Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 12 lipca 2025 17:08
  • Data zakończenia: 12 lipca 2025 17:53

Egzamin zdany!

Wynik: 30/40 punktów (75,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Wskaż komponent, który nie jest zgodny z płytą główną o parametrach przedstawionych w tabeli

PodzespółParametry
Płyta główna GIGABYTE4x DDR4, 4x PCI-E 16x, RAID,
HDMI, D-Port, D-SUB, 2x USB 3.1,
8 x USB 2.0, S-AM3+
A. Monitor: Dell, 34", 1x DisplayPort, 1x miniDP, 2x USB 3.0 Upstream, 4x USB 3.0 Downstream
B. Karta graficzna: Gigabyte GeForce GTX 1050 OC, 2GB, GDDR5, 128 bit, PCI-Express 3.0 x16
C. Procesor: INTEL CORE i3-4350, 3.60 GHz, x2/4, 4 MB, 54W, HD 4600, BOX, s-1150
D. Pamięć RAM: Corsair Vengeance LPX, DDR4, 2x16GB, 3000MHz, CL15 Black
Procesor INTEL CORE i3-4350 jest niekompatybilny z płytą główną o przedstawionych parametrach, ponieważ używa gniazda LGA 1150, które nie pasuje do gniazda S-AM3+ wspieranego przez płytę główną. Gniazdo procesora to kluczowy element w kompatybilności między płytą główną a procesorem. W przypadku niezgodności nie ma fizycznej możliwości zamontowania procesora w płycie głównej. Dobre praktyki branżowe wskazują na konieczność szczegółowego sprawdzenia kompatybilności przed zakupem części komputerowych, aby uniknąć niepotrzebnych kosztów i opóźnień w montażu. Praktycznie, jeśli użytkownik nie sprawdzi kompatybilności komponentów, może to prowadzić do sytuacji, gdzie cała inwestycja w komputer staje się problematyczna, ponieważ wymiana płyty głównej lub procesora pociąga za sobą dodatkowe koszty. Dlatego zawsze zaleca się konsultację specyfikacji technicznych i ewentualnie kontakt z producentem lub ekspertem, aby upewnić się, że wszystkie części są zgodne. Warto również korzystać z narzędzi online, które pomagają w weryfikacji kompatybilności komponentów komputerowych.

Pytanie 2

Jaką liczbę hostów można podłączyć w sieci o adresie 192.168.1.128/29?

A. 8 hostów
B. 6 hostów
C. 12 hostów
D. 16 hostów
Sieć o adresie 192.168.1.128/29 ma maskę podsieci wynoszącą 255.255.255.248, co oznacza, że w tej sieci dostępnych jest 8 adresów IP (2^3 = 8, gdzie 3 to liczba bitów przeznaczonych na adresy hostów). Jednakże, dwa z tych adresów są zarezerwowane: jeden dla adresu sieci (192.168.1.128) i jeden dla adresu rozgłoszeniowego (192.168.1.135), co pozostawia 6 adresów dostępnych dla hostów (192.168.1.129 do 192.168.1.134). W praktyce, taki układ jest często stosowany w małych sieciach lokalnych, gdzie liczba urządzeń nie przekracza 6, co pozwala na efektywne zarządzanie adresacją IP. Wiedza ta jest kluczowa przy projektowaniu sieci, ponieważ umożliwia dostosowanie liczby dostępnych adresów do rzeczywistych potrzeb organizacji, co jest zgodne z najlepszymi praktykami w zakresie inżynierii sieciowej.

Pytanie 3

GRUB, LILO, NTLDR to

A. programy rozruchowe
B. aplikacje do aktualizacji BIOSU
C. firmware dla dysku twardego
D. wersje głównego interfejsu sieciowego
GRUB, LILO i NTLDR to programy rozruchowe, które pełnią kluczową rolę w procesie uruchamiania systemu operacyjnego. GRUB (Grand Unified Bootloader) jest nowoczesnym bootloaderem, który obsługuje wiele systemów operacyjnych i umożliwia ich wybór podczas startu komputera. LILO (Linux Loader) jest starszym bootloaderem, który również konfiguruje i uruchamia różne systemy operacyjne, ale nie oferuje tak zaawansowanych możliwości jak GRUB, zwłaszcza w kontekście obsługi dynamicznego sprzętu. NTLDR (NT Loader) jest bootloaderem używanym w systemach Windows NT, który zarządza uruchamianiem systemu operacyjnego Windows. W praktyce, wybór odpowiedniego bootloadera zależy od specyfiki środowiska, na którym pracujemy, oraz wymagań dotyczących systemów operacyjnych. Grupa standardów, takich jak UEFI (Unified Extensible Firmware Interface), wprowadza nowoczesne podejście do procesu rozruchu, zastępując tradycyjne BIOSy i wspierając zaawansowane funkcje, takie jak szybki rozruch. Znajomość tych technologii jest niezbędna dla administratorów systemów i inżynierów IT, gdyż odpowiedni dobór bootloadera może znacząco wpłynąć na wydajność oraz niezawodność systemu.

Pytanie 4

Thunderbolt stanowi interfejs

A. szeregowy, dwukanałowy, dwukierunkowy, przewodowy
B. równoległy, asynchroniczny, przewodowy
C. równoległy, dwukanałowy, dwukierunkowy, bezprzewodowy
D. szeregowy, asynchroniczny, bezprzewodowy
Odpowiedź 'szeregowy, dwukanałowy, dwukierunkowy, przewodowy' jest poprawna, ponieważ interfejs Thunderbolt, stworzony przez firmę Intel we współpracy z Apple, rzeczywiście operuje w trybie szeregowym. Oznacza to, że dane są przesyłane jeden po drugim, co pozwala na osiąganie dużych prędkości transferu, sięgających nawet 40 Gbps w najnowszych wersjach. Dwukanałowość oznacza, że Thunderbolt wykorzystuje dwa kanały do przesyłania danych, co podwaja przepustowość w porównaniu do jednego kanału. Dwukierunkowość pozwala na jednoczesne wysyłanie i odbieranie danych, co jest kluczowe w zastosowaniach wymagających dużych przepustowości, takich jak edycja wideo w czasie rzeczywistym czy transfer dużych zbiorów danych. Przewodowy charakter interfejsu Thunderbolt oznacza, że wymaga on fizycznego połączenia kablowego, co zapewnia stabilność oraz mniejsze opóźnienia w transmisji. W praktyce, wykorzystanie Thunderbolt można zaobserwować w nowoczesnych laptopach, stacjach dokujących oraz zewnętrznych dyskach twardych, które korzystają z tej technologii do szybkiej komunikacji. Standard ten jest uznawany za jedną z najlepszych opcji do podłączania wysokowydajnych urządzeń. Dodatkowo, Thunderbolt obsługuje protokoły DisplayPort i PCI Express, co czyni go wszechstronnym rozwiązaniem dla różnych zastosowań.

Pytanie 5

Jaką rolę pełni protokół DNS?

A. mapowanie nazw domenowych na adresy IP
B. automatyczne przypisywanie adresacji urządzeniom w sieci
C. mapowanie fizycznych adresów MAC na adresy IP
D. statyczne przypisywanie adresacji urządzeniom w sieci
Protokół DNS to naprawdę ważny kawałek Internetu. Dzięki niemu możemy zamienić nazwy stron, jak na przykład www.przyklad.pl, na adresy IP, które są niezbędne, żeby komputery mogły się ze sobą komunikować. To jest spoko, bo zamiast zapamiętywać długie ciągi cyfr, możemy korzystać z łatwiejszych do zapamiętania nazw. Na przykład, gdy wpisujesz adres w przeglądarkę, DNS zamienia to na odpowiedni adres IP serwera, z którym się łączysz, a to pozwala załadować stronę. W praktyce, DNS działa w sposób hierarchiczny i ma różne poziomy, takie jak serwery główne i te, które odpowiadają za końcówki domen. Dodatkowo, DNS wykorzystuje różne triki, jak caching, żeby szybciej podawać informacje o adresach IP i poprawić wydajność całego systemu. Wiedza o tym protokole jest naprawdę potrzebna dla adminów sieci, bo błędy w jego konfiguracji mogą sprawić, że strony czy usługi przestaną działać.

Pytanie 6

Jakie urządzenie powinno być użyte do łączenia komputerów w strukturze gwiazdy?

A. Bridge
B. Repetytor
C. Switch
D. Transceiver
Switch to urządzenie, które odgrywa kluczową rolę w topologii gwiazdy, ponieważ umożliwia efektywne zarządzanie ruchem danych między podłączonymi komputerami. W topologii gwiazdy wszystkie urządzenia są bezpośrednio połączone z centralnym punktem, którym w tym przypadku jest switch. Switch działa na poziomie warstwy drugiej modelu OSI, co oznacza, że przetwarza ramki danych na podstawie adresów MAC. Dzięki temu, gdy komputer wysyła dane, switch kieruje je bezpośrednio do odpowiedniego urządzenia, co minimalizuje kolizje i zwiększa wydajność sieci. Przykładem zastosowania switche'a w topologii gwiazdy może być biuro, gdzie wiele komputerów i urządzeń drukujących jest połączonych z jednym switchem, co pozwala na sprawne działanie oraz łatwe zarządzanie siecią. Dodatkowo, stosowanie switchy pozwala na implementację funkcji VLAN, co umożliwia segmentację ruchu sieciowego i zwiększa bezpieczeństwo oraz wydajność sieci. Zgodnie z dobrymi praktykami branżowymi, switche powinny być projektowane z myślą o skalowalności, co pozwala na łatwe dodawanie kolejnych urządzeń bez wpływu na istniejące połączenia.

Pytanie 7

Podaj polecenie w systemie Linux, które umożliwia wyświetlenie identyfikatora użytkownika.

A. id
B. users
C. who
D. whoami
Polecenie 'id' w systemie Linux jest najskuteczniejszym sposobem na uzyskanie informacji o użytkowniku, w tym jego unikalnego identyfikatora, czyli UID (User Identifier). To polecenie nie tylko wyświetla UID, ale także grupy, do których użytkownik należy, co jest niezwykle przydatne w kontekście zarządzania uprawnieniami i dostępem do zasobów systemowych. Przykładowo, po wpisaniu 'id' w terminalu, użytkownik otrzymuje informacje takie jak: uid=1000(nazwa_użytkownika) gid=1000(grupa) groups=1000(grupa),27(dodatkowa_grupa). Wiedza o UID jest kluczowa, gdyż pozwala administratorom na efektywne zarządzanie uprawnieniami i kontrolę dostępu do plików oraz procesów. W praktyce, zrozumienie działania polecenia 'id' pozwala na lepsze rozwiązywanie problemów związanych z uprawnieniami, co jest istotnym elementem codziennej administracji systemami Linux. Dobrą praktyką jest regularne korzystanie z tego polecenia w kontekście audytów bezpieczeństwa czy podczas konfigurowania nowych użytkowników.

Pytanie 8

Jak sprawdzić, który z programów w systemie Windows generuje największe obciążenie dla procesora?

A. regedit
B. dxdiag
C. msconfig
D. menedżer zadań
Menedżer zadań jest kluczowym narzędziem w systemie Windows, które umożliwia monitorowanie i zarządzanie procesami działającymi na komputerze. Dzięki niemu użytkownicy mogą uzyskać wgląd w aktualne obciążenie procesora przez poszczególne aplikacje oraz procesy systemowe. W zakładce 'Procesy' można zobaczyć zarówno zużycie CPU, jak i pamięci RAM przez różne aplikacje, co jest niezwykle pomocne w identyfikacji programów, które obciążają system. Przykładowo, jeśli zauważysz, że jeden z procesów, jak przeglądarka internetowa, zużywa znaczną część CPU, można podjąć decyzję o jego zamknięciu lub optymalizacji. Dobre praktyki sugerują regularne sprawdzanie Menedżera zadań w celu utrzymania optymalnej wydajności systemu. Dodatkowo, program ten pozwala na zakończenie nieodpowiadających aplikacji oraz zarządzanie uruchamianiem programów przy starcie systemu, co również wpływa na ogólną wydajność komputera.

Pytanie 9

Jakie urządzenie powinno zostać wykorzystane do podłączenia komputerów, aby mogły funkcjonować w odrębnych domenach rozgłoszeniowych?

A. Rutera
B. Mostu
C. Regeneratora
D. Koncentratora
Ruter to takie urządzenie, które pozwala na przepuszczanie danych między różnymi sieciami. Działa na wyższej warstwie niż mosty czy koncentratory, więc ma możliwość zarządzania adresami IP i trasami danych. Dzięki temu ruter może skutecznie oddzielać różne domeny rozgłoszeniowe, co jest mega ważne w dużych sieciach. Na przykład w firmie z wieloma działami, każdy dział może mieć swoją odrębną sieć, co zwiększa bezpieczeństwo i zmniejsza ryzyko nieautoryzowanego dostępu. Moim zdaniem, ruter w takich sytuacjach to kluczowa sprawa, bo lepiej zarządza ruchem i poprawia wydajność sieci. Z praktyki wiem, że dobrze skonfigurowany ruter to podstawa w inżynierii sieciowej.

Pytanie 10

Aby uruchomić przedstawione narzędzie w systemie Windows, jakie polecenie należy zastosować?

Ilustracja do pytania
A. dcomcnfg
B. resmon
C. secpol
D. taskmgr
Dobra robota, odpowiedź na taskmgr jest właściwa! To polecenie włącza Menedżera zadań w Windowsie, co jest narzędziem mega przydatnym do śledzenia i zarządzania aplikacjami oraz procesami. Dzięki niemu możemy zamykać programy, które „zawieszają się” czy analizować użycie zasobów, jak CPU, pamięć czy dysk. Bardzo fajnie jest mieć kontrolę nad tym, co się dzieje w tle, szczególnie gdy komputer zaczyna działać wolno. Można w ten sposób zakończyć działanie procesów, które mogą namieszać w stabilności systemu. Regularne sprawdzanie obciążenia systemu to świetny pomysł, bo pozwala na utrzymanie płynności pracy. Zrozumienie działania Menedżera zadań i umiejętność jego używania to naprawdę ważna umiejętność w IT.

Pytanie 11

Jaką partycją w systemie Linux jest magazyn tymczasowych danych, gdy pamięć RAM jest niedostępna?

A. tmp
B. swap
C. sys
D. var
Odpowiedź 'swap' jest poprawna, ponieważ partycja swap w systemie Linux pełni rolę rozszerzenia pamięci RAM. Gdy system operacyjny nie ma wystarczającej ilości pamięci RAM do przechowywania danych, przenosi nieużywane lub mniej krytyczne dane do przestrzeni swap na dysku twardym. To pozwala na bardziej efektywne zarządzanie pamięcią, zapewniając, że aplikacje mogą nadal działać płynnie, nawet w przypadku dużego obciążenia. Przykładem zastosowania partycji swap może być sytuacja, gdy uruchamiamy aplikacje wymagające dużej ilości pamięci, takie jak obróbka grafiki czy operacje na dużych zestawach danych. W takich przypadkach swap może zapobiec awariom systemu z powodu braku pamięci. Dobrą praktyką jest konfigurowanie partycji swap w odpowiedniej wielkości, zależnie od ilości zainstalowanej pamięci RAM i specyfikacji użytkowania systemu. Rekomendowanymi standardami są ustalenia, że swap powinien wynosić od 1 do 2 razy więcej niż pamięć RAM, zwłaszcza w zastosowaniach serwerowych. Warto również pamiętać, że swap jest znacznie wolniejsza od pamięci RAM, dlatego należy starać się utrzymywać ilość danych w swapie na jak najniższym poziomie, wykorzystując odpowiednie techniki optymalizacji pamięci.

Pytanie 12

Po zainstalowaniu z domyślnymi uprawnieniami, system Windows XP nie obsługuje formatu systemu plików

A. FAT32
B. EXT
C. NTFS
D. FAT16
Odpowiedź "EXT" jest poprawna, ponieważ system Windows XP nie obsługuje systemu plików EXT, który jest standardowym systemem plików stosowanym w systemach operacyjnych Linux. Windows XP obsługuje inne systemy plików, takie jak NTFS, FAT16 i FAT32, ale nie EXT. Praktyczne zastosowanie tej wiedzy polega na tym, że podczas pracy z systemem Windows XP nie będzie możliwości montowania partycji sformatowanych w systemie EXT, co może być istotne dla administratorów systemów, którzy muszą integrować urządzenia z różnymi systemami operacyjnymi. Zrozumienie poszczególnych systemów plików jest kluczowe w kontekście zarządzania danymi i dostępem do nich w złożonych środowiskach informatycznych. Stosowanie odpowiedniego systemu plików w zależności od OS zapewnia optymalną wydajność oraz bezpieczeństwo danych.

Pytanie 13

Na podstawie analizy pakietów sieciowych, określ adres IP oraz numer portu, z którego urządzenie otrzymuje odpowiedź?

Ilustracja do pytania
A. 192.168.0.13:80
B. 46.28.247.123:51383
C. 192.168.0.13:51383
D. 46.28.247.123:80
Błędne odpowiedzi wynikają z nieprawidłowego przypisania adresów IP i portów, które nie odpowiadają standardowemu schematowi komunikacji w sieci. Na przykład adres IP 192.168.0.13 jest typowym adresem z zakresu sieci lokalnej (LAN), co oznacza, że nie jest publicznie routowalny w Internecie i służy do identyfikacji hostów w prywatnych sieciach. Port 51383 w odpowiedziach sugeruje dynamiczny lub tymczasowy port, który jest zazwyczaj używany przez aplikacje klienckie do inicjowania połączeń z serwerami z użyciem portów standardowych, takich jak 80 dla HTTP. W przypadku analizy ruchu sieciowego, najczęstszym błędem jest pomieszanie ról źródłowego i docelowego adresu oraz portu. Serwery webowe zazwyczaj nasłuchują na standardowych portach, takich jak 80 dla HTTP i 443 dla HTTPS, co ułatwia standaryzację i optymalizację trasowania w sieci. Zrozumienie różnic między adresami publicznymi i prywatnymi oraz dynamicznymi i statycznymi portami jest kluczowe dla skutecznego zarządzania sieciami komputerowymi. Bez tej wiedzy administratorzy mogą napotkać problemy z konfiguracją sieci, które prowadzą do błędów w komunikacji i zabezpieczeniach. Dlatego ważne jest, aby dokładnie interpretować dane z narzędzi do analizy ruchu sieciowego, takich jak Wireshark, gdzie adresy i porty muszą być prawidłowo zidentyfikowane, aby rozwiązać potencjalne problemy z siecią i zapewnić prawidłowe działanie usług sieciowych. Stosowanie się do dobrych praktyk w zakresie wykorzystania portów oraz adresów IP jest kluczowe dla bezpieczeństwa i wydajności sieciowej.

Pytanie 14

Czym jest parametr, który określa, o ile moc sygnału w danej parze przewodów zmniejszy się po przejściu przez cały tor kablowy?

A. przenik zdalny
B. przenik zbliżny
C. tłumienie
D. długość
Tłumienie to parametr, który określa, jak bardzo sygnał zmniejsza swoją moc podczas przechodzenia przez medium, w tym przypadku przez parę przewodów. Jest to istotny aspekt w telekomunikacji i technologii przesyłania danych, ponieważ zbyt duże tłumienie może prowadzić do degradacji sygnału, co w konsekwencji wpływa na jakość transmisji. W praktyce, tłumienie może być wyrażane w decybelach na kilometr (dB/km) i jest istotne przy projektowaniu torów kablowych, aby zapewnić, że sygnał dotrze do odbiorcy w odpowiedniej jakości. W branży stosuje się różne standardy, takie jak ISO/IEC 11801, które definiują maksymalne wartości tłumienia dla różnych typów kabli. Dobrą praktyką jest regularne monitorowanie i testowanie linii transmisyjnych, aby upewnić się, że tłumienie mieści się w dopuszczalnych wartościach, co pomaga w utrzymaniu wysokiej jakości usług.

Pytanie 15

Jakie polecenie w systemie operacyjnym Linux umożliwia sprawdzenie bieżącej konfiguracji interfejsu sieciowego na komputerze?

A. tracert
B. ifconfig
C. ping
D. ipconfig
Polecenie 'ifconfig' jest kluczowym narzędziem w systemie Linux, które pozwala na wyświetlenie aktualnej konfiguracji interfejsów sieciowych. Umożliwia ono administratorom i użytkownikom systemów operacyjnych monitorowanie i zarządzanie ustawieniami sieciowymi, takimi jak adresy IP, maski podsieci, adresy MAC oraz statystyki przesyłu danych. Przykładowo, wpisanie komendy 'ifconfig' w terminalu wyświetli listę wszystkich dostępnych interfejsów sieciowych oraz ich aktualne parametry, co jest nieocenione w diagnostyce problemów z połączeniem. Dodatkowo, 'ifconfig' może być używane do konfigurowania interfejsów, na przykład do przypisywania nowych adresów IP, co jest częstą praktyką w zarządzaniu serwerami i urządzeniami sieciowymi. Warto zaznaczyć, że w nowszych dystrybucjach Linuxa zaleca się korzystanie z narzędzia 'ip', które oferuje szersze możliwości zarządzania siecią, zwiększając elastyczność i efektywność konfiguracji.

Pytanie 16

Ile bajtów odpowiada jednemu terabajtowi?

A. 10^12 bajtów
B. 10^14 bajtów
C. 10^8 bajtów
D. 10^10 bajtów
Odpowiedź 10^12 bajtów jest prawidłowa, ponieważ jeden terabajt (TB) w standardzie międzynarodowym odpowiada 1 000 000 000 000 bajtów, co można zapisać jako 10^12. W praktyce oznacza to, że terabajt to jednostka miary powszechnie stosowana w informatyce i technologii komputerowej do określania pojemności pamięci, zarówno w dyskach twardych, jak i w pamięciach flash. Warto zaznaczyć, że w niektórych kontekstach terabajt jest używany w odniesieniu do systemu binarnego, gdzie 1 TB równoważy się z 2^40 bajtów, co daje 1 099 511 627 776 bajtów. Zrozumienie różnicy między tymi systemami jest istotne, szczególnie przy planowaniu przestrzeni dyskowej i zarządzaniu danymi. Przykładowo, zakup dysku twardego o pojemności 1 TB oznacza, że możemy przechować około 250 000 zdjęć, 250 000 utworów muzycznych lub od 300 do 600 godzin filmów w jakości standardowej, co ilustruje praktyczne zastosowanie tej jednostki. W branży technologicznej standardy jednostek miary są kluczowe dla zapewnienia zgodności i zrozumienia pomiędzy różnymi systemami i produktami.

Pytanie 17

Który z wymienionych adresów należy do klasy C?

A. 196.74.6.29
B. 154.0.12.50
C. 125.9.3.234
D. 176.18.5.26
Podane odpowiedzi 125.9.3.234, 154.0.12.50 i 176.18.5.26 należą do innych klas adresów IP, co wynika z analizy ich pierwszych oktetów. Adres 125.9.3.234 należy do klasy A, ponieważ pierwszy oktet wynosi 125, co mieści się w przedziale od 1 do 126. Klasa A jest przeznaczona dla dużych organizacji, które potrzebują wielu adresów IP, a jej struktura pozwala na stworzenie około 16 milionów adresów w każdej sieci. Adres 154.0.12.50 należy do klasy B, której pierwszy oktet mieści się w przedziale od 128 do 191. Klasa B jest używana w średnich organizacjach i oferuje do 65 tys. adresów w każdej sieci. Wreszcie adres 176.18.5.26 również należy do klasy B, co ponownie wskazuje na większe potrzeby adresacyjne. Warto zauważyć, że często w praktyce zdarza się pomylenie klas, zwłaszcza w kontekście planowania adresacji sieci, co może prowadzić do nieefektywności w zarządzaniu adresami IP. Zrozumienie, jakie adresy IP przypisane są do poszczególnych klas, jest kluczowe dla prawidłowego projektowania i wdrażania infrastruktury sieciowej. Błędy w klasyfikacji mogą skutkować problemami z komunikacją w sieci i trudnościami w jej rozbudowie.

Pytanie 18

Na dysku należy umieścić 100 tysięcy oddzielnych plików, z których każdy ma rozmiar 2570 bajtów. W takim przypadku, zapisane pliki będą zajmować najmniej miejsca na dysku z jednostką alokacji wynoszącą

A. 8192 bajty
B. 2048 bajtów
C. 3072 bajty
D. 4096 bajtów
Odpowiedź 3072 bajty jest poprawna, ponieważ przy tej jednostce alokacji możemy zminimalizować marnotrawstwo miejsca na dysku. Każdy plik o rozmiarze 2570 bajtów zajmie 3072 bajty, co oznacza, że pozostanie 502 bajty niezajęte. W przypadku mniejszej jednostki alokacji, jak 2048 bajtów, każdy plik zajmie pełne 2048 bajtów, co prowadzi do większego marnotrawstwa przestrzeni dyskowej, ponieważ na dysku na każdym z tych plików pozostanie 522 bajty niewykorzystanego miejsca, a dodatkowo konieczne byłoby zarezerwowanie miejsca na przyszłe pliki. Wybór optymalnej wartości jednostki alokacji jest kluczowy w systemach plików, aby zminimalizować przestrzeń dyskową, co jest szczególnie ważne w środowiskach z ograniczonymi zasobami. Przykładowo, serwery baz danych często korzystają z odpowiednio dobranych jednostek alokacji, aby zapewnić efektywne przechowywanie dużej liczby małych plików. Przy zastosowaniu jednostki alokacji wynoszącej 3072 bajty, osiągamy równowagę między marnotrawstwem przestrzeni a wydajnością operacji zapisu i odczytu.

Pytanie 19

Aby oddzielić komputery działające w sieci z tym samym adresem IPv4, które są podłączone do zarządzalnego przełącznika, należy przypisać

A. wykorzystywane interfejsy do różnych VLAN-ów
B. statyczne adresy MAC komputerów do niewykorzystywanych interfejsów
C. statyczne adresy MAC komputerów do wykorzystywanych interfejsów
D. niewykorzystywane interfejsy do różnych VLAN-ów
Dobra robota z odpowiedzią! Przypisanie interfejsów do różnych VLAN-ów to świetny sposób na logiczne oddzielenie ruchu w tej samej sieci. VLAN-y pozwalają na uniknięcie problemów z kolizjami adresów IP, co jest naprawdę przydatne, zwłaszcza jeśli dwa komputery mają ten sam adres. Dzięki różnym VLAN-om, ruch jest kierowany przez odpowiednie interfejsy, co sprawia, że komunikacja jest lepiej zorganizowana. Na przykład, jeśli masz dwa komputery z tym samym IP, ale w różnych VLAN-ach, to przełącznik będzie wiedział, jak zarządzać ich danymi osobno. To naprawdę dobra praktyka w projektowaniu sieci, bo poprawia bezpieczeństwo i wydajność. No i pamiętaj, że VLAN-y działają zgodnie ze standardem IEEE 802.1Q, co jest istotne, jak chcesz, żeby wszystko działało sprawnie.

Pytanie 20

Adres MAC (Medium Access Control Address) stanowi fizyczny identyfikator interfejsu sieciowego Ethernet w obrębie modelu OSI

A. drugiej o długości 48 bitów
B. trzeciej o długości 32 bitów
C. drugiej o długości 32 bitów
D. trzeciej o długości 48 bitów
Wszystkie podane odpowiedzi, które wskazują na długość 32 bitów, są niepoprawne, ponieważ adres MAC zawsze ma długość 48 bitów, co odpowiada 6 bajtom. Wartość 32 bitów jest typowa dla adresów IPv4, które są używane w warstwie trzeciej modelu OSI, natomiast adresy MAC funkcjonują w warstwie drugiej. To fundamentalne rozróżnienie jest kluczowe dla zrozumienia architektury sieciowej. Adresy w warstwie drugiej służą do lokalizacji urządzeń w sieci lokalnej, zaś adresy w warstwie trzeciej są używane do komunikacji między różnymi sieciami. Często myli się te dwie warstwy, co prowadzi do błędnych wniosków. Adres MAC nie jest przypisywany na poziomie routingu, a raczej jest on używany w kontekście ramki danych w sieci Ethernet. Ponadto, wskazywanie na 'trzecią warstwę' w kontekście adresu MAC może wskazywać na nieporozumienie dotyczące modelu OSI. Adresy MAC są kluczowe w protokołach takich jak ARP (Address Resolution Protocol), który działa na poziomie warstwy drugiej, umożliwiając mapowanie adresów IP na adresy MAC. W praktyce, zrozumienie adresacji MAC jest niezbędne do efektywnego projektowania i zarządzania nowoczesnymi sieciami komputerowymi.

Pytanie 21

Ile jest klawiszy funkcyjnych na klawiaturze w układzie QWERTY?

A. 10
B. 8
C. 14
D. 12
Na standardowej klawiaturze QWERTY znajduje się 12 klawiszy funkcyjnych, które są umieszczone w górnej części klawiatury. Klawisze te są oznaczone F1 do F12 i pełnią różnorodne funkcje, które mogą być wykorzystywane w różnych aplikacjach. Na przykład, klawisz F1 często służy do otwierania pomocy w programach, podczas gdy F5 zazwyczaj odświeża stronę internetową w przeglądarkach. Funkcjonalność tych klawiszy może się różnić w zależności od oprogramowania, ale ich uniwersalność sprawia, że są niezwykle przydatne w codziennej pracy. W wielu profesjonalnych środowiskach, takich jak programowanie czy projektowanie graficzne, umiejętność wykorzystania klawiszy funkcyjnych może znacząco zwiększyć efektywność użytkowników. Na przykład, w programach do edycji tekstu klawisze te mogą być skonfigurowane do wykonywania makr, co pozwala na automatyzację powtarzalnych zadań. Warto również zwrócić uwagę na to, że niektóre klawiatury mogą mieć dodatkowe funkcje przypisane do klawiszy funkcyjnych, co może zwiększać ich liczbę, ale standardowy układ oparty na QWERTY w kontekście klawiszy funkcyjnych pozostaje niezmienny.

Pytanie 22

Wartość liczby BACA w systemie heksadecymalnym to liczba

A. 1100101010111010(2)
B. 1011101011001010(2)
C. 135316(8)
D. 47821(10)
Odpowiedź 1011101011001010(2) jest naprawdę trafna! Liczba BACA w systemie heksadecymalnym faktycznie odpowiada 47821 w dziesiątkowym. Fajnie, że wiesz, jak to przeliczyć na binarny. Każda cyfra w heksadecymalnym to cztery bity – no wiesz, B to 11, A to 10, C to 12, a A znowu to 10. Kiedy przekształcisz to na bity, wychodzi: B = 1011, A = 1010, C = 1100, i jeszcze raz A = 1010. Łącząc to wszystko, dostajesz 1011101011001010. Te konwersje są mega ważne w programowaniu, bo różne systemy liczbowe pomagają w lepszym zarządzaniu danymi. Na przykład, komputery często używają heksadecymalnego i binarnego do zapisywania adresów w pamięci czy kolorów w grafice. Jak dla mnie, świetna robota!

Pytanie 23

Które z kont nie jest standardowym w Windows XP?

A. administrator
B. użytkownik gość
C. admin
D. asystent
Wybór konta 'gość', 'pomocnik' lub 'administrator' jako nie-wbudowanego w systemie Windows XP jest niepoprawny, ponieważ wszystkie te konta są integralną częścią tego systemu operacyjnego. Konto 'gość' to konto z ograniczonymi uprawnieniami, które pozwala na dostęp do systemu bez konieczności posiadania pełnego konta użytkownika. Konto 'administrator' jest kluczowe, ponieważ zapewnia pełny dostęp do zasobów systemowych oraz możliwość zarządzania innymi kontami użytkowników. Konto 'pomocnik' jest wykorzystywane do wsparcia technicznego i również jest wbudowane. Błędem jest myślenie, że 'admin' to standardowe konto w Windows XP; w rzeczywistości, system stosuje termin 'administrator' maksymalnie. Tego rodzaju pomyłki mogą wynikać z nieznajomości dokumentacji technicznej lub faktu, że wiele osób korzysta z różnych wersji systemów operacyjnych, które mogą mieć różne domyślne konta użytkowników. W praktyce, zrozumienie struktury kont użytkowników w systemie operacyjnym jest kluczowe dla administratorów, aby móc efektywnie zabezpieczać system oraz zarządzać dostępem do zasobów. Dlatego ważne jest, aby zdobywać wiedzę na temat uprawnień użytkowników i najlepszych praktyk w zakresie zarządzania kontami, co w znaczący sposób wpływa na bezpieczeństwo i stabilność całego środowiska IT.

Pytanie 24

Ramka danych przesyłanych z komputera PC1 do serwera www znajduje się pomiędzy ruterem R1 a ruterem R2 (punkt A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
B. Źródłowy adres IP komputera PC1, docelowy adres rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
C. Źródłowy adres IP rutera R1, docelowy adres IP rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC rutera R1, adres docelowy MAC rutera R2
Niektóre niepoprawne odpowiedzi sugerują, że adresy MAC urządzeń końcowych, takich jak komputer PC1 lub serwer, są używane bezpośrednio w komunikacji między ruterami. To nieporozumienie wynika z braku zrozumienia, jak protokoły sieciowe działają na różnych poziomach modelu OSI. Adresy MAC są używane do komunikacji w obrębie tej samej sieci lokalnej i zmieniają się przy każdym przejściu przez ruter. Dlatego gdy ramka danych przemieszcza się od jednego rutera do drugiego, to adresy MAC tych ruterów służą do prawidłowego dostarczenia danych w obrębie tego segmentu sieci. Inne błędne odpowiedzi mogą wskazywać na niepoprawne przypisanie adresów IP, na przykład do routingu urządzeń pośrednich jak rutery, co jest mylące ponieważ adresy IP pozostają stałe dla urządzeń końcowych w trakcie całej sesji komunikacyjnej w sieci rozległej. Zrozumienie, że IP i MAC pełnią różne role, jest kluczowe: IP umożliwia identyfikację celowego urządzenia w sieci globalnej, a MAC zapewnia dostarczenie danych w obrębie segmentu sieciowego. Taki podział ról jest podstawą efektywnego działania protokołów routingu i przesyłania danych w nowoczesnych sieciach komputerowych. Typowym błędem jest także zakładanie, że adres MAC komputera PC1 lub serwera jest wykorzystywany na całej długości trasy, co nie jest możliwe z technicznego punktu widzenia, ze względu na ograniczenia w zakresie działania protokołu Ethernet oraz wymagań dotyczących wydajności sieci. Praktyka sieciowa wymaga zrozumienia, że każdy segment sieci ma swoje własne warunki routingu, co jest niezwykle istotne dla optymalizacji działania sieci i unikania potencjalnych problemów z wydajnością lub bezpieczeństwem transmisji danych. Zrozumienie tego jest kluczowe dla każdego specjalisty zajmującego się zarządzaniem i konfiguracją sieci komputerowych.

Pytanie 25

Wartości 1001 i 100 w pliku /etc/passwd wskazują na

student:x:1001:100:Jan Kowalski:/home/student:/bin/bash
A. liczbę udanych oraz nieudanych prób logowania
B. identyfikatory użytkownika oraz grupy w systemie
C. liczbę dni od ostatniej zmiany hasła oraz liczbę dni do wygaszenia hasła
D. numer koloru tekstu i numer koloru tła w terminalu
W pliku /etc/passwd każda linia reprezentuje konto użytkownika w systemie UNIX lub Linux. Jest ona podzielona na pola oddzielone dwukropkami. Kluczowym elementem są identyfikatory UID (User ID) i GID (Group ID) które są używane do przypisywania uprawnień oraz dostępu do plików i zasobów. UID 1001 identyfikuje konkretnego użytkownika systemowego a GID 100 wskazuje na jego domyślną grupę. Dzięki tym identyfikatorom system operacyjny może efektywnie zarządzać uprawnieniami i izolacją użytkowników co jest kluczowe w systemach wieloużytkownikowych. Praktyczne zastosowanie obejmuje zarządzanie dostępem do plików gdzie właścicielem pliku jest użytkownik z określonym UID a grupa z GID może mieć różne prawa do tego pliku. W środowiskach produkcyjnych dobrze jest stosować zasady nadawania uprawnień zgodnie z minimalnymi wymaganiami oraz używać mechanizmów takich jak umask czy ACL do dalszej kontroli dostępu co podnosi poziom bezpieczeństwa systemu

Pytanie 26

Podczas konfiguracji nowego routera, użytkownik został poproszony o skonfigurowanie WPA2. Czego dotyczy to ustawienie?

A. Trasy routingu
B. Konfiguracji VLAN
C. Przepustowości łącza
D. Bezpieczeństwa sieci bezprzewodowej
WPA2 to skrót od Wi-Fi Protected Access 2 i jest to protokół bezpieczeństwa stosowany w sieciach bezprzewodowych. Jego głównym zadaniem jest zapewnienie bezpiecznego połączenia pomiędzy urządzeniami a punktem dostępu. WPA2 wykorzystuje zaawansowane szyfrowanie AES (Advanced Encryption Standard), które jest uważane za bardzo bezpieczne. Dzięki temu, że WPA2 chroni dane przesyłane w sieci, istotnie zmniejsza ryzyko przechwycenia informacji przez osoby nieuprawnione. W praktyce oznacza to, że bez odpowiedniego klucza szyfrującego, nieautoryzowane urządzenia nie będą mogły połączyć się z siecią, co jest kluczowe dla ochrony poufności przesyłanych danych. Konfiguracja WPA2 powinna być jednym z pierwszych kroków przy ustawianiu nowego routera, aby zapewnić bezpieczeństwo sieci od samego początku. Dla administratorów sieci, zrozumienie i wdrożenie WPA2 jest częścią podstawowych obowiązków związanych z utrzymaniem i ochroną infrastruktury IT. Moim zdaniem, stosowanie WPA2 to standardowa praktyka w dzisiejszych czasach, szczególnie w środowiskach, gdzie bezpieczeństwo danych jest priorytetem.

Pytanie 27

Który z portów na zaprezentowanej płycie głównej umożliwia podłączenie zewnętrznego dysku przez interfejs e-SATA?

Ilustracja do pytania
A. 1
B. 2
C. 3
D. 4
Port numer 2 to e-SATA, czyli ten typ złącza, który pozwala na szybkie przesyłanie danych. W praktyce działa to tak, że podłączasz do niego zewnętrzne dyski twarde i masz możliwość przenoszenia dużych ilości info z naprawdę niezłą prędkością, sięgającą nawet 6 Gb/s. To czyni go całkiem konkurencyjnym wobec USB 3.0 i Thunderbolt. Z mojego doświadczenia wynika, że e-SATA jest świetny, gdy potrzebujesz szybko przesłać dane bez zbędnych opóźnień. Fajnie, że nie ma problemów z zakłóceniami elektromagnetycznymi, bo złącze jest dość solidnie zrobione. Jednak trzeba pamiętać, że e-SATA nie zapewnia zasilania przez kabel, dlatego zewnętrzne urządzenia często potrzebują swojego osobnego źródła zasilania. Generalnie, jest to technologia, która sprawdza się w pracy z dużymi zbiorem danych, takimi jak edycja wideo czy duże bazy danych.

Pytanie 28

Jakie urządzenie powinno być użyte do podłączenia komputerów, aby mogły działać w różnych domenach rozgłoszeniowych?

A. Mostu
B. Regeneratora
C. Rutera
D. Koncentratora
Podłączenie komputerów do koncentratora nie rozwiązuje problemu pracy w różnych domenach rozgłoszeniowych, ponieważ koncentrator działa na warstwie fizycznej modelu OSI i nie ma zdolności do rozdzielania ruchu na podstawie adresów IP. W rzeczywistości, wszystkie urządzenia podłączone do koncentratora są częścią tej samej domeny rozgłoszeniowej, co oznacza, że każde wysłane przez jedno z urządzeń ramki będą docierały do wszystkich pozostałych, co prowadzi do nieefektywnego wykorzystania pasma i potencjalnych kolizji. Z kolei regenerator, który służy do wzmacniania sygnału w sieciach Ethernet, również nie jest w stanie rozdzielić ruchu na różne domeny, a jego główną funkcją jest po prostu retransmisja sygnału w obrębie tej samej sieci. Most, będący urządzeniem łączącym dwie lub więcej segmentów sieci lokalnej, działa na warstwie drugiej, co oznacza, że nie może kierować pakietów na podstawie adresów IP, a jego działanie dotyczy tylko adresów MAC. W przypadku, gdyby komputery pracowały w różnych domenach rozgłoszeniowych, most nie mógłby prawidłowo przekazywać danych między tymi segmentami. Typowe błędy myślowe, które prowadzą do wyboru nieodpowiedniego urządzenia, polegają na myleniu funkcji warstwy fizycznej i drugiej warstwy modelu OSI z funkcjami warstwy trzeciej, co skutkuje brakiem zrozumienia, jak działają różne typy urządzeń sieciowych i ich wpływ na architekturę sieci.

Pytanie 29

Tester strukturalnego okablowania umożliwia weryfikację

A. obciążenia ruchu sieciowego
B. mapy połączeń
C. liczby komputerów w sieci
D. liczby przełączników w sieci
Wybranie odpowiedzi dotyczącej liczby przełączników w sieci to raczej mylne zrozumienie tego, co robi tester okablowania. Właściwie, tester nie zlicza urządzeń takich jak przełączniki, a skupia się na tym, jak dobrze działają połączenia i czy są jakieś problemy w kablach. Podobnie jest z odpowiedzią o liczbie komputerów w sieci – tester wcale tego nie robi, bo nie mierzy obecności urządzeń końcowych, a raczej bada sygnał w kablach. Tutaj warto pamiętać, że obciążenie sieci to inna sprawa, wymagająca innych narzędzi, jak analizatory ruchu. Zazwyczaj to zarządcy sieci monitorują ruch, a nie tester okablowania, który nie ma takich funkcji. Często ludzie mylą testerów z urządzeniami do monitorowania ruchu, co może prowadzić do błędnych wniosków. Testerzy okablowania są do diagnozowania fizycznych problemów z instalacją, a nie do oceny wydajności całej sieci. To ważne, żeby rozumieć tę różnicę, gdy mówimy o zarządzaniu siecią.

Pytanie 30

Posiadacz notebooka pragnie zainstalować w nim dodatkowy dysk twardy. Urządzenie ma jedynie jedną zatokę na HDD. Możliwością rozwiązania tego wyzwania może być użycie dysku z interfejsem

A. SCSI
B. USB
C. mSATA
D. ATAPI
ATAPI to standard interfejsu, który pierwotnie był używany do podłączania napędów CD-ROM i DVD do komputerów, a nie jest to technologia przeznaczona do podłączania dysków twardych. Oferuje on możliwość komunikacji pomiędzy komputerem a napędem optycznym, ale ze względu na swoje ograniczenia nie może być praktycznie zastosowany w kontekście dodatkowego dysku twardego w notebooku. Wybierając ATAPI jako odpowiedź, można popełnić błąd, myląc go z nowoczesnymi interfejsami, które obsługują dyski twarde. SCSI, z drugiej strony, to interfejs, który był szeroko stosowany w serwerach i stacjach roboczych, jednak jest on przestarzały w kontekście laptopów i nie jest kompatybilny z większością nowoczesnych notebooków, które nie są zaprojektowane do obsługi standardowych dysków SCSI. USB, choć powszechnie używane do podłączania zewnętrznych urządzeń, nie jest rozwiązaniem dla wnętrza notebooka do montażu dodatkowego dysku twardego. Porty USB służą do podłączania urządzeń zewnętrznych, a nie do instalacji dysków wewnętrznych. W przypadku notebooków, które mają ograniczoną przestrzeń wewnętrzną, kluczowe jest zrozumienie, że właściwy wybór interfejsu to nie tylko kwestia kompatybilności, ale także wydajności i efektywności, co czyni mSATA najbardziej odpowiednim rozwiązaniem w tej sytuacji.

Pytanie 31

Rodzaje ataków mających na celu zakłócenie funkcjonowania aplikacji oraz procesów w urządzeniach sieciowych to ataki klasy

A. spoofing
B. DoS
C. zero-day
D. smurf
Ataki typu DoS (Denial of Service) mają na celu zakłócenie normalnego działania usług, aplikacji i procesów w sieciach komputerowych. Celem tych ataków jest uniemożliwienie użytkownikom dostępu do systemu poprzez przeciążenie serwera lub infrastruktury sieciowej. W praktyce, atakujący wysyła ogromne ilości ruchu do docelowego serwera, co prowadzi do jego przeciążenia. Przykładem może być atak SYN flood, który eksploitując proces nawiązywania połączenia TCP, generuje wiele niekompletnych połączeń, co finalnie prowadzi do wyczerpania zasobów serwera. Standardy i najlepsze praktyki w zakresie zabezpieczeń sieciowych zalecają stosowanie mechanizmów ochrony, takich jak firewall, systemy wykrywania i zapobiegania włamaniom (IDS/IPS) oraz usługi DDoS mitigation, które mogą pomóc w minimalizacji skutków takiego ataku. Wiedza na temat ataków DoS jest kluczowa dla specjalistów z zakresu bezpieczeństwa IT, aby opracować skuteczne strategie obronne i zapewnić ciągłość działania usług.

Pytanie 32

Które z poniższych poleceń w systemie Linux NIE pozwala na przeprowadzenie testów diagnostycznych sprzętu komputerowego?

A. top
B. ls
C. lspci
D. fsck
Odpowiedź 'ls' to strzał w dziesiątkę! To polecenie służy do pokazywania, co mamy w katalogu w systemie Linux, a nie do sprawdzania sprzętu. Używając 'ls', możemy zobaczyć, jakie pliki i foldery są w danym miejscu, jakie mają nazwy, rozmiary i kiedy były ostatnio zmieniane. W codziennej pracy administratora, to narzędzie okazuje się bardzo przydatne, bo pozwala szybko przejrzeć zawartość katalogów i zapanować nad plikami. Dla przykładu, kiedy użyjesz 'ls -l', dostaniesz więcej szczegółów o plikach, co ułatwia monitorowanie struktury katalogów. Tak naprawdę, znajomość takich podstawowych poleceń jak 'ls' to podstawa, której nie można pominąć, jeśli chcemy dobrze zarządzać systemem. Dzięki temu, wiele operacji związanych z plikami stanie się prostszych.

Pytanie 33

Jaką funkcję pełni protokół ARP (Address Resolution Protocol)?

A. Zarządza przepływem pakietów w ramach systemów autonomicznych
B. Obsługuje grupy multicast w sieciach opartych na protokole IP
C. Przekazuje informacje zwrotne dotyczące problemów z siecią
D. Określa adres MAC na podstawie adresu IP
Protokół ARP (Address Resolution Protocol) pełni kluczową rolę w komunikacji w sieciach komputerowych, szczególnie w kontekście sieci opartych na protokole Internet Protocol (IP). Jego podstawowym zadaniem jest ustalanie adresu fizycznego (adresu MAC) urządzenia, które ma przypisany dany adres IP. W momencie, gdy komputer chce wysłać dane do innego komputera w tej samej sieci lokalnej, najpierw musi znać jego adres MAC. Protokół ARP wykorzystuje żądania ARP, które są wysyłane jako multicastowe ramki do wszystkich urządzeń w sieci, pytając, kto ma dany adres IP. Odpowiedzią jest adres MAC urządzenia, które posiada ten adres IP. Dzięki temu, ARP umożliwia prawidłowe kierowanie pakietów w warstwie drugiej modelu OSI, co jest niezbędne do efektywnej komunikacji w lokalnych sieciach. Przykładem praktycznego zastosowania ARP jest sytuacja, w której komputer A chce nawiązać połączenie z komputerem B; ARP poprzez identyfikację adresu MAC umożliwia właściwe dostarczenie informacji, co jest fundamentem działania Internetu i lokalnych sieci komputerowych.

Pytanie 34

Zgodnie z normą PN-EN 50174, poziome okablowanie w systemie strukturalnym to segment okablowania pomiędzy

A. punktem rozdziału a gniazdem użytkownika.
B. punktami rozdzielczymi w głównych pionach budynku.
C. gniazdkiem użytkownika a urządzeniem końcowym.
D. serwerem a infrastrukturą sieci.
Odpowiedź 'punkt rozdzielczy a gniazdo użytkownika' jest prawidłowa, ponieważ zgodnie z normą PN-EN 50174, okablowanie poziome w systemie okablowania strukturalnego to część okablowania, która łączy punkty rozdzielcze w infrastrukturze telekomunikacyjnej z gniazdami użytkowników. W praktyce oznacza to, że każde gniazdo, do którego podłączają się urządzenia końcowe, takie jak komputery czy telefony, musi być połączone z punktem rozdzielczym, który zazwyczaj znajduje się w najbliższym pomieszczeniu technicznym lub w szafie serwerowej. Przykładowo, w biurowcu z systemem okablowania strukturalnego, okablowanie poziome może być zrealizowane w postaci kabli U/FTP, co zapewnia odpowiednie parametry transmisji danych. Warto również zwrócić uwagę na normy dotyczące długości kabli poziomych, które powinny nie przekraczać 90 metrów, aby uniknąć strat sygnału oraz zapewnić odpowiednią wydajność sieci. Zrozumienie tej koncepcji jest kluczowe dla efektywnego projektowania i wdrażania systemów komunikacyjnych.

Pytanie 35

Aby zapewnić użytkownikom Active Directory możliwość logowania i korzystania z zasobów tej usługi w sytuacji awarii kontrolera domeny, trzeba

A. zainstalować dodatkowy kontroler domeny
B. skopiować wszystkie zasoby sieciowe na każdy komputer w domenie
C. podarować wszystkim użytkownikom kontakt do Help Desk
D. włączyć wszystkich użytkowników do grupy administratorzy
Instalacja drugiego kontrolera domeny jest kluczowym krokiem w zapewnieniu wysokiej dostępności i niezawodności usług Active Directory. W przypadku awarii jednego kontrolera, drugi kontroler przejmuje jego funkcje, co minimalizuje ryzyko utraty dostępu do zasobów. W praktyce, wdrożenie redundancji w architekturze Active Directory opiera się na zasadach zarządzania ryzykiem i planowania ciągłości działania. Wiele organizacji stosuje standardy, takie jak ITIL, które podkreślają znaczenie mierzenia i zarządzania ryzykiem związanym z infrastrukturą IT. W przypadku utraty działania głównego kontrolera domeny, użytkownicy mogą nadal logować się i uzyskiwać dostęp do zasobów w sieci, co jest szczególnie istotne dla organizacji, które polegają na dostępności usług 24/7. Warto również zauważyć, że posiadanie wielu kontrolerów domeny ułatwia zarządzanie użytkownikami i grupami, a także umożliwia replikację danych między kontrolerami, co zwiększa bezpieczeństwo i integralność informacji. Ten sposób działania jest zgodny z najlepszymi praktykami branżowymi, które zalecają wdrażanie rozwiązań zwiększających dostępność infrastruktury IT.

Pytanie 36

Aby stworzyć partycję w systemie Windows, należy skorzystać z narzędzia

A. dfsgui.msc
B. devmgmt.msc
C. dsa.msc
D. diskmgmt.msc
Odpowiedź 'diskmgmt.msc' jest poprawna, ponieważ jest to narzędzie systemowe w systemie Windows, które umożliwia zarządzanie dyskami i partycjami. Użytkownicy mogą za jego pomocą tworzyć, usuwać, formatować i zmieniać rozmiar partycji, co jest kluczowe przy organizacji przestrzeni dyskowej. Przykładowo, jeśli użytkownik chce podzielić dysk twardy na kilka mniejszych jednostek, aby lepiej zarządzać danymi, może to zrobić przy użyciu tego narzędzia. Dobrą praktyką jest regularne sprawdzanie stanu dysków oraz optymalizacja ich struktury, co może przyczynić się do lepszej wydajności systemu. Ponadto, diskmgmt.msc pozwala na przypisywanie liter dysków, co ułatwia ich identyfikację przez system oraz użytkowników. Używając tego narzędzia, można również zarządzać wolnym miejscem na dysku, co jest istotne w kontekście zachowania integralności danych oraz efektywności operacyjnej całego systemu operacyjnego. Warto zaznaczyć, że dostęp do tego narzędzia można uzyskać, wpisując 'diskmgmt.msc' w oknie uruchamiania (Win + R), co czyni go łatwo dostępnym dla użytkowników.

Pytanie 37

Menedżer usług IIS (Internet Information Services) w systemie Windows stanowi graficzny interfejs do konfiguracji serwera

A. WWW
B. DNS
C. terminali
D. wydruku
Odpowiedź WWW jest poprawna, ponieważ Menedżer usług IIS (Internet Information Services) to narzędzie umożliwiające zarządzanie publikowaniem aplikacji i stron internetowych na serwerze. IIS jest serwerem WWW stworzonym przez firmę Microsoft, który obsługuje protokoły HTTP, HTTPS, FTP i inne, umożliwiając użytkownikom dostęp do treści internetowych. Menedżer usług IIS pozwala administratorom na konfigurację i monitorowanie serwera, zarządzanie witrynami internetowymi, a także konfigurowanie zabezpieczeń oraz wydajności. Praktycznym zastosowaniem IIS jest hostowanie stron internetowych dla firm, co może obejmować korzystanie z ASP.NET do tworzenia dynamicznych aplikacji webowych. Ponadto, IIS wspiera różnorodne technologie, takie jak PHP czy Node.js, co czyni go bardzo elastycznym narzędziem w kontekście serwerów. Stosowanie IIS w zgodzie z najlepszymi praktykami branżowymi obejmuje regularne aktualizacje oraz monitorowanie logów serwera w celu optymalizacji wydajności i bezpieczeństwa.

Pytanie 38

Sieci lokalne o architekturze klient-serwer są definiowane przez to, że

A. wszystkie komputery klienckie mają możliwość korzystania z zasobów innych komputerów
B. istnieje jeden dedykowany komputer, który udostępnia swoje zasoby w sieci
C. żaden komputer nie ma dominującej roli wobec innych
D. wszystkie komputery w sieci są sobie równe
W architekturze sieci lokalnych istnieją różne modele organizacyjne, a jednomyślne traktowanie wszystkich komputerów jako równoprawnych nie jest adekwatne do opisu struktury klient-serwer. W modelu peer-to-peer, który jest alternatywą dla architektury klient-serwer, każdy komputer pełni zarówno rolę klienta, jak i serwera, co prowadzi do sytuacji, w której żaden z komputerów nie ma nadrzędnej pozycji. To podejście może być odpowiednie w małych i prostych sieciach, jednak nie sprawdza się w bardziej złożonych środowiskach, gdzie hierarchia i kontrola dostępu są kluczowe. Użytkownicy często mylą te dwa modele, co prowadzi do błędnego przekonania, że każda sieć oparta na współpracy pomiędzy komputerami jest siecią typu klient-serwer. Dodatkowo, stwierdzenie o ogólnym dostępie klientów do zasobów innych komputerów w sieci nie odnosi się do modelu klient-serwer, ponieważ w tym przypadku dostęp do zasobów jest ściśle regulowany przez serwer. Oznacza to, że klienci nie mają swobodnego dostępu do wszystkich zasobów, co jest kluczowym elementem zapewnienia bezpieczeństwa i integralności danych w sieci. Również rozważając kwestie wydajności, architektura klient-serwer jest zaprojektowana tak, aby centralizować zarządzanie i optymalizować wykorzystanie zasobów, co nie jest charakterystyczne dla sieci peer-to-peer, gdzie każdy komputer jest równorzędny i może prowadzić do większego rozproszenia obciążenia. Tego rodzaju nieporozumienia mogą skutkować niewłaściwym projektowaniem i zarządzaniem sieciami, co w dłuższej perspektywie może prowadzić do problemów z wydajnością i bezpieczeństwem danych.

Pytanie 39

Urządzenie, które pozwala na połączenie hostów w jednej sieci z hostami w różnych sieciach, to

A. hub.
B. firewall.
C. switch.
D. router.
Router to urządzenie sieciowe, które pełni kluczową rolę w komunikacji pomiędzy różnymi sieciami. Jego podstawowym zadaniem jest przekazywanie pakietów danych z jednej sieci do drugiej, co jest niezbędne w przypadku połączenia hostów znajdujących się w różnych lokalizacjach geograficznych. Routery wykorzystują tablice routingu, aby optymalizować trasę, jaką mają przebyć dane, co pozwala na efektywne zarządzanie ruchem sieciowym. Przykładem zastosowania routerów są połączenia internetowe, gdzie router łączy lokalną sieć domową lub biurową z Internetem, umożliwiając wymianę informacji z serwerami znajdującymi się w różnych częściach świata. Routery mogą również obsługiwać różne protokoły, takie jak TCP/IP, oraz wprowadzać dodatkowe funkcje, takie jak NAT (Network Address Translation), które pozwalają na oszczędność adresów IP i zwiększenie bezpieczeństwa. W branży IT routery są standardem w budowaniu sieci, a ich konfiguracja zgodnie z najlepszymi praktykami zapewnia niezawodność i wydajność komunikacji.

Pytanie 40

Aby stworzyć las w strukturze katalogów AD DS (Active Directory Domain Services), konieczne jest utworzenie przynajmniej

A. czterech drzew domeny
B. jednego drzewa domeny
C. dwóch drzew domeny
D. trzech drzew domeny
Zrozumienie struktury Active Directory jest kluczowe dla efektywnego zarządzania zasobami w organizacji. Twierdzenie, że do utworzenia lasu potrzebne są dwa, trzy lub cztery drzewa domeny wynika z mylnego postrzegania relacji między lasem a drzewem. Las w AD DS to zbiór jednego lub więcej drzew, z których każde może mieć własne domeny. Jednak nie oznacza to, że do założenia lasu konieczne jest posiadanie wielu drzew. Takie podejście jest nie tylko nieefektywne, ale także wprowadza zbędną komplikację w zarządzaniu. W praktyce, posiadanie wielu drzew domeny powinno być rozważane głównie w przypadku bardzo dużych organizacji, które posiadają złożone struktury operacyjne i wymagają większej separacji zasobów. Błąd w rozumieniu tej kwestii może prowadzić do nieefektywnego projektowania struktury AD oraz zarządzania nią, co w konsekwencji skutkuje problemami z dostępem do zasobów czy trudnościami w administracji. Właściwe podejście wymaga analizy potrzeb organizacji i dostosowania do nich struktury AD, co powinno uwzględniać zasady dotyczące centralizacji i decentralizacji w zarządzaniu sieciami. Wniosek, że więcej drzew jest lepszym rozwiązaniem, może prowadzić do niepotrzebnych kosztów oraz komplikacji operacyjnych w codziennej pracy administratorów systemów.