego. Polecenie uptime informuje o czasie działania systemu od ostatniego uruchomienia oraz o obciążeniu systemu. Jest istotne w monitorowaniu stabilności systemu i jego wydajności jednak nie dostarcza szczegółowych informacji o wersji jądra czy architekturze procesora. Typowym błędem myślowym jest założenie że każde polecenie związane z informacją o systemie dostarcza pełnego zestawu danych czego potrzebuje uname -a. Rozróżnienie pomiędzy tymi poleceniami jest kluczowe dla skutecznego zarządzania systemem Linuks i zrozumienia ich specyficznych zastosowań. Właściwe użycie poleceń terminalowych jest podstawą dla administratorów systemów i wpływa na efektywność ich codziennej pracy.

Pytanie 36

Na przedstawionym zrzucie panelu ustawień rutera można zauważyć, że serwer DHCP

Ilustracja do pytania
A. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.100
B. może przydzielać maksymalnie 10 adresów IP
C. może przydzielać maksymalnie 154 adresy IP
D. przydziela adresy IP z zakresu 192.168.1.1 - 192.168.1.10
Serwer DHCP skonfigurowany na routerze może przydzielić maksymalnie 10 adresów IP, ponieważ w polu 'Maximum Number of DHCP Users' ustawiono wartość 10. Oznacza to, że serwer DHCP może obsłużyć tylko 10 różnych urządzeń jednocześnie, przypisując im adresy IP z dostępnego zakresu. Jest to często stosowana konfiguracja w małych sieciach, gdzie liczba urządzeń jest ograniczona i nie ma potrzeby alokacji większej liczby adresów. Przydzielanie adresów IP przez DHCP ułatwia zarządzanie siecią, ponieważ eliminuje potrzebę ręcznego konfigurowania każdego urządzenia. Podczas konfiguracji DHCP ważne jest, aby zwrócić uwagę na zakres adresów dostępnych dla użytkowników, co może być ograniczone przez maskę podsieci. Dobrą praktyką jest ustawienie odpowiedniej liczby użytkowników DHCP, aby uniknąć sytuacji, w której zabraknie dostępnych adresów IP dla nowych urządzeń. W przypadku większych sieci warto rozważyć segmentację sieci i zastosowanie większego zakresu adresacji. Stosowanie DHCP wspiera automatyzację i elastyczność w zarządzaniu dynamicznie zmieniającą się infrastrukturą IT.

Pytanie 37

Element drukujący, składający się z wielu dysz połączonych z mechanizmem drukującym, znajduje zastosowanie w drukarce

A. laserowej
B. atramentowej
C. głównej
D. termosublimacyjnej
Wybór innych odpowiedzi wskazuje na niezrozumienie różnic między typami drukarek. Drukarka głowowa, chociaż terminy mogą być mylące, zazwyczaj nie odnosi się bezpośrednio do konkretnego rodzaju technologii druku, przez co nie można jej uznać za właściwą w kontekście głowicy drukującej. Z kolei drukarki laserowe działają na zupełnie innej zasadzie; zamiast głowicy z dyszami, wykorzystują laser do naświetlania bębna, co następnie przenosi proszek tonera na papier. Ta technologia jest bardziej wydajna w przypadku dużych nakładów drukowania monochromatycznego, ale nie produkuje obrazów w taki sposób, jak drukarki atramentowe. Wreszcie, drukarki termosublimacyjne, używane głównie w fotografii, również nie korzystają z głowic z dyszami w klasycznym rozumieniu. Zamiast tego polegają na sublimacji barwników, co skutkuje inną techniką aplikacji materiału, a nie na precyzyjnym wtrysku atramentu. Zrozumienie tych różnic jest kluczowe dla właściwego wyboru technologii drukarskiej w zależności od potrzeb, takich jak jakość druku, szybkość oraz koszty eksploatacji.

Pytanie 38

Jaki tryb funkcjonowania Access Pointa jest wykorzystywany do umożliwienia urządzeniom bezprzewodowym łączności z przewodową siecią LAN?

A. Most bezprzewodowy
B. Tryb klienta
C. Repeater
D. Punkt dostępowy
Punkt dostępowy (Access Point, AP) to urządzenie, które pełni kluczową rolę w zapewnieniu dostępu bezprzewodowego do sieci przewodowej, czyli LAN. Działa jako most łączący urządzenia bezprzewodowe z siecią przewodową, pozwalając na komunikację i wymianę danych. W praktyce, AP umożliwia użytkownikom korzystanie z internetu i zasobów sieciowych w miejscach, gdzie nie ma dostępu do przewodów Ethernetowych. Współczesne punkty dostępowe obsługują różne standardy, takie jak IEEE 802.11a/b/g/n/ac/ax, co zapewnia różnorodność prędkości przesyłania danych oraz zasięg. Przykładem zastosowania AP jest biuro, gdzie pracownicy korzystają z laptopów i smartfonów do podłączania się do lokalnej sieci bezprzewodowej. Dobrze skonfigurowany punkt dostępowy może znacząco poprawić wydajność sieci oraz umożliwić bezproblemową komunikację urządzeń mobilnych z zasobami w sieci lokalnej, co jest zgodne z najlepszymi praktykami w zakresie zarządzania sieciami. Warto zwrócić uwagę, że stosowanie AP w odpowiednich miejscach, z odpowiednim zabezpieczeniem (np. WPA3), jest kluczowe dla ochrony danych przesyłanych w sieci.

Pytanie 39

Jakie polecenie powinien wydać root w systemie Ubuntu Linux, aby zaktualizować wszystkie pakiety (cały system) do najnowszej wersji, łącznie z nowym jądrem?

A. apt-get update
B. apt-get dist-upgrade
C. apt-get install nazwa_pakietu
D. apt-get upgrade
Wykorzystanie polecenia 'apt-get install nazwa_pakietu' jest podejściem błędnym, ponieważ to polecenie służy do instalacji pojedynczego pakietu, a nie do aktualizacji całego systemu. Przy jego użyciu można zainstalować nową aplikację, ale nie zaktualizować już istniejących. Z kolei polecenie 'apt-get update' jest odpowiedzialne za aktualizację lokalnej bazy danych pakietów. To oznacza, że po jego wykonaniu system ma aktualne informacje o dostępnych wersjach pakietów, jednak nie prowadzi do żadnych zmian w samej instalacji oprogramowania. Analogicznie, 'apt-get upgrade' zaktualizuje jedynie istniejące pakiety do najnowszych wersji, ale nie rozwiązuje w przypadku nowych zależności, co może prowadzić do pominięcia ważnych aktualizacji, w tym aktualizacji jądra. W praktyce, polecenia te mogą wprowadzać w błąd osoby, które nie są zaznajomione z różnicami między nimi, co z kolei może prowadzić do niedostatecznego zabezpieczenia systemu. Dlatego kluczowe jest zrozumienie, że aby przeprowadzić kompleksową aktualizację systemu oraz nowego jądra, konieczne jest użycie 'apt-get dist-upgrade', które obejmuje pełne zarządzanie pakietami i ich zależnościami.

Pytanie 40

Komputer, którego serwis ma być wykonany u klienta, nie odpowiada na naciśnięcie przycisku POWER. Jakie powinno być pierwsze zadanie w planie działań związanych z identyfikacją i naprawą tej awarii?

A. sprawdzenie, czy zasilanie w gniazdku sieciowym jest prawidłowe
B. opracowanie kosztorysu naprawy
C. odłączenie wszystkich komponentów, które nie są potrzebne do działania komputera
D. przygotowanie rewersu serwisowego
Odłączenie wszystkich podzespołów, zbędnych do działania komputera, może wydawać się logicznym krokiem, gdy komputer nie reaguje na przycisk POWER. Jednakże takie podejście jest nieefektywne i nieprzemyślane, ponieważ nie prowadzi bezpośrednio do zidentyfikowania przyczyny problemu. W wielu przypadkach, zanim przystąpimy do demontażu komputera, musimy upewnić się, że jest on w ogóle zasilany. W praktyce, rozmontowywanie komputera w celu odłączenia podzespołów zwiększa ryzyko uszkodzenia delikatnych komponentów, takich jak płyta główna czy złącza. Dodatkowo, sporządzenie rewersu serwisowego lub kosztorysu naprawy na etapie, gdy nie mamy pewności, co do źródła problemu, staje się zbędne i może prowadzić do niepotrzebnych opóźnień w procesie diagnozy. Kluczowym błędem myślowym jest założenie, że problemy z zasilaniem można zignorować, a bardziej skomplikowane czynności diagnostyczne należy wykonać jako pierwsze. W rzeczywistości, wiele przypadków awarii sprzętowych wynika z prozaicznych problemów związanych z zasilaniem, co podkreśla znaczenie wykonania podstawowych kroków diagnostycznych, zanim przejdziemy do bardziej zaawansowanych działań.