Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektryk
  • Kwalifikacja: ELE.02 - Montaż, uruchamianie i konserwacja instalacji, maszyn i urządzeń elektrycznych
  • Data rozpoczęcia: 3 września 2025 13:39
  • Data zakończenia: 3 września 2025 14:00

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Która z poniższych wartości wskazuje na najwyższy poziom precyzji narzędzia pomiarowego?

A. 0,5
B. 5
C. 1
D. 0,1
Odpowiedź 0,1 jest poprawna, ponieważ w kontekście narzędzi pomiarowych oznacza najwyższą klasę dokładności. Klasa dokładności narzędzia pomiarowego wskazuje, jak blisko pomiar może być rzeczywistej wartości mierzonych wielkości. W przypadku narzędzi pomiarowych, im mniejsza wartość podana w jednostce, tym wyższa ich dokładność. W praktyce, narzędzia o dokładności 0,1 stosowane są w sytuacjach wymagających precyzyjnych pomiarów, takich jak laboratoria badawcze, przemysł precyzyjny czy metrologia. Na przykład, w pomiarach długości, takie narzędzia mogą być wykorzystywane do pomiarów w konstrukcji maszyn, gdzie minimalne odchylenie może prowadzić do dużych błędów w finalnym produkcie. Klasyfikacja narzędzi pomiarowych opiera się na standardach ISO, które definiują wymagania dotyczące dokładności i precyzji pomiarów. W praktyce, wybór narzędzia pomiarowego powinien być dostosowany do specyfikacji zadania, aby zapewnić optymalne wyniki pomiarów.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Jaki rodzaj wkładki topikowej powinien być użyty do ochrony nadprądowej obwodu jednofazowych gniazd do użytku ogólnego?

A. gG
B. gL
C. aM
D. aR
Wkładka topikowa typu gG jest rekomendowanym rozwiązaniem do zabezpieczenia nadprądowego obwodów jednofazowych gniazd ogólnego przeznaczenia. Charakteryzuje się ona zdolnością do ochrony przed przeciążeniami oraz krótkimi spięciami, a także do działania w obwodach wymagających wysokich zdolności zwarciowych. W praktyce, zastosowanie wkładki gG w instalacjach elektrycznych, takich jak gniazda w domach, biurach czy obiektach użyteczności publicznej, zapewnia skuteczną ochronę przed uszkodzeniami spowodowanymi nadmiernym przepływem prądu. Wkładki te są zgodne z normami IEC 60269 oraz PN-EN 60269, które regulują ich parametry techniczne. Dzięki zastosowaniu wkładek gG, można zminimalizować ryzyko uszkodzenia urządzeń elektrycznych oraz przeciążenia obwodów, co jest kluczowe dla bezpieczeństwa użytkowników oraz sprawności całego systemu elektrycznego.

Pytanie 4

Z informacji dotyczącej pomiaru prądu upływowego w trójfazowej instalacji elektrycznej mieszkania zasilanego z sieci TN-S wynika, że powinno się go przeprowadzić przy użyciu specjalnego miernika cęgowego. W trakcie tego pomiaru, cęgami miernika trzeba objąć

A. tylko przewody fazowe
B. wyłącznie przewód neutralny
C. przewody fazowe oraz ochronny
D. wszystkie przewody czynne
Wybór tylko przewodów fazowych lub przewodu neutralnego do pomiaru prądu upływu jest niezgodny z zasadami diagnostyki elektrycznej. Ograniczając pomiar do samych przewodów fazowych, pomijamy istotny element równowagi prądów w obwodzie, co może prowadzić do błędnych wniosków o stanie instalacji. Przewód neutralny odgrywa kluczową rolę w bilansowaniu prądów w instalacji trójfazowej, a jego wyłączenie z pomiaru nie pozwala na pełne zrozumienie prądów upływowych, które mogą występować. Z kolei pomiar tylko przewodu neutralnego jest całkowicie niewłaściwy, ponieważ nie dostarcza informacji o prądach płynących przez przewody fazowe, które mogą być źródłem zagrożenia. Dlatego istotne jest, aby w pomiarach uwzględniać wszystkie przewody czynne, co jest zgodne z kryteriami bezpieczeństwa zawartymi w normach, takich jak IEC 60364. Nieprawidłowe zrozumienie roli każdego z przewodów w instalacji elektrycznej prowadzi do ryzykownych sytuacji, w których prądy upływowe mogą pozostać niezauważone, a co za tym idzie, zwiększa się ryzyko wystąpienia porażenia prądem elektrycznym. Każdy pracownik zajmujący się eksploatacją instalacji elektrycznych powinien być świadomy tych aspektów, aby zapewnić pełne bezpieczeństwo oraz zgodność z obowiązującymi normami technicznymi.

Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Elektronarzędzie przedstawione na rysunku jest stosowane przy wykonywaniu instalacji elektrycznej

Ilustracja do pytania
A. natynkowej.
B. prowadzonej w tynku.
C. podtynkowej.
D. prefabrykowanej.
Wybór opcji dotyczącej instalacji natynkowej, prowadzonej w tynku lub prefabrykowanej może wynikać z błędnych założeń dotyczących charakterystyki tych typów instalacji. Instalacje natynkowe polegają na montażu przewodów na powierzchni ściany, co jest niezgodne z funkcją urządzenia przedstawionego na rysunku. Frezarka do rowków, jaką widać, służy do tworzenia bruzd, co jest typowe dla instalacji podtynkowej, a nie natynkowej. Wybór opcji prowadzonej w tynku także jest mylny, ponieważ odnosi się do sytuacji, gdzie kable są umieszczane w tynkach, ale nie w bruzdach, co również wymaga innego podejścia technologicznego. Prefabrykowane instalacje natomiast obejmują z góry przygotowane elementy, które są montowane w całości, co nie ma związku z używaniem narzędzi do frezowania. Kluczowym błędem myślowym jest zrozumienie, że każda z tych opcji ma inne zastosowania, a ich wybór oparty jest na konkretnych wymaganiach konstrukcyjnych. Zrozumienie różnic między tymi typami instalacji jest niezbędne do właściwego podejścia do prac elektrycznych i zapewnienia bezpieczeństwa oraz funkcjonalności w budownictwie.

Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

Jaką maksymalną wartość impedancji pętli zwarcia powinien mieć obwód o napięciu 230/400 V, aby wyłącznik instalacyjny nadprądowy C10 mógł skutecznie zapewnić ochronę przed porażeniem?

A. 2,3 Ω
B. 4,6 Ω
C. 0,4 Ω
D. 7,7 Ω
Jeśli chodzi o odpowiedzi, które mówią, że maksymalna wartość impedancji pętli zwarcia to 0,4 Ω, 7,7 Ω czy 4,6 Ω, to niestety, to nie jest dobre podejście. Ta pierwsza wartość, 0,4 Ω, jest zdecydowanie za mała. W praktyce, tak niski poziom nie jest potrzebny dla systemów z wyłącznikami nadprądowymi. Taki wynik by znaczył, że nawet niewielkie napięcie mogłoby wyzwolić zabezpieczenia, a to nie jest ani realne, ani praktyczne. Potem mamy 7,7 Ω i 4,6 Ω, które są już poza dopuszczalnym poziomem. To przekłada się na to, że wyłącznik będzie działał za wolno, a przy poważnych zwarciach może być naprawdę niebezpiecznie. Ważne jest, żeby zrozumieć, że wyłączniki nadprądowe trzeba zaprojektować tak, by reagowały w określonym czasie, a to jest ściśle związane z impedancją pętli zwarcia. Jak ta wartość jest za wysoka, to ochrona przed porażeniem elektrycznym jest słaba, a to niezgodne z zasadami bezpieczeństwa. Taka sytuacja może sprawić, że system nie zadziała jak trzeba w razie zagrożenia elektrycznego, a to zdecydowanie nie jest dobra praktyka.

