Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.05 - Eksploatacja maszyn, urządzeń i instalacji elektrycznych
  • Data rozpoczęcia: 28 września 2025 21:59
  • Data zakończenia: 28 września 2025 22:38

Egzamin niezdany

Wynik: 0/40 punktów (0,0%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Jakie są maksymalne dopuszczalne odchylenia napięcia zasilającego dla elektrycznych urządzeń napędowych?

A. 5,0% Un
B. 7,5% Un
C. 10,0% Un
D. 2,5% Un

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalne dopuszczalne odchylenia napięcia zasilającego elektryczne urządzenia napędowe wynoszą 5,0% Un, zgodnie z obowiązującymi normami i standardami branżowymi, takimi jak IEC 60038. Utrzymanie napięcia w tym zakresie jest istotne dla zapewnienia prawidłowego działania urządzeń, ich wydajności oraz bezpieczeństwa. Przykładowo, w przypadku silników elektrycznych, zbyt duże odchylenie napięcia może prowadzić do ich przegrzewania, spadku momentu obrotowego oraz obniżenia żywotności. Dopuszczalne odchylenie 5,0% jest uznawane za optymalne, ponieważ zapewnia równocześnie elastyczność w przyłączeniach do różnych źródeł zasilania oraz minimalizuje ryzyko uszkodzeń i awarii. W praktyce, na przykład w dużych zakładach przemysłowych, kontrolowanie napięcia zasilającego i jego odchyleń jest kluczowe dla zapewnienia ciągłości produkcji oraz efektywności energetycznej. Zastosowanie odpowiednich zabezpieczeń oraz monitorowanie parametrów zasilania pozwala na uniknięcie niekorzystnych skutków, co jest zgodne z najlepszymi praktykami inżynieryjnymi.

Pytanie 2

Uzwojenie pierwotne transformatora jednofazowego jest zrobione z drutu nawojowego

A. o mniejszej średnicy i niższej liczbie zwojów niż uzwojenie wtórne
B. o większej średnicy i wyższej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i niższej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Uzwojenie pierwotne transformatora jednofazowego rzeczywiście jest wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne. Ta konstrukcja jest kluczowa w kontekście działania transformatora, ponieważ umożliwia efektywną indukcję elektromagnetyczną. Uzwojenie pierwotne, mając więcej zwojów, generuje silniejsze pole magnetyczne w rdzeniu transformatora, co sprzyja przekazywaniu energii do uzwojenia wtórnego. Dodatkowo zastosowanie cieńszego drutu zmniejsza straty energii związane z oporem elektrycznym, co jest zgodne z dobrymi praktykami projektowania transformatorów. Przykładowo, w transformatorach niskonapięciowych, takich jak te stosowane w zasilaczach, kluczowe jest, aby uzwojenie pierwotne miało odpowiednią liczbę zwojów, co pozwala na uzyskanie pożądanej wartości napięcia wyjściowego na uzwojeniu wtórnym, zgodnie z zasadą transformacji napięcia, opisaną wzorem: U1/U2 = N1/N2, gdzie U to napięcie, a N to liczba zwojów.

Pytanie 3

Które z poniższych wymagań nie jest konieczne do spełnienia przy wprowadzaniu do użytku po remoncie urządzenia napędowego z silnikiem trójfazowym Pn = 15 kW, Un = 400 V (Δ), fn = 50 Hz?

A. Wyniki testów technicznych urządzenia są zadowalające
B. Silnik jest wyposażony w przełącznik gwiazda-trójkąt
C. Moc silnika jest odpowiednia do wymagań napędzanego sprzętu
D. Urządzenie spełnia kryteria efektywnego zużycia energii

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca na to, że silnik jest wyposażony w przełącznik gwiazda-trójkąt jest poprawna, ponieważ to wymaganie nie jest konieczne do spełnienia przy przyjmowaniu urządzenia napędowego do eksploatacji po remoncie. Przełącznik gwiazda-trójkąt jest stosowany w silnikach elektrycznych, aby umożliwić ich rozruch przy niższej mocy znamionowej, co zmniejsza szczytowy prąd rozruchowy i zmniejsza obciążenie mechaniczne. Jednak nie jest to wymóg w kontekście przyjmowania do eksploatacji, ponieważ urządzenia mogą funkcjonować prawidłowo bez takiego przełącznika, zwłaszcza gdy nie ma potrzeby minimalizacji prądu rozruchowego. W praktyce, w zależności od zastosowania, niektóre silniki mogą być uruchamiane bezpośrednio, co jest całkowicie akceptowalne, zwłaszcza w zastosowaniach, gdzie napęd jest normalnie obciążony. Przykładem mogą być silniki napędzające wentylatory lub pompy, gdzie obciążenie jest od samego początku znaczące, co eliminuje potrzebę stosowania przełączników gwiazda-trójkąt.

Pytanie 4

Jakie oznaczenie stopnia ochrony powinna mieć obudowa urządzenia elektrycznego, które jest zainstalowane w pomieszczeniach o dużej wilgotności?

A. IP11
B. IP22
C. IP32
D. IP44

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Oznaczenie stopnia ochrony IP44 wskazuje, że urządzenie elektryczne jest chronione przed ciałami stałymi o średnicy 1 mm oraz przed wodą, która może padać w dowolnym kierunku. To czyni je odpowiednim rozwiązaniem do stosowania w pomieszczeniach wilgotnych, takich jak łazienki czy kuchnie, gdzie występuje ryzyko kontaktu z wodą i wilgocią. Zgodnie z normą IEC 60529, IP44 zapewnia odpowiedni poziom ochrony, który minimalizuje ryzyko uszkodzeń związanych z wilgocią, co jest kluczowe dla zapewnienia bezpieczeństwa użytkowników. W praktyce, urządzenia takie jak oświetlenie zewnętrzne, gniazda elektryczne czy wyłączniki umieszczone w wilgotnych pomieszczeniach powinny posiadać tę klasę ochrony, aby zminimalizować ryzyko zwarcia elektrycznego oraz wypadków. Dobrą praktyką jest również regularne sprawdzanie stanu obudów i uszczelek, aby zapewnić ich ciągłą skuteczność ochrony przed wodą i zanieczyszczeniami.

Pytanie 5

Jakie warunki muszą zostać spełnione podczas pomiaru rezystancji izolacji w instalacji elektrycznej po wcześniejszym odłączeniu napięcia zasilającego?

A. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
B. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, zamontowane źródła światła
C. Włączone odbiorniki do gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła
D. Odłączone odbiorniki od gniazd wtyczkowych, włączone przełączniki oświetleniowe, wymontowane źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przy wykonywaniu pomiaru rezystancji izolacji w instalacji elektrycznej, kluczowe jest zapewnienie kompletnego bezpieczeństwa oraz dokładności uzyskiwanych wyników. Wyłączenie odbiorników z gniazd wtyczkowych eliminuje ryzyko przypadkowego załączenia obwodu, co mogłoby zafałszować wyniki pomiarów lub spowodować niebezpieczne sytuacje. Włączone łączniki oświetleniowe pozwalają na uzyskanie pełnej charakterystyki instalacji, ponieważ pomiar dotyczy także przewodów i elementów, które są podłączone do tych łączników. Wymontowanie źródeł światła jest istotne, ponieważ ich obecność może wprowadzać dodatkowe oporności i niepożądane elementy do obwodu, co może również wpłynąć na wynik pomiaru. Zgodnie z normami, takimi jak PN-EN 61557-2, poprawne wykonanie pomiarów rezystancji izolacji jest podstawą do oceny stanu technicznego instalacji oraz zapewnienia jej bezpieczeństwa użytkowania. W praktyce, przestrzeganie tych zasad jest kluczowe dla administratorów budynków, elektryków oraz firm zajmujących się konserwacją i modernizacją instalacji elektrycznych.

Pytanie 6

Jaką minimalną wartość rezystancji powinna mieć podłoga i ściany w izolowanym miejscu pracy z urządzeniami pracującymi na napięciu 400 V, aby zapewnić efektywną ochronę przeciwporażeniową przed dotykiem pośrednim?

A. 75kΩ
B. 50kΩ
C. 10kΩ
D. 25kΩ

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rezystancja ścian i podłogi w izolowanym stanowisku pracy z urządzeniami o napięciu 400 V powinna wynosić co najmniej 50 kΩ, aby zapewnić skuteczną ochronę przed dotykiem pośrednim. Wysoka wartość rezystancji jest kluczowa, ponieważ zmniejsza ryzyko przepływu prądu przez ciało człowieka w przypadku awarii izolacji. Zgodnie z normami IEC 60364 oraz PN-EN 61140, minimalna rezystancja ochronna dla urządzeń elektrycznych w takich warunkach powinna wynosić 50 kΩ. W praktyce, stosowanie takiej wartości rezystancji wpływa na zwiększenie bezpieczeństwa operatorów, zwłaszcza w środowiskach przemysłowych, gdzie ryzyko porażenia prądem jest wyższe. Przykładem może być zakład produkcyjny, w którym regularnie stosuje się urządzenia do pomiarów rezystancji w celu zapewnienia, że izolacja jest odpowiednia i nie zagraża pracownikom. Dobre praktyki obejmują także okresowe przeglądy instalacji elektrycznych oraz testowanie zabezpieczeń, co dodatkowo minimalizuje ryzyko awarii.

Pytanie 7

Jaki przyrząd jest wykorzystywany do pomiaru rezystancji izolacji kabli?

A. Waromierz
B. Megaomomierz
C. Sonometr
D. Pirometr

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Megaomomierz jest urządzeniem służącym do pomiaru rezystancji izolacji, które jest niezwykle istotne w kontekście bezpieczeństwa elektrycznego. Jego zastosowanie polega na sprawdzaniu jakości izolacji przewodów oraz urządzeń elektrycznych, co pozwala na wykrycie ewentualnych uszkodzeń izolacji, które mogą prowadzić do awarii lub zagrożeń, takich jak porażenie prądem. Dzięki pomiarom wykonywanym przy użyciu megaomomierza, można ocenić stan izolacji w instalacjach elektrycznych, co jest zgodne z normami takimi jak PN-EN 61557-2, które określają procedury testowania urządzeń elektrycznych. W praktyce, megaomomierz jest używany podczas regularnych przeglądów instalacji elektrycznych w budynkach, co ma na celu zapewnienie odpowiedniego poziomu bezpieczeństwa i zgodności z obowiązującymi przepisami. Użycie tego narzędzia pozwala na wczesne wykrywanie problemów, co przyczynia się do minimalizacji ryzyka wystąpienia awarii oraz zwiększa trwałość systemów elektrycznych.

Pytanie 8

Jaką czynność powinno się wykonać podczas pomiaru rezystancji uzwojeń stojana oraz rezystancji izolacji silnika trójfazowego w celu zlokalizowania uszkodzeń?

A. Otworzyć łącznik załączający silnik
B. Zewrzeć zaciski silnika z zaciskiem ochronnym
C. Obciążyć silnik momentem znamionowym
D. Podłączyć napięcie zasilające

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak dla mnie, otwarcie łącznika przed pomiarem rezystancji uzwojeń w silniku trójfazowym to bardzo ważny krok. Dzięki temu unikamy poważnych uszkodzeń sprzętu, a także dbamy o swoje bezpieczeństwo podczas testów. Kiedy łącznik jest otwarty, można spokojnie zmierzyć rezystancję uzwojeń, co jest kluczowe, żeby ocenić stan ich izolacji i wychwycić ewentualne zwarcia międzyzwojowe. Warto wiedzieć, że takie praktyki są potwierdzone przez normy jak IEC 60034-1, które mocno podkreślają, że trzeba mieć bezpieczny dostęp do obwodów przed rozpoczęciem pomiarów. Otwarcie łącznika to także zabezpieczenie przed przypadkowym uruchomieniem silnika, co mogłoby prowadzić do nieprzyjemnych sytuacji. Pamiętaj, żeby używać odpowiednich narzędzi, jak megohmometr, do pomiaru rezystancji izolacji. To pozwoli uzyskać dokładne wyniki i ocenić stan izolacji. Regularne przeglądy silników w zakładach przemysłowych to najlepszy sposób na wczesne wykrywanie usterek i lepsze zarządzanie kosztami eksploatacji.

Pytanie 9

W instalacji trójfazowej natężenie prądu obciążenia przewodów fazowych IB wynosi 21 A, natomiast maksymalna obciążalność długotrwała tych przewodów Idd to 30 A. Który z wymienionych wyłączników nadprądowych powinien być użyty do ochrony tej instalacji przed skutkami zbyt dużego prądu?

A. B25
B. B32
C. B20
D. B16

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wyłącznik nadprądowy B25 jest odpowiedni do zabezpieczenia instalacji trójfazowej, gdyż prąd obciążenia przewodów fazowych wynosi 21 A, a obciążalność długotrwała tych przewodów to 30 A. Wyłączniki nadprądowe klasy B charakteryzują się czasem zadziałania w zależności od wartości nadmiaru prądu, co czyni je idealnymi do ochrony obwodów o obciążeniu rezystancyjnym. W tym przypadku, wyłącznik B25 posiada nominalny prąd 25 A, co zapewnia dodatkowy margines bezpieczeństwa w stosunku do rzeczywistego prądu obciążenia 21 A. Zastosowanie wyłącznika o wyższej wartości nominalnej, jak B32, mogłoby prowadzić do sytuacji, w której obwód nie byłby odpowiednio chroniony, a wyłączniki o niższej wartości, jak B20 czy B16, mogą zadziałać w sposób niepożądany w przypadku niewielkich skoków prądu. Zgodnie z zasadami projektowania instalacji elektrycznych, wyłącznik należy dobierać w taki sposób, aby jego wartość nominalna była nieco wyższa niż wartość prądu roboczego, co zwiększa niezawodność systemu oraz zapewnia bezpieczeństwo użytkowania.

Pytanie 10

Podczas pracy silnika indukcyjnego cewki uzwojeń stojana zostały przełączone, co miało na celu zwiększenie liczby par biegunów wirującego pola magnetycznego. Jakie skutki to wywołało?

A. zmianę kierunku obrotu
B. zatrzymanie wirnika
C. zmniejszenie prędkości obrotowej
D. zwiększenie prędkości obrotowej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zmiana liczby par biegunów wirującego pola magnetycznego w silniku indukcyjnym prowadzi do zmiany jego prędkości obrotowej. Zgodnie z zasadą działania silników indukcyjnych, prędkość obrotowa wirnika jest determinowana przez częstotliwość zasilania oraz liczbę par biegunów. Wzór na prędkość synchroniczną (Ns) wyrażany jest jako Ns = 120*f/p, gdzie f to częstotliwość zasilania, a p to liczba par biegunów. Zwiększenie liczby par biegunów (p) przy stałej częstotliwości zasilania (f) skutkuje zmniejszeniem prędkości obrotowej wirnika. Praktycznie, taka zmiana jest wykorzystywana w aplikacjach, gdzie potrzebne jest uzyskanie większego momentu obrotowego przy niższej prędkości, na przykład w napędach maszyn przemysłowych. Dobrą praktyką jest także uwzględnienie w projektowaniu silników odpowiednich parametrów, takich jak obciążenie i wymagania aplikacyjne, aby zapewnić optymalne działanie silnika w danym zakresie prędkości.

Pytanie 11

Jakie wymagania muszą być spełnione podczas pomiaru rezystancji izolacyjnej w instalacji elektrycznej po wcześniejszym odłączeniu zasilania?

A. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła
B. Wyłączone urządzenia z gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
C. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, usunięte źródła światła
D. Włączone urządzenia do gniazd wtyczkowych, aktywne łączniki oświetleniowe, zamontowane źródła światła

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prawidłowa odpowiedź wskazuje na konieczność wyłączenia odbiorników z gniazd wtyczkowych oraz wymontowania źródeł światła przed przystąpieniem do pomiaru rezystancji izolacji. To kluczowe kroki, które mają na celu zapewnienie bezpieczeństwa oraz dokładności pomiarów. W czasie testów rezystancji izolacji, włączenie odbiorników lub pozostawienie źródeł światła w obwodzie mogłoby prowadzić do błędnych wyników, które nie oddają rzeczywistego stanu izolacji. Przykładowo, podłączenie urządzeń może stworzyć drogę dla prądu, co zafałszuje pomiar rezystancji. W branży elektrycznej zaleca się, aby przed każdym pomiarem izolacji, upewnić się, że wszystkie urządzenia są odłączone, co jest zgodne z normą PN-EN 61557, która określa wymagania dotyczące pomiarów. Tylko w ten sposób można rzetelnie ocenić stan izolacji oraz wykryć ewentualne uszkodzenia, co jest kluczowe dla bezpieczeństwa użytkowników i integrności instalacji.

Pytanie 12

Jakie będą konsekwencje zasilenia silnika asynchronicznego, którego znamionowa częstotliwość napięcia stojana wynosi 50 Hz, z sieci o częstotliwości 60 Hz?

A. Zwiększenie prędkości obrotowej wirnika silnika
B. Nawrót wirnika silnika
C. Uszkodzenie wirnika silnika
D. Zmniejszenie prędkości obrotowej wirnika silnika

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zwiększenie prędkości obrotowej wirnika silnika asynchronicznego zasilanego napięciem o częstotliwości 60 Hz w porównaniu do znamionowej częstotliwości 50 Hz jest wynikiem zjawiska zwanego poślizgiem. W przypadku silników asynchronicznych prędkość obrotowa wirnika jest zawsze niższa od prędkości synchronicznej, która zależy od częstotliwości zasilania oraz liczby par biegunów. Wzór na prędkość synchroniczną jest następujący: n_s = (120 * f) / P, gdzie n_s to prędkość synchroniczna w obrotach na minutę (RPM), f to częstotliwość zasilania w hercach, a P to liczba par biegunów. W przypadku zasilania 60 Hz, prędkość synchroniczna wzrośnie, co skutkuje wzrostem prędkości obrotowej wirnika. Praktycznie, dla silnika z dwiema parami biegunów zasilanego z sieci 50 Hz, prędkość będzie wynosić 1200 RPM, natomiast przy 60 Hz wzrośnie do 1440 RPM. Takie zjawisko może być wykorzystywane w aplikacjach, gdzie wymagana jest większa prędkość obrotowa, jednak należy pamiętać o możliwych konsekwencjach, takich jak zwiększone straty cieplne i ryzyko uszkodzenia silnika. W przemyśle standardem jest dostosowywanie zasilania do znamionowych parametrów silnika w celu zapewnienia jego długowieczności i efektywności.

Pytanie 13

Jaka powinna być minimalna wartość znamionowego prądu wyłącznika nadprądowego chroniącego obwód zasilający jednofazowy piekarnik oporowy, aby przy napięciu 230 V mógł on pobierać moc elektryczną równą 2 kW?

A. 16 A
B. 13 A
C. 10 A
D. 20 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Aby obliczyć minimalną wartość znamionowego prądu wyłącznika nadprądowego, należy zastosować wzór na moc elektryczną, który łączy moc (P), napięcie (U) oraz prąd (I). Wzór ten można przedstawić jako P = U * I. Z naszej sytuacji mamy moc 2 kW (2000 W) oraz napięcie 230 V. Przekształcając wzór, otrzymujemy I = P / U. Podstawiając wartości, otrzymujemy I = 2000 W / 230 V, co daje około 8,7 A. Jabłko z tej wartości, zgodnie z normami i zaleceniami stosuje się wyłączniki nadprądowe o wartościach znamionowych, które są standardowo dostępne w sklepach. Wyłączniki te są dostępne w wartościach 6 A, 10 A, 16 A, 20 A i wyższych. Zatem, aby zapewnić odpowiedni margines bezpieczeństwa oraz zgodność z przepisami, minimalna wartość wyłącznika powinna wynosić 10 A. Dobrym przykładem zastosowania tego wyłącznika jest jego użycie w domowych instalacjach elektrycznych, gdzie piekarniki oporowe są powszechnie używane. Wybór wyłącznika o wartości znamionowej 10 A chroni obwód przed przeciążeniem oraz awarią sprzętu.

Pytanie 14

Jakie urządzenie wykorzystuje się do określenia prędkości obrotowej wału silnika?

A. induktor
B. przekładnik napięciowy
C. pirometr
D. prądnicę tachometryczną

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Prądnica tachometryczna jest urządzeniem służącym do pomiaru prędkości obrotowej wału silnika poprzez generowanie napięcia elektrycznego proporcjonalnego do tej prędkości. Jej działanie opiera się na zasadzie elektromechanicznej, gdzie wirnik prądnicy obracany przez wał silnika wytwarza napięcie elektryczne, które jest bezpośrednio związane z prędkością obrotową. W praktyce, prądnice tachometryczne są szeroko stosowane w różnych zastosowaniach przemysłowych, takich jak automatyka, robotyka czy systemy sterowania silnikami. Dzięki ich wysokiej dokładności, stosowane są w precyzyjnych układach regulacji prędkości, co pozwala na optymalne zarządzanie procesami technologicznymi. W branży inżynieryjnej, prądnice tachometryczne są często preferowane ze względu na ich stabilność i niezawodność, co wpisuje się w najlepsze praktyki projektowania systemów z kontrolą prędkości. Dodatkowo, są one zgodne z normami IEC oraz ISO, co zapewnia ich uniwersalność i szerokie zastosowanie w przemyśle. Dzięki tym cechom, prądnice tachometryczne stanowią kluczowy element w nowoczesnych systemach pomiarowych i kontrolnych.

Pytanie 15

Która z poniższych okoliczności wymaga przeprowadzenia pomiarów kontrolnych w instalacji elektrycznej niskiego napięcia?

A. Rozbudowanie instalacji
B. Zadziałanie wyłącznika różnicowoprądowego
C. Zadziałanie zabezpieczenia przedlicznikowego
D. Zmiana rodzaju źródeł światła w oprawach oświetleniowych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Rozbudowa instalacji elektrycznej niskiego napięcia wiąże się z koniecznością przeprowadzenia pomiarów kontrolnych, aby zapewnić zgodność z obowiązującymi normami oraz bezpieczeństwo użytkowników. Zgodnie z normą PN-IEC 60364, każde zmiany w instalacji, takie jak jej rozbudowa, wymagają weryfikacji parametrów technicznych, jak rezystancja izolacji, ciągłość przewodów ochronnych oraz sprawność urządzeń zabezpieczających. Przykładowo, dodanie nowych obwodów może wpływać na działanie istniejących zabezpieczeń, co w konsekwencji może prowadzić do ich nieprawidłowego funkcjonowania. Dlatego przed oddaniem rozbudowanej instalacji do eksploatacji, konieczne jest przeprowadzenie pomiarów kontrolnych, aby potwierdzić, że instalacja spełnia wymogi bezpieczeństwa i użytkowania. Dodatkowo, takie pomiary mogą pomóc w identyfikacji potencjalnych problemów, które mogą wystąpić w przyszłości, co jest kluczowe dla utrzymania wysokiego standardu bezpieczeństwa.

Pytanie 16

Który z poniższych środków ostrożności nie jest wymagany dla zapewnienia bezpieczeństwa podczas realizacji prac przy linii napowietrznej, która została odłączona od zasilania?

A. Używanie sprzętu izolacyjnego
B. Realizowanie pracy w zespole
C. Ogrodzenie terenu, na którym prowadzone są prace
D. Przyłączenie wyłączonej linii do uziemienia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Stosowanie sprzętu izolacyjnego w kontekście prac przy wyłączonej linii napowietrznej jest często mylone z koniecznością w sytuacjach, gdzie napięcie jest obecne. Gdy linia jest wyłączona i odpowiednio zabezpieczona, sprzęt izolacyjny nie jest konieczny, ponieważ nie ma ryzyka porażenia prądem. Jednakże, w praktyce, jego użycie może być zalecane w celu dodatkowego zabezpieczenia oraz w sytuacjach, gdzie istnieje ryzyko nieprzewidzianych okoliczności, takich jak przypadkowe włączenie linii. Na przykład, w zgodzie z normami BHP, stosowanie sprzętu izolacyjnego jest kluczowe podczas pracy w pobliżu niepewnych źródeł napięcia. Zawsze warto stosować zasadę ostrożności i posiadać odpowiednie szkolenie w zakresie użycia tego sprzętu. Pracownicy powinni być również świadomi procedur dotyczących oznakowania i blokowania urządzeń, aby zapewnić, że linie pozostaną wyłączone podczas realizacji prac.

Pytanie 17

Jakie jest maksymalne dopuszczalne wartości impedancji pętli zwarcia w instalacji elektrycznej o napięciu nominalnym 230 V działającej w układzie TN-S, zabezpieczonej wyłącznikiem nadprądowym C16, aby zapewnić samoczynne wyłączenie zasilania jako środek ochrony przeciwporażeniowej w przypadku awarii?

A. 2,87 Ω
B. 4,79 Ω
C. 0,71 Ω
D. 1,43 Ω

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Maksymalna dopuszczalna impedancja pętli zwarcia dla instalacji z wyłącznikiem nadprądowym C16 w sieci TN-S wynosi 1,43 Ω, co zapewnia odpowiednie warunki do samoczynnego wyłączenia zasilania w przypadku uszkodzenia. Taki wyłącznik nadprądowy zadziała, gdy prąd zwarciowy osiągnie wartość wystarczającą do jego uruchomienia, co w przypadku C16 wynosi 16 A. Aby zapewnić skuteczną ochronę, impedancja pętli zwarcia powinna być tak dobrana, aby prąd zwarciowy przekraczał wartość zadziałania wyłącznika. Przy napięciu 230 V, zgodnie z zasadą Ohma (U = I * R), maksymalna impedancja wynosi: Z = U / I = 230 V / 16 A = 14,375 Ω, co daje duży margines, ale w praktyce akceptowana wartość dla bezpiecznego działania to 1,43 Ω. Przykłady praktycznych zastosowań obejmują instalacje w budynkach mieszkalnych, gdzie ważne jest zapewnienie szybkiego odłączenia prądu w przypadku awarii. Standardy PN-IEC 60364-4-41 oraz PN-EN 61140 określają wymagania dotyczące ochrony przeciwporażeniowej, a także metodyka obliczania impedancji pętli zwarcia, co pozwala na właściwe zabezpieczenie przed porażeniem elektrycznym.

Pytanie 18

Na podstawie wyników pomiarów zamieszczonych w przedstawionej tabeli określ uszkodzenie występujące w instalacji.

Pomiar napięcia między przewodem PE i drugim punktem instalacji
Drugi punkt pomiaru:Przewód fazowy LPrzewód neutralny NMetalowa rura COMetalowa rura gazowaMetalowa wanna łazienkowa
232 V0 V51 V49 V0 V
Wynik:232 V0 V51 V49 V0 V
A. Zwarcie między przewodem neutralnym i fazowym.
B. Uszkodzone połączenia wyrównawcze miejscowe.
C. Uszkodzona izolacja przewodu neutralnego w pobliżu wanny.
D. Przebicie izolacji przewodu fazowego do metalowych rur.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Poprawna odpowiedź wskazuje na uszkodzone połączenia wyrównawcze miejscowe, co jest zgodne z wynikami pomiarów. W przypadku, gdy napięcie na metalowych elementach instalacji, takich jak rury, wynosi 51 V i 49 V w stosunku do przewodu ochronnego PE, sugeruje to, że połączenia wyrównawcze nie funkcjonują prawidłowo. W dobrze zaprojektowanej instalacji elektrycznej, wszystkie metalowe elementy powinny być podłączone do systemu uziemiającego, co pozwala na równomierne rozłożenie potencjału elektrycznego. Uszkodzenie połączeń wyrównawczych może prowadzić do niebezpiecznych sytuacji, takich jak porażenie prądem elektrycznym, a także stanowi naruszenie norm bezpieczeństwa określonych w Polskich Normach (PN) oraz Dyrektywie Niskonapięciowej. W praktyce, regularne kontrole i pomiary instalacji elektrycznych są kluczowe, aby zapewnić bezpieczeństwo użytkowników oraz zgodność z obowiązującymi normami. Wykonana analiza wskazuje na konieczność przeprowadzania napraw w celu przywrócenia prawidłowego działania systemu ochrony przeciwporażeniowej.

Pytanie 19

Jakie powinno być znamionowe natężenie prądu dla instalacyjnego wyłącznika nadprądowego używanego w systemie z napięciem 230 V, 50 Hz, jako zabezpieczenie obwodu wykonanego z przewodu 3x2,5 mm2, który zasila 1-fazowy piec elektryczny o mocy 3 kW?

A. 10 A
B. 25 A
C. 6 A
D. 16 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór znamionowego prądu instalacyjnego wyłącznika nadprądowego na poziomie 16 A w przypadku obwodu zasilającego piec elektryczny o mocy 3 kW jest zgodny z zasadami zabezpieczeń elektrycznych. Przy napięciu 230 V, prąd pobierany przez piec można obliczyć, korzystając ze wzoru P = U * I, co daje I = P / U, a w naszym przypadku I = 3000 W / 230 V = 13,04 A. Z tego wynika, że wyłącznik nadprądowy o znamionowym prądzie 16 A będzie odpowiedni, zapewniając odpowiedni margines bezpieczeństwa oraz uwzględniając warunki pracy, takie jak prądy rozruchowe. Zgodnie z normą PN-IEC 60364-4-41, zabezpieczenia instalacyjne powinny być dobrane z odpowiednim zapasem, aby zminimalizować ryzyko wyzwolenia wyłącznika w normalnych warunkach eksploatacyjnych. Dodatkowo, zastosowanie przewodu 3x2,5 mm², który ma odpowiednią zdolność prądową, sprzyja bezpieczeństwu i niezawodności instalacji. W praktyce, 16 A jest powszechnie stosowane dla podobnych obwodów, co czyni tę odpowiedź właściwą.

Pytanie 20

W jakim układzie sieciowym wyłączniki różnicowoprądowe nie mogą być używane jako elementy ochrony przed porażeniem w przypadku awarii?

A. TN-S
B. TN-C
C. TT
D. IT

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź TN-C jest poprawna, ponieważ w tym układzie sieciowym nie można stosować wyłączników różnicowoprądowych (WRP) jako elementów ochrony przeciwporażeniowej. W systemie TN-C, gdzie neutralny przewód (N) oraz ochronny przewód (PE) są połączone w jeden przewód (PEN), istnieje ryzyko, że WRP nie zadziała w przypadku uszkodzenia. Dzieje się tak, ponieważ wszelkie prądy upływowe mogą być zrównoważone przez prąd neutralny i nie będą rejestrowane przez wyłącznik. Przykładowo, w instalacjach przemysłowych lub budowlanych z układem TN-C, zastosowanie WRP może prowadzić do sytuacji, w których osoba dotykająca części metalowe staje się narażona na porażenie prądem, ponieważ WRP nie wykryje niewielkich różnic prądowych. Dobrymi praktykami w systemach TN-C są stosowanie dodatkowych środków ochrony, takich jak zabezpieczenia przez izolację oraz odpowiednie uziemienie, które mogą zminimalizować ryzyko porażenia. Zgodnie z normą PN-IEC 60364, zaleca się użycie układów TN-S lub TT, gdzie separacja przewodów PE i N pozwala na skuteczne działanie WRP.

Pytanie 21

Trójfazowy silnik klatkowy, pracujący ze znamionowym obciążeniem, nagle zaczął pracować głośniej, a jego prędkość obrotowa spadła. Która z poniższych przyczyn może być odpowiedzialna za zaobserwowaną zmianę w funkcjonowaniu tego silnika?

A. Wzrost wartości napięcia z sieci zasilającej.
B. Przerwa w przewodzie ochronnym w sieci zasilającej.
C. Zwiększenie częstotliwości napięcia zasilającego.
D. Brak jednej z faz zasilania.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Przerwa w jednej z faz zasilania jest jedną z najczęstszych przyczyn problemów z trójfazowymi silnikami klatkowym. Taki silnik jest zaprojektowany do pracy na trzech fazach, a ich zrównoważone napięcie jest kluczowe dla prawidłowego działania. W przypadku przerwy w jednej z faz, silnik zaczyna pracować w trybie niepełnym, co prowadzi do utraty momentu obrotowego oraz zwiększenia obciążenia na pozostałych fazach. Przykładowo, podczas pracy silnika w trybie niepełnym, jego obroty mogą znacznie spaść, a hałas wzrosnąć z powodu wibracji i nadmiernych prądów w pozostałych fazach. W praktyce, jeśli operator zauważy takie objawy, powinien natychmiast wyłączyć silnik i sprawdzić połączenia zasilające oraz zabezpieczenia, zgodnie z zasadami bezpieczeństwa i dobrymi praktykami eksploatacyjnymi. Warto także przeprowadzić analizy obwodów zasilających, aby zidentyfikować ewentualne uszkodzenia. Takie działania są zgodne z normami IEC 60034 dotyczącymi maszyn elektrycznych oraz z procedurami bezpieczeństwa pracy z urządzeniami elektrycznymi.

Pytanie 22

W którym obwodzie powinno się odłączyć zasilanie, aby bezpiecznie przeprowadzić wymianę cewki stycznika w obwodzie sterującym silnikiem znajdującym się w hali maszyn?

A. Tylko w obwodzie głównym silnika
B. W rozdzielnicy stanowiskowej, z której zasilany jest silnik
C. Wyłącznie w obwodzie sterującym silnikiem
D. W głównej rozdzielnicy zasilającej całą halę maszyn

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Musisz koniecznie wyłączyć napięcie w rozdzielnicy stanowiskowej, zanim zaczniesz wymieniać cewkę stycznika. To naprawdę ważne dla Twojego bezpieczeństwa. Rozdzielnica ta to miejsce, które zarządza zasilaniem dla silnika, a z tego co pamiętam, takie podejście jest zgodne z normami bezpieczeństwa, jak np. PN-EN 50110-1. Operatorzy powinni wyłączać napięcie w obwodzie zasilającym urządzenie, które konserwują, żeby uniknąć porażenia prądem. Podczas wymiany cewki ważne jest, by nie tylko Twoje bezpieczeństwo było na pierwszym miejscu, ale też żeby sprzęt nie ucierpiał przez przypadkowe włączenie. Przykład? W zakładach produkcyjnych przed każdym przeglądem trzeba ustalić, które obwody trzeba deenergizować, żeby ryzyko wypadków było jak najmniejsze. Warto też prowadzić dokumentację i etykietować rozdzielnice, żeby łatwiej było zidentyfikować, które obwody są aktywne. To na pewno zwiększa bezpieczeństwo podczas prac konserwacyjnych.

Pytanie 23

W miejscu pracy, gdzie wykonywana jest naprawa urządzenia grzewczego, działają równocześnie elektrycy oraz hydraulicy. Jeśli instalacja elektryczna urządzenia została odłączona od zasilania za pomocą głównego odłącznika, który znajduje się w innym pomieszczeniu niż naprawiane urządzenie, to aby zabezpieczyć się przed niezamierzonym włączeniem napięcia, należy

A. użyć dwóch kłódek do zablokowania odłącznika w pozycji otwartej, każdą z nich zakładając osobno przez różne zespoły pracowników
B. zablokować odłącznik w pozycji otwartej kłódką założoną przez ekipę hydraulików
C. pozostawić odłącznik w pozycji otwartej bez blokady, ale umieścić obok niego tabliczkę ostrzegawczą o zakazie włączania napięcia
D. zablokować odłącznik w pozycji otwartej kłódką założoną przez zespół elektryków

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, w której zastosowano dwie kłódki do zablokowania odłącznika w stanie otwartym, jest prawidłowa, ponieważ w sytuacji, gdy w jednym miejscu pracują elektrycy i hydraulicy, konieczne jest zapewnienie maksymalnego bezpieczeństwa. Blokowanie odłącznika za pomocą kłódek, które są zakładane przez każdą z grup pracowników, jest zgodne z zasadami blokady i wyłączania (Lockout-Tagout - LOTO), które są kluczowe w zarządzaniu ryzykiem w miejscu pracy. Takie działanie gwarantuje, że żadna grupa nie może włączyć napięcia bez wiedzy drugiej grupy, a tym samym minimalizuje ryzyko porażenia prądem w trakcie naprawy. Przykładem zastosowania tej procedury jest sytuacja, w której hydraulik wykonuje prace przy rurach zasilających, podczas gdy elektryk zajmuje się instalacją elektryczną. Zastosowanie podwójnej blokady zapewnia, że obie grupy muszą współpracować, aby zdjąć blokadę, co zwiększa bezpieczeństwo i skuteczność. Tego typu praktyki są normą w branży, a ich stosowanie jest regulowane przez przepisy BHP oraz normy OSHA, co podkreśla ich znaczenie w codziennym funkcjonowaniu zakładów pracy.

Pytanie 24

Kto jest uprawniony do przeprowadzenia konserwacji silnika tokarki TUE-35 w zakładzie elektromechanicznym?

A. Operator tej maszyny
B. Kierownik grupy mechaników
C. Osoba, która posiada odpowiednie przeszkolenie i uprawnienia
D. Każdy pracownik na pisemne zlecenie pracodawcy

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź, że konserwację silnika tokarki TUE-35 może przeprowadzić osoba przeszkolona i uprawniona, jest prawidłowa ze względu na konieczność przestrzegania standardów bezpieczeństwa oraz eksploatacji maszyn. W branży mechanicznej i elektromechanicznej, konserwacja urządzeń mechanicznych, takich jak tokarki, wymaga specjalistycznej wiedzy oraz umiejętności, które zdobywa się podczas szkoleń. Tylko wykwalifikowany personel ma odpowiednie kompetencje do zdiagnozowania potencjalnych problemów, dokonywania niezbędnych napraw oraz przeprowadzania regularnych przeglądów technicznych, co zapobiega dalszym uszkodzeniom maszyny. Przykładem może być sytuacja, w której nieprzeszkolona osoba próbuje wymienić uszczelnienia w silniku, co może prowadzić do jego awarii lub nawet zagrożenia dla zdrowia pracowników. Warto zauważyć, że w wielu zakładach przemysłowych obowiązują określone normy, takie jak ISO 9001, które wymagają, aby wszystkie prace konserwacyjne były przeprowadzane przez wykwalifikowany personel, co podkreśla znaczenie odpowiednich uprawnień.

Pytanie 25

Podczas wymiany uzwojeń w transformatorze jednofazowym o parametrach: SN = 200 VA, U1N = 230 V, U2N = 14,6 V, uzwojenie pierwotne powinno być wykonane z drutu nawojowego

A. o większej średnicy i mniejszej ilości zwojów niż uzwojenie wtórne
B. o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne
C. o mniejszej średnicy i mniejszej liczbie zwojów niż uzwojenie wtórne
D. o większej średnicy i większej liczbie zwojów niż uzwojenie wtórne

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź wskazująca, że uzwojenie pierwotne powinno być wykonane z drutu o mniejszej średnicy i większej liczbie zwojów niż uzwojenie wtórne jest poprawna. W transformatorze jednofazowym, stosunek napięć uzwojeń związany jest z relacją liczby zwojów w każdym uzwojeniu. Zależność ta wyraża się wzorem: U1/U2 = N1/N2, gdzie U1 i U2 to napięcia na uzwojeniach pierwotnym i wtórnym odpowiednio, a N1 i N2 to liczby zwojów. Wymiana uzwojeń pierwotnych i wtórnych wiąże się z doborem odpowiedniej średnicy drutu. Mniejsze napięcie na uzwojeniu wtórnym wymaga większej liczby zwojów, co z kolei oznacza, że uzwojenie pierwotne musi być wykonane z cieńszego drutu, aby pomieścić więcej zwojów na danej długości. Przykładowo, w transformatorach stosuje się standardy dotyczące przekrojów drutów, aby zapewnić odpowiednią wydajność prądową i minimalizować straty w cieple. Zastosowanie tej zasady w praktyce prowadzi do efektywniejszego projektu transformatora, co jest kluczowe w wielu aplikacjach elektrycznych, od zasilania urządzeń domowych po zastosowania w przemyśle. Właściwe dobranie wymagań dla uzwojeń jest istotnym elementem inżynieryjnym, który warunkuje trwałość i efektywność transformatora.

Pytanie 26

Który z podanych przewodów elektrycznych powinno się zastosować do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z napowietrzną linią 230/400 V?

A. AAFLwsXSn 50
B. AsXS 4×70
C. AFL 6 120
D. YAKY 4×10

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YAKY 4×10 jako odpowiedniego do wykonania przyłącza elektrycznego ziemnego budynku jednorodzinnego z linią napowietrzną 230/400 V jest właściwy z kilku powodów. Przewód YAKY to przewód aluminiowy, który charakteryzuje się wysoką odpornością na czynniki zewnętrzne oraz niską wagą, co ułatwia jego montaż. Zastosowanie przewodu 4×10 oznacza, że ma on cztery żyły, z czego trzy są fazowe, a jedna to żyła neutralna, co jest standardem w instalacjach jednofazowych i trójfazowych. W przypadku przyłącza ziemnego, przewód ten powinien być również osłonięty, co zapewnia bezpieczeństwo użytkowania. YAKY 4×10 spełnia normy PN-EN 60502-1, co czyni go odpowiednim wyborem z punktu widzenia przepisów i dobrych praktyk. Przykładem zastosowania YAKY 4×10 jest przyłącze do domów jednorodzinnych, gdzie przewód ten może być układany w ziemi, zapewniając odpowiednią odporność na uszkodzenia i długowieczność. Warto również zauważyć, że ze względu na stosunkowo niską wartość oporu przewodzenia, przewód ten pozwala na efektywne przesyłanie energii elektrycznej przy minimalnych stratach.

Pytanie 27

Jakie skutki dla instalacji mieszkalnej przyniesie zamiana przewodu YDY 3x1,5 mm2 na YADY 3 x 1,5 mm2?

A. Rezystancja przewodów ulegnie zmniejszeniu
B. Przewodność elektryczna przewodów ulegnie zwiększeniu
C. Wytrzymałość elektryczna izolacji wzrośnie
D. Obciążalność długotrwała instalacji zostanie zmniejszona

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór przewodu YADY 3x1,5 mm2 zamiast YDY 3x1,5 mm2 to nie byle co. Wiesz, te przewody mają różne właściwości, zwłaszcza jeśli chodzi o to, jak długo mogą wytrzymać przy dużym obciążeniu. Przewód YADY ma inną izolację, która po prostu nie znosi wysokich temperatur i uszkodzeń mechanicznych tak dobrze, jak YDY. Jak przewód YADY się nagrzeje, to może mieć problem z przenoszeniem prądu bezpiecznie. Takie sprawy reguluje norma PN-IEC 60364 i dobrze mieć to na uwadze przy projektowaniu. Inżynierowie i wykonawcy muszą więc dobrze przemyśleć, co wybierają, bo niewłaściwy przewód to ryzyko przegrzania i awarii, a to przecież może być niebezpieczne. Warto zainwestować w dobry wybór, żeby uniknąć kłopotów.

Pytanie 28

Jaka przyczyna powoduje rozbieżność w działaniu silnika bocznikowego prądu stałego?

A. Przerwa w uzwojeniu twornika
B. Przerwa w uzwojeniu wzbudzenia
C. Luzy w łożyskach
D. Brak obciążenia

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Jak masz przerwę w uzwojeniu wzbudzenia silnika bocznikowego prądu stałego, to silnik zaczyna się rozbiegać. Dlaczego? No bo to uzwojenie odpowiada za wytwarzanie pola magnetycznego, które jest potrzebne, żeby silnik działał. Bez tego pola, silnik nie ma żadnego oporu, a to skutkuje tym, że kręci się bez kontroli. To może być naprawdę niebezpieczne, bo prowadzi do uszkodzeń. Żeby tego uniknąć, ważne są regularne kontrole i konserwacje. W przemyśle, według norm IEC 60034, trzeba monitorować stan uzwojeń i mieć systemy ochrony, które coś wykryją, gdy coś się popsuje. W silnikach używanych w różnych sprzętach, jak taśmociągi, warto też pomyśleć o dodatkowych zabezpieczeniach, żeby nie było niekontrolowanego działania silnika, gdy uzwojenie zawiedzie.

Pytanie 29

Właściciel budynku jednorodzinnego zauważył, że w pralce nastąpiło przebicie do obudowy. Instalacja została wykonana w układzie TN-S, a jako środek ochrony przed porażeniem elektrycznym przy awarii zastosowano samoczynne wyłączenie zasilania. W celu naprawienia usterki instalacji konieczne jest

A. zapewnić ciągłość przewodów neutralnych
B. wymienić wyłącznik nadprądowy
C. wymienić wkładkę ochronnika przeciwprzepięciowego
D. zapewnić ciągłość przewodów ochronnych

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Zapewnienie ciągłości przewodów ochronnych w instalacji elektrycznej jest kluczowe dla zapewnienia bezpieczeństwa użytkowników oraz prawidłowego funkcjonowania urządzeń elektrycznych. W układzie TN-S, który charakteryzuje się oddzielnym przewodem neutralnym i ochronnym, ciągłość przewodów ochronnych (PE) jest niezbędna, aby zapewnić skuteczną ochronę przeciwporażeniową. W przypadku stwierdzenia przebicia do obudowy pralki, brak ciągłości przewodu ochronnego może prowadzić do niebezpiecznej sytuacji, w której obudowa urządzenia może mieć potencjał elektryczny, co naraża użytkowników na ryzyko porażenia prądem. Przykładem może być sytuacja, w której podczas użytkowania pralki dotknięcie obudowy może spowodować przepływ prądu przez ciało człowieka w kierunku uziemienia. Aby temu zapobiec, należy nie tylko zapewnić prawidłowe podłączenie przewodu ochronnego, ale również regularnie sprawdzać jego ciągłość oraz integralność. Zgodnie z normami PN-EN 60364 oraz zaleceniami polskiej normy dotyczącej instalacji elektrycznych, wykonywanie regularnych pomiarów i inspekcji instalacji jest niezbędnym wymogiem dla bezpieczeństwa użytkowników. Dbałość o ciągłość przewodów ochronnych jest elementem dobrych praktyk inżynieryjnych oraz kluczowym aspektem ochrony przed porażeniem elektrycznym.

Pytanie 30

Który z wymienionych środków ochrony w przypadku uszkodzenia można stosować jedynie w sytuacji, gdy instalacja jest nadzorowana przez wykwalifikowane osoby?

A. Bardzo niskie napięcie PELV
B. Izolacja wzmocniona
C. Izolowanie stanowiska
D. Bardzo niskie napięcie SELV

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Izolowanie stanowiska jest środkiem ochrony, który ma zastosowanie w sytuacjach, gdy instalacja elektryczna znajduje się pod nadzorem osób wykwalifikowanych. Oznacza to, że tylko kompetentne i przeszkolone osoby, które są w stanie ocenić ryzyko i podjąć odpowiednie środki ostrożności, mogą stosować ten rodzaj ochrony. Izolowanie stanowiska polega na odseparowaniu obszaru pracy od miejsca, w którym mogą występować zagrożenia związane z prądem elektrycznym, co pozwala na bezpieczne wykonywanie prac konserwacyjnych lub naprawczych. Przykładem zastosowania izolowania stanowiska jest praca w pobliżu urządzeń wysokiego napięcia, gdzie odpowiednia ocena ryzyka i nadzór techniczny są kluczowe dla zapewnienia bezpieczeństwa. Dobrą praktyką jest zawsze posiadanie procedur bezpieczeństwa oraz odpowiednich środków zabezpieczających, takich jak oznaczenia stref niebezpiecznych i stosowanie sprzętu ochrony osobistej. To podejście jest zgodne z normami BHP oraz regulacjami krajowymi, które nakładają obowiązek na pracodawców zapewnienia bezpiecznych warunków pracy na stanowiskach, gdzie może występować ryzyko porażenia prądem.

Pytanie 31

Jaką wartość prądu znamionowego powinien mieć bezpiecznik chroniący uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, jeśli jest przeznaczony do pracy z obciążeniem rezystancyjnym o maksymalnej mocy 100 W?

A. 0,8 A
B. 0,4 A
C. 0,5 A
D. 1,0 A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość prądu znamionowego bezpiecznika, który zabezpiecza uzwojenie pierwotne transformatora bezpieczeństwa 230/24 V, powinna wynosić 0,5 A. Aby obliczyć odpowiedni prąd znamionowy, można skorzystać z podstawowego wzoru: P = U * I, gdzie P to moc (w watach), U to napięcie (w woltach), a I to prąd (w amperach). W przypadku obciążenia rezystancyjnego o maksymalnej mocy 100 W, przy napięciu 24 V, obliczamy prąd: I = P / U = 100 W / 24 V = 4,17 A. To jednak dotyczy wyjścia transformatora. Na uzwojeniu pierwotnym, gdzie napięcie wynosi 230 V, moc pozostaje ta sama, więc: I = P / U = 100 W / 230 V = 0,435 A, co oznacza, że dla praktycznych zastosowań, bezpiecznik o wartości 0,5 A, jest odpowiednim wyborem, biorąc pod uwagę także tolerancje i warunki pracy, w tym normy bezpieczeństwa, które zalecają stosowanie bezpieczników o wartościach nominalnych wyższych niż obliczone, aby zapewnić dodatkową ochronę w przypadku chwilowych przeciążeń. Dodatkowo, stosowanie bezpiecznika o tej wartości zapewnia zgodność z normami PN-EN 60269, które regulują zasady zabezpieczeń elektrycznych.

Pytanie 32

Jakie skutki przyniesie zmiana przewodów ADG 1,5 mm2 na przewody DY 1,5 mm2 w instalacji elektrycznej podtynkowej w budynku mieszkalnym?

A. Wzrost rezystancji pętli zwarcia
B. Wzrost obciążalności prądowej instalacji
C. Obniżenie napięcia roboczego
D. Obniżenie wytrzymałości mechanicznej przewodów

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wymiana przewodów ADG na przewody DY w instalacji elektrycznej przynosi szereg korzyści, w tym zwiększenie obciążalności prądowej. Przewody DY, zgodne z normą PN-IEC 60227, charakteryzują się lepszymi właściwościami przewodzenia prądu elektrycznego, co jest kluczowe w kontekście bezpieczeństwa i efektywności energetycznej. Ich konstrukcja wykonana z materiałów o lepszej przewodności, takich jak miedź, pozwala na większe prądy robocze bez ryzyka przegrzania. Dla przykładu, w instalacjach o dużym zapotrzebowaniu na energię elektryczną, jak kuchnie elektryczne czy systemy grzewcze, wyższa obciążalność prądowa jest niezbędna do zapewnienia stabilności działania urządzeń. W praktyce oznacza to, że instalacje z przewodami DY mogą skuteczniej obsługiwać większe obciążenia, co jest zgodne z zasadą projektowania instalacji elektrycznych, by nie przekraczać maksymalnych obciążeń przewodów. Wybór odpowiednich przewodów jest kluczowy również dla zapewnienia długotrwałej i bezawaryjnej pracy całego systemu elektrycznego, co jest zgodne z dobrymi praktykami inżynieryjnymi.

Pytanie 33

Jaka powinna być nominalna wartość prądu bezpiecznika aparatu zamontowanego w obwodzie pierwotnym transformatora jednofazowego o parametrach: U1N= 230 V, U2N= 13 V, używanego w ładowarce do akumulatorów, jeśli przewidywana wartość prądu ładowania akumulatorów wynosi 15 A?

A. 1A
B. 6A
C. 16A
D. 10A

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wartość prądu znamionowego bezpiecznika aparatowego powinna być odpowiednio dobrana do przewidywanego prądu obciążenia. W omawianym przypadku, transformator jednofazowy o parametrach znamionowych U<sub>1N</sub>= 230 V i U<sub>2N</sub>= 13 V, przy założonym prądzie obciążenia 15 A, wymaga zastosowania bezpiecznika o wartości prądowej nieco wyższej niż maksymalny prąd roboczy. Dlatego bezpiecznik o wartości 16 A będzie odpowiedni, ponieważ zapewnia margines bezpieczeństwa, chroniąc jednocześnie obwód przed przeciążeniem. W praktyce, dobierając bezpieczniki, należy kierować się zasadą, że ich wartość powinna być wyższa niż przewidywane prądy robocze, co jest zgodne z normą PN-EN 60947-3, która wskazuje na konieczność zapewnienia ochrony przed zwarciami i przeciążeniami. To podejście nie tylko zwiększa bezpieczeństwo systemu, ale także wydłuża żywotność urządzeń, w tym transformatorów i akumulatorów.

Pytanie 34

Z uwagi na ryzyko uszkodzenia izolacji uzwojeń, używanie bezpieczników w obwodzie przekładnika jest zabronione?

A. napięciowego po stronie pierwotnej
B. napięciowego po stronie wtórnej
C. prądowego po stronie wtórnej
D. prądowego po stronie pierwotnej

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź "prądowego po stronie wtórnej" jest prawidłowa, ponieważ zastosowanie bezpieczników w obwodzie przekładnika prądowego po stronie wtórnej może prowadzić do uszkodzenia izolacji uzwojeń. Przekładniki prądowe są wykorzystywane do pomiarów prądu oraz ochrony obwodów elektrycznych, a ich konstrukcja jest zaprojektowana tak, aby zachować integralność i dokładność pomiarów. Jeśli zastosujemy bezpiecznik po stronie wtórnej, w przypadku zwarcia lub nadmiernego prądu, może dojść do przerwania obwodu, co skutkuje powstaniem wysokiego napięcia, które może uszkodzić izolację. W praktyce, aby zapewnić bezpieczeństwo i niezawodność działania systemów pomiarowych, zaleca się stosowanie odpowiednich zabezpieczeń, takich jak układy ograniczające prąd, a także monitorowanie obwodów za pomocą przyrządów pomiarowych, które mogą dostarczyć informacji o stanie przekładnika. Przykładem może być stosowanie odpowiednich przekładników do systemów zabezpieczeń, które są zgodne z normami IEC 60044, co podkreśla bezpieczeństwo i wydajność tych urządzeń w aplikacjach przemysłowych.

Pytanie 35

Jak często powinny być przeprowadzane okresowe kontrole użytkowe instalacji elektrycznej w budynku jednorodzinnym, minimalnie raz w czasie?

A. 6 lat
B. 4 lata
C. 5 lat
D. 8 lat

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Okresowe badania eksploatacyjne sieci elektrycznej w domach jednorodzinnych są kluczowym elementem zapewnienia ich bezpieczeństwa i sprawności. Zgodnie z obowiązującymi normami, szczególnie z rozporządzeniem Ministra Infrastruktury oraz normami PN-IEC 60364 i PN-EN 61010, przeglądy te powinny być przeprowadzane co 5 lat. W praktyce, regularne kontrole umożliwiają wczesne wykrywanie potencjalnych usterek, takich jak uszkodzenia izolacji, niewłaściwe połączenia czy degradacja elementów systemu elektrycznego. Na przykład, w przypadku starych instalacji, działanie na granicy normy może prowadzić do przegrzewania się przewodów, co stwarza ryzyko pożaru. Dlatego ważne jest, aby użytkownicy domów jednorodzinnych byli świadomi tego obowiązku i zapewniali odpowiednie przeglądy w ustalonych interwałach. Dodatkowo, w miarę starzejących się instalacji, może być konieczne zwiększenie częstotliwości badań, co podkreśla znaczenie odpowiedzialnego zarządzania systemem elektrycznym w domu.

Pytanie 36

Jakie uszkodzenie elektryczne może być przyczyną braku obrotów w lewą stronę w ręcznej wiertarce elektrycznej?

A. O zwarciu w uzwojeniach wirnika
B. O uszkodzeniu przełącznika kierunku prądu w wirniku
C. O uszkodzeniu wyłącznika z regulatorem prędkości obrotowej
D. O przerwie w uzwojeniu stojana

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź o uszkodzeniu przełącznika kierunku prądu w wirniku jest prawidłowa, ponieważ brak obrotów w lewo w ręcznej wiertarce elektrycznej najczęściej oznacza, że mechanizm odpowiedzialny za zmianę kierunku obrotów nie działa poprawnie. Przełącznik kierunku prądu jest kluczowym elementem, który umożliwia zmianę kierunku obrotów silnika, co jest niezbędne do wykonywania prac w różnych warunkach. Przykładem zastosowania tej wiedzy jest potrzeba zmiany kierunku obrotów wiertarki podczas pracy z różnymi materiałami, gdzie w prawo i w lewo może być wymagane do usunięcia wiórów z otworu. Regularne sprawdzanie i konserwacja przełączników kierunkowych, zgodnie z zaleceniami producenta, może zapobiec awariom i zwiększyć żywotność narzędzia. W przypadku awarii przełącznika, najczęściej zauważalne są problemy z samym mechanizmem przełączania oraz opóźnienia w reakcjach przy zmianie kierunków. W praktyce, jeśli wiertarka działa w jednym kierunku, należy najpierw zdiagnozować przełącznik przed podejmowaniem innych działań naprawczych.

Pytanie 37

Jakie są minimalne wymagania, oprócz odpowiedniego wykształcenia, które powinna spełniać osoba odpowiedzialna za przeprowadzanie pomiarów odbiorczych instalacji elektrycznej w budynku mieszkalnym?

A. Wyłącznie świadectwo kwalifikacyjne w zakresie D
B. Jedynie świadectwo kwalifikacyjne w zakresie E
C. Świadectwo kwalifikacyjne w zakresie E + pomiary
D. Świadectwo kwalifikacyjne w zakresie E + D + pomiary

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Osoba wykonująca pomiary odbiorcze instalacji elektrycznej w budynku mieszkalnym powinna posiadać świadectwo kwalifikacyjne w zakresie E, które uprawnia do eksploatacji urządzeń, instalacji i sieci elektrycznych. Dodatkowo, ważnym elementem jest posiadanie wiedzy oraz umiejętności praktycznych w zakresie przeprowadzania pomiarów. Wiedza ta obejmuje znajomość metod pomiarowych, zasad ich wykonywania oraz interpretacji wyników. Pomiary odbiorcze są kluczowe dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej. Na przykład, pomiar rezystancji izolacji pozwala na ocenę stanu zabezpieczeń przed porażeniem elektrycznym, co jest szczególnie istotne w domowych instalacjach. Standardy branżowe, takie jak PN-EN 60204-1, podkreślają znaczenie takich pomiarów dla zapewnienia zgodności z normami bezpieczeństwa. Z tego powodu posiadanie świadectwa kwalifikacyjnego w zakresie E wraz z umiejętnością wykonywania pomiarów jest niezbędne do efektywnego i bezpiecznego wykonywania prac w tej dziedzinie.

Pytanie 38

W instalacji elektrycznej obwodu gniazd w przedpokoju wykorzystano przewód YDYt 3×2,5 mm2. Podczas wiercenia w murze pracownik przypadkowo przeciął przewód, uszkadzając jego dwie żyły. Jak należy prawidłowo usunąć tę usterkę?

A. Prowadzić nowy przewód pomiędzy najbliższymi puszkami, stosując pilota.
B. Rozkuć tynk w miejscu uszkodzenia, połączyć przewody, zaizolować taśmą, a następnie zatynkować ścianę.
C. Rozkuć tynk w miejscu uszkodzenia, zamontować dodatkową puszkę i w niej połączyć żyły.
D. Wyciągnąć jedynie uszkodzone żyły, zastępując je przewodem jednodrutowym.

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wybór odpowiedzi polegającej na rozkuwaniu tynku w miejscu uszkodzenia, zamontowaniu dodatkowej puszki oraz połączeniu żył jest najbardziej zalecanym sposobem naprawy uszkodzonego przewodu elektrycznego. Tego rodzaju działania są zgodne z obowiązującymi normami oraz najlepszymi praktykami w branży elektrycznej. W sytuacji, gdy przewód został uszkodzony, niezbędne jest zapewnienie odpowiednich warunków do naprawy, co może wiązać się z otwarciem ściany. Instalując dodatkową puszkę, zwiększamy bezpieczeństwo i ułatwiamy przyszłe prace serwisowe. Połączenie żył w puszce umożliwia także zastosowanie złączek, co jest rekomendowane w przypadku napraw elektrycznych. Dzięki temu połączenia są bardziej trwałe i estetyczne, a ryzyko ich przypadkowego usunięcia bądź zwarcia zostaje zminimalizowane. Takie podejście jest zgodne z europejskimi normami instalacji elektrycznych, które nakładają obowiązek używania osprzętu instalacyjnego w celu zwiększenia bezpieczeństwa użytkowania instalacji elektrycznych. W praktyce, zastosowanie dodatkowej puszki stanowi również zabezpieczenie przed przyszłymi uszkodzeniami mechanicznymi. Już na etapie projektowania, warto uwzględnić takie rozwiązania, by minimalizować ryzyko nieprzewidzianych awarii.

Pytanie 39

Podaj, jaką wartość nie może przewyższać spodziewane napięcie dotykowe na dostępnej części przewodzącej urządzenia działającego w normalnych warunkach środowiskowych, podczas samoczynnego wyłączenia wynoszącego 5 s, przy prawidłowo dobranych przewodach oraz zabezpieczeniach w elektrycznej instalacji do 1 kV.

A. 70 V
B. 50 V
C. 220 V
D. 110 V

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Odpowiedź 50 V jest prawidłowa, ponieważ jest to wartość maksymalna dopuszczalnego napięcia dotykowego na częściach dostępnych przewodzących zgodnie z normą PN-IEC 61140. W przypadku instalacji elektrycznych o napięciu do 1 kV, w warunkach normalnych, napięcie dotykowe nie może przekraczać tej wartości, aby zapewnić bezpieczeństwo użytkowników. W instytucjach i obiektach, w których używa się urządzeń elektrycznych, kluczowe jest stosowanie odpowiednich zabezpieczeń, takich jak wyłączniki różnicowoprądowe, które w przypadku wykrycia upływu prądu mogą zadziałać w czasie poniżej 30 ms. Przykładem zastosowania tej zasady mogą być instalacje w budynkach mieszkalnych, gdzie konieczne jest zapewnienie bezpieczeństwa osób korzystających z urządzeń elektrycznych. Obowiązujące normy, takie jak PN-EN 60038, wskazują na znaczenie odpowiedniego doboru zabezpieczeń, aby w sytuacji zwarcia lub uszkodzenia izolacji nie doszło do niebezpiecznego wzrostu napięcia dotykowego. W ten sposób, przy właściwej ochronie, można skutecznie zminimalizować ryzyko porażenia prądem elektrycznym.

Pytanie 40

Jakie oznaczenie powinna nosić wkładka bezpiecznikowa, którą trzeba zainstalować w celu zabezpieczenia silników oraz urządzeń rozdzielczych?

A. gR
B. aM
C. aL
D. gB

Brak odpowiedzi na to pytanie.

Wyjaśnienie poprawnej odpowiedzi:
Wkładka bezpiecznikowa oznaczona symbolem aM jest przeznaczona do ochrony silników oraz urządzeń rozdzielczych przed przeciążeniem i zwarciem. Oznaczenie to wskazuje, że bezpiecznik ten ma charakterystykę czasowo-prądową, która jest dostosowana do pracy urządzeń z silnikami, co oznacza, że pozwala na chwilowe przekroczenie dopuszczalnego prądu w momencie rozruchu silnika, co jest niezbędne dla prawidłowego funkcjonowania urządzeń elektrycznych. W praktyce oznacza to, że wkładka aM jest w stanie znieść większy prąd przez krótki czas, co zapobiega niepotrzebnym wyłączeniom w przypadku chwilowych przeciążeń. Takie wkładki są szczególnie zalecane w instalacjach, gdzie silniki startują z dużym momentem, co generuje znaczne obciążenia prądowe. Wdrożenie wkładek aM zgodnie z normami IEC 60269, które określają wymagania dla wkładek bezpiecznikowych, jest dobrą praktyką, zapewniającą bezpieczeństwo oraz niezawodność systemów elektrycznych.