Pytanie 14

Metodą oceny efektywności połączeń wyrównawczych powinien być pomiar napięć

A. krokowych
B. dotykowych
C. skutecznych
D. rażeniowych
Mówiąc o napięciach dotykowych, rażeniowych czy krokowych, chociaż są istotne z punktu widzenia bezpieczeństwa, niekoniecznie są najlepszym sposobem na ocenę efektywności połączeń wyrównawczych. Napięcia dotykowe to te, które można poczuć, gdy dotykamy czegoś przewodzącego, ale to nie mówi nam zbyt wiele o tym, jak skutecznie działają połączenia wyrównawcze. Z napięciami rażeniowymi jest podobnie – one dotyczą kontaktu z niebezpiecznym przewodnikiem, ale także nie oceniają efektywności samego połączenia. Napięcia krokowe, które mogą wystąpić podczas awarii, mają większe znaczenie dla oceny ryzyka dla ludzi w pobliżu, ale znów nie dostarczają informacji o samych połączeniach. Dlatego poleganie na tych pomiarach może prowadzić do błędnych wniosków, bo nie biorą one pod uwagę całego rozkładu napięć w instalacji, a to w końcu może być mylące. Ważne jest, by rozróżniać kwestie bezpieczeństwa od skuteczności systemu ochrony. Prawdziwe pomiary napięć skutecznych dają nam ważne informacje, które pomagają upewnić się, że instalacja elektryczna spełnia normy, takie jak PN-IEC 60364, które mocno akcentują bezpieczeństwo oraz prawidłowe działanie systemów ochronnych.

Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Jakim symbolem oznacza się przewód jednożyłowy, wykonany z aluminiowych drutów i mający izolację z polichlorku winylu, o średnicy żyły 2,5 mm2?

A. ALY 2,5 mm2
B. YLY 2,5 mm2
C. ADY 2,5 mm2
D. YDY 2,5 mm2
Odpowiedzi ADY 2,5 mm2, YLY 2,5 mm2 oraz YDY 2,5 mm2 są niepoprawne, ponieważ nie spełniają właściwych kryteriów dotyczących materiału przewodnika oraz rodzaju konstrukcji. Oznaczenie ADY sugeruje, że przewód ma rdzeń aluminiowy, jednak nie odnosi się do specyfikacji, iż jest to przewód wielodrutowy. W praktyce, przewody aluminiowe jednożyłowe są rzadziej stosowane, ponieważ ich sztywność ogranicza elastyczność w instalacji w porównaniu do przewodów wielodrutowych. Z kolei oznaczenie YLY wskazuje na przewód miedziany, co jest niezgodne z wymaganiami pytania, które dotyczy przewodu aluminiowego. Warto pamiętać, że zastosowanie przewodów miedzianych w sytuacjach, gdzie aluminium powinno być użyte, może prowadzić do problemów z przewodnictwem oraz zwiększonego ryzyka przegrzania, co z kolei może skutkować uszkodzeniem instalacji. Ostatecznie, YDY oznacza przewód z żyłą miedzianą o odpowiednich parametrach, co znowu nie jest zgodne z wymaganiami pytania. Ważne jest, aby znać różnice w oznaczeniach i ich znaczenie dla bezpieczeństwa oraz efektywności systemów elektrycznych, aby unikać nieporozumień i potencjalnych zagrożeń w praktyce inżynieryjnej.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Co może być przyczyną wzrostu temperatury łącznika puszkowego po włączeniu oświetlenia?

A. Zbyt niska moc żarówki
B. Zwarcie w obwodzie lampy
C. Luźny przewód w przełączniku
D. Przerwa w obwodzie lampy
Zbyt mała moc żarówki w żaden sposób nie wpływa na nagrzewanie się łącznika puszkowego, ponieważ moc żarówki jest dostosowana do standardowych parametrów instalacji. W przypadku zbyt słabej żarówki, nie osiągnie ona odpowiedniego poziomu jasności, ale nie spowoduje to wzrostu temperatury w łączniku. Zwarcie w obwodzie oświetleniowym żarówki może prowadzić do poważnych problemów, takich jak przepalenie bezpieczników, ale nie jest bezpośrednio związane z nagrzewaniem się łącznika puszkowego. Zwarcie generuje ogromne natężenie prądu, co prowadzi do uszkodzeń elementów obwodu, ale w tym przypadku nagrzewanie łącznika miałoby inne przyczyny, często związane z uszkodzeniem izolacji. Przerwa w obwodzie oświetleniowym żarówki skutkuje brakiem przepływu prądu, co również nie może być przyczyną nagrzewania. Naturalnie, błąd logiczny polega na myleniu przyczyn z objawami oraz niedostatecznym zrozumieniu działania i specyfiki instalacji elektrycznych. W praktyce, kluczowe jest zrozumienie, że nagrzewanie łącznika nie jest efektem biernym, a wynika z aktywnego przepływu prądu przez elementy obwodu, co w żadnym z wymienionych przypadków nie ma miejsca.

Pytanie 21

Jaki procent strumienia świetlnego jest kierowany w dół w oprawie oświetleniowej klasy V?

A. (40 ÷ 60) %
B. (60 ÷ 90) %
C. (0 ÷ 10) %
D. (90 ÷ 100) %
Odpowiedzi takie jak (90 ÷ 100) %, (40 ÷ 60) % oraz (60 ÷ 90) % nie uwzględniają specyfiki opraw oświetleniowych V klasy. Wrażenie, że znacząca część strumienia świetlnego może być skierowana w dół, jest mylne i wynika z niepełnego zrozumienia zasad projektowania oświetlenia. Oprawy te są konstruowane z zamiarem ograniczenia emisji światła w kierunku podłogi, co jest kluczowe dla efektywności energetycznej oraz komfortu użytkowników. Odpowiedzi te sugerują, że oprawy V klasy działają podobnie jak tradycyjne oprawy oświetleniowe, co jest nieprawidłowe. W praktyce, odpowiednie wykorzystanie tych opraw polega na kierowaniu strumienia świetlnego głównie w górę, co sprzyja stworzeniu efektów iluminacyjnych oraz estetycznych, a nie oświetleniu przestrzeni roboczej. Pojęcia te mogą również wprowadzać w błąd, jeśli chodzi o zastosowanie oświetlenia w różnych kontekstach, na przykład w architekturze czy oświetleniu ulicznym, gdzie inne klasy opraw mogą być stosowane dla zapewnienia odpowiedniego poziomu jasności. Kluczowym błędem myślowym jest założenie, że większa ilość światła skierowanego w dół jest zawsze korzystna, co nie zawsze jest zgodne z zasadami efektywności oświetleniowej i ergonomii.

Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

Który z podanych łączników elektrycznych jest przeznaczony do układu niezależnego sterowania światłem z przynajmniej 3 różnych lokalizacji?

A. Jednobiegunowy
B. Świecznikowy
C. Dwubiegunowy
D. Krzyżowy
Wybór odpowiedzi, która nie jest łącznikiem krzyżowym, prowadzi do nieporozumienia dotyczącego funkcjonalności różnych typów łączników. Łącznik świecznikowy, choć może być używany do kontroli jednego źródła światła z jednego miejsca, nie jest przeznaczony do operowania z wieloma punktami sterującymi. Jest to typowy błąd myślowy, ponieważ jego główną zaletą jest prostota i niska cena, a nie zaawansowana funkcjonalność. Z kolei łącznik dwubiegunowy może być używany do włączania lub wyłączania obwodu, ale również nie wspiera możliwości sterowania z kilku miejsc. Natomiast łącznik jednobiegunowy jest ograniczony do operowania z jednego punktu i nie ma zastosowania w układach, gdzie potrzebne jest zdalne sterowanie z więcej niż jednego miejsca. Dlatego ważne jest, aby zrozumieć różnice pomiędzy tymi typami łączników oraz ich odpowiednie zastosowania w praktyce. Użycie niewłaściwego łącznika może prowadzić do nieefektywnego zarządzania oświetleniem, co jest sprzeczne z zasadami efektywności energetycznej i ergonomii w projektowaniu instalacji elektrycznych. Właściwy wybór łączników jest kluczowy dla zapewnienia funkcjonalności i komfortu w używaniu systemów oświetleniowych.

Pytanie 25

Do czego służą przy montażu instalacji elektrycznej przedstawione na ilustracji kleszcze?

Ilustracja do pytania
A. Montażu zacisków zakleszczających.
B. Zaprasowywania przewodów w połączeniach wsuwanych.
C. Zaciskania końcówek tulejkowych na żyłach przewodu.
D. Formowania oczek na końcach żył.
Wybór innej odpowiedzi może wynikać z nieporozumienia dotyczącego funkcji kleszczy w kontekście instalacji elektrycznych. Zaprasowywanie przewodów w połączeniach wsuwanych oraz montaż zacisków zakleszczających to techniki, które wymagają innych narzędzi, takich jak szczypce do zaprasowywania lub specjalistyczne narzędzia do zaciskania kabli. Te podejścia są stosowane w zupełnie innych kontekstach, a pomylenie ich z formowaniem oczek może prowadzić do znacznych problemów w instalacji. Zaciskanie końcówek tulejkowych na żyłach przewodu również nie jest funkcją kleszczy przeznaczonych do formowania oczek, ponieważ to zadanie wymaga użycia odpowiednich narzędzi zaprasowujących, które na ogół nie mają funkcji tworzenia oczek. Ważne jest, aby podczas pracy z instalacjami elektrycznymi stosować odpowiednie narzędzia do specyficznych zadań, co jest zgodne z normami bezpieczeństwa i efektywności. Typowym błędem myślowym jest przyjmowanie, że różne narzędzia mogą pełnić te same funkcje, co prowadzi do nieprawidłowości w realizacji instalacji oraz potencjalnych zagrożeń. Właściwe zrozumienie zadań przypisanych do poszczególnych narzędzi jest kluczowe dla sukcesu w pracy elektryka.

Pytanie 26

Która z podanych metod realizacji instalacji elektrycznych jest przeznaczona do użycia w lokalach mieszkalnych?

A. W kanałach podłogowych
B. Przewodami szynowymi
C. Na drabinkach
D. W listwach przypodłogowych
Prowadzenie instalacji elektrycznych za pomocą przewodów szynowych, kanałów podłogowych czy drabinek jest rozwiązaniem stosowanym w innych kontekstach, które nie zawsze są zgodne z wymogami dla pomieszczeń mieszkalnych. Przewody szynowe, choć często wykorzystywane w obiektach komercyjnych i przemysłowych, nie są zalecane do stosowania w mieszkaniach, ponieważ mogą prezentować ryzyko w zakresie estetyki, a także bezpieczeństwa użytkowników. Mieszkania zazwyczaj wymagają bardziej stonowanego i zabezpieczonego podejścia do instalacji elektrycznych. Kanały podłogowe, chociaż mogą być użyteczne w niektórych sytuacjach, mają ograniczenia związane z dostępnością i konserwacją. Ponadto ich stosowanie może prowadzić do problemów z wilgocią i zanieczyszczeniami, co z kolei wpływa negatywnie na trwałość instalacji. Drabinki, z drugiej strony, są stosowane głównie w obszarach przemysłowych i wymagają dużo przestrzeni, co czyni je niepraktycznymi dla mieszkań o ograniczonym metrażu. Typowy błąd myślowy to przekonanie, że jedynie funkcjonalność instalacji ma znaczenie, podczas gdy w kontekście mieszkań kluczowe są również aspekty estetyczne i bezpieczeństwa. Należy zatem pamiętać, że prowadzenie instalacji elektrycznych w pomieszczeniach mieszkalnych powinno być starannie przemyślane, uwzględniając zarówno przepisy, jak i potrzeby użytkowników.

Pytanie 27

Jaka jest bezwzględna wartość błędu pomiarowego natężenia prądu, jeśli multimetr pokazał wynik 30,0 mA, a dokładność miernika podana przez producenta dla zastosowanego zakresu pomiarowego wynosi
±(1 % + 2) cyfry?

A. ±0,3 mA
B. ±2,0 mA
C. ±3,2 mA
D. ±0,5 mA
Aby obliczyć bezwzględną wartość błędu pomiaru natężenia prądu, musimy wziąć pod uwagę zarówno procentowy błąd pomiaru, jak i błąd wyrażony w cyfrach. Dokładność miernika wynosi ±(1 % + 2) cyfry. Przy wyniku 30,0 mA, obliczamy 1 % z tej wartości: 1 % z 30,0 mA to 0,3 mA. Następnie dodajemy 2 cyfry, które w przypadku pomiaru 30,0 mA oznaczają 0,2 mA. Zatem całkowity błąd pomiaru wynosi: 0,3 mA + 0,2 mA = 0,5 mA. Wartość błędu ±0,5 mA oznacza, że rzeczywista wartość natężenia prądu może wynosić od 29,5 mA do 30,5 mA. Zrozumienie błędów pomiarowych jest kluczowe w praktyce inżynierskiej, szczególnie w zastosowaniach wymagających precyzyjnych pomiarów prądów elektrycznych, takich jak w automatyce czy elektronice. Użycie multimetru z podaną dokładnością pozwala na rzetelne oceny i podejmowanie decyzji opartych na danych pomiarowych.

Pytanie 28

Widoczny zanik w obwodzie instalacji elektrycznej może zapewnić

A. wyłącznik instalacyjny płaski
B. bezpiecznik instalacyjny
C. wyłącznik różnicowoprądowy
D. ochronnik przeciwprzepięciowy
Wyłącznik instalacyjny płaski, choć pełni ważną funkcję w instalacji elektrycznej, nie zapewnia widocznej przerwy w obwodzie. Jego zadaniem jest włączanie oraz wyłączanie obwodu, ale nie zabezpiecza go przed przeciążeniem ani zwarciem. Ochronnik przeciwprzepięciowy, z drugiej strony, ma na celu ochronę urządzeń przed nagłymi wzrostami napięcia, ale również nie przerywa obwodu w przypadku zagrożenia. Natomiast wyłącznik różnicowoprądowy służy do ochrony przed porażeniem prądem elektrycznym poprzez wykrywanie różnic w prądzie płynącym do i od urządzenia, lecz także nie oferuje funkcji widocznej przerwy w obwodzie w kontekście zabezpieczeń przed przeciążeniem. Użytkownicy często mylą te elementy, ponieważ nie dostrzegają różnicy między ich funkcjami. Kluczowe jest zrozumienie, że tylko bezpiecznik instalacyjny, działając na zasadzie przerwania obwodu w momencie wystąpienia anomalii w przepływie prądu, gwarantuje bezpieczeństwo w przypadku awarii. W niektórych sytuacjach, wybór niewłaściwego urządzenia zabezpieczającego może prowadzić do poważnych konsekwencji, dlatego znajomość ról poszczególnych elementów instalacji elektrycznych jest niezbędna dla zapewnienia ich prawidłowego funkcjonowania.

Pytanie 29

Które urządzenie przedstawiono na ilustracji?

Ilustracja do pytania
A. Ogranicznik przepięć.
B. Czujnik zaniku i kolejności faz.
C. Wyłącznik nadprądowy dwubiegunowy.
D. Wyłącznik różnicowoprądowy z członem nadprądowym.
Odpowiedzi, które nie wskazują na wyłącznik różnicowoprądowy z członem nadprądowym, mogą wynikać z nieporozumienia dotyczącego funkcji i budowy różnych urządzeń zabezpieczających. Na przykład, ograniczniki przepięć są projektowane w celu ochrony instalacji przed skokami napięcia, a nie przed przeciążeniem czy porażeniem prądem. Oznacza to, że ich zadaniem jest jedynie zabezpieczenie przed skutkami wyładowań atmosferycznych, a nie ochrona osób. Czujniki zaniku i kolejności faz, z kolei, monitorują poprawność zasilania w systemach trójfazowych, ale nie mają funkcji ochrony osobistej ani zabezpieczania przed przeciążeniem. Wyłączniki nadprądowe dwubiegunowe są na ogół stosowane do ochrony obwodów przed przeciążeniem, lecz nie wykrywają różnic w prądzie, co czyni je niewłaściwym rozwiązaniem w kontekście ochrony przed porażeniem prądem elektrycznym. Wybór niewłaściwego urządzenia do ochrony może prowadzić do poważnych konsekwencji, w tym zagrożeń dla zdrowia i życia użytkowników. Kluczowym błędem jest zatem mylenie funkcji urządzeń zabezpieczających oraz ich zastosowania w odpowiednich kontekstach, co skutkuje brakiem odpowiedniej ochrony w instalacjach elektrycznych.

Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Ile pomiarów izolacyjnej rezystancji należy przeprowadzić, aby zidentyfikować uszkodzenie w przewodzie YDY3x 6 450/700 V?

A. 3
B. 12
C. 9
D. 6
Prawidłowa odpowiedź to 3 pomiary rezystancji izolacji, co wynika z praktyków oceny stanu izolacji przewodów elektroenergetycznych. W przypadku przewodów YDY3x 6 450/700 V, które są typowymi przewodami stosowanymi w instalacjach elektrycznych, kluczowe jest przeprowadzanie pomiarów rezystancji izolacji w różnych punktach. Zgodnie z normą PN-IEC 60364-6, co najmniej trzy pomiary powinny być wykonane dla każdej fazy przewodu oraz dodatkowo dla przewodu neutralnego i ochronnego. W praktyce, pomiary powinny obejmować zarówno wartości rezystancji międzyfazowej, jak i rezystancji do ziemi. Przykładowo, jeśli wykonasz pomiar izolacji na długości przewodu, który wykazuje niską rezystancję, może to wskazywać na uszkodzenie izolacji w tym obszarze. Dodatkowo, regularne pomiary rezystancji izolacji pozwalają na wczesne wykrywanie potencjalnych problemów, co jest istotne dla zapewnienia bezpieczeństwa i niezawodności instalacji elektrycznej.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

Które z oznaczeń posiada trzonek źródła światła przedstawiony na ilustracji?

Ilustracja do pytania
A. MR16
B. G9
C. E27
D. GU10
Odpowiedź GU10 jest prawidłowa, ponieważ trzonek źródła światła przedstawiony na ilustracji ma charakterystyczne cechy, które są typowe dla tego rodzaju gniazda. Trzonki GU10 mają dwie wypustki po bokach, które umożliwiają łatwe i pewne mocowanie w oprawach oświetleniowych poprzez system 'push and twist'. Jest to szczególnie przydatne w zastosowaniach, gdzie wymagana jest wysoka stabilność i łatwość wymiany źródła światła, jak w przypadku halogenów oraz niektórych modeli lamp LED. W praktyce trzonki GU10 są często wykorzystywane w oświetleniu wnętrz, takich jak sufitowe lampy halogenowe czy reflektory. Używanie trzonków zgodnych z normą GU10 jest zalecane, aby zapewnić bezpieczeństwo oraz efektywność energetyczną, co jest zgodne z najlepszymi praktykami branżowymi w oświetleniu. Dodatkowo, trzonki te często pozwalają na korzystanie z energooszczędnych rozwiązań, co jest istotne w kontekście ochrony środowiska i redukcji kosztów energii.

Pytanie 34

Na tynku wykonanym na ścianie działowej z cegły pełnej wytyczono miejsce dla rurek PVC. Jakie narzędzia należy zgromadzić, aby zapewnić szybki i precyzyjny montaż rurek?

A. Taśmę mierniczą, wiertarkę, piłę do metalu, młotek
B. Punktak, młotek, wiertarka udarowa, wiertło widiowe dostosowane do średnicy kołka rozporowego, piła do metalu, zestaw wkrętaków
C. Wiertarkę, punktak, zestaw wkrętaków
D. Taśmę mierniczą, młotek, wiertarkę udarową, wiertło widiowe dostosowane do średnicy kołka rozporowego, poziomicę, zestaw wkrętaków
Wybór narzędzi zaproponowany w innych odpowiedziach, takich jak tylko taśma miernicza i młotek, bądź jedynie wiertarka i komplet wkrętaków, jest niewłaściwy dla tego konkretnego zadania. Taśma miernicza, mimo że jest przydatna do pomiarów, nie zastępuje potrzeby precyzyjnego wyznaczenia miejsc wiercenia, co może prowadzić do błędów w montażu. Młotek sam w sobie nie jest wystarczający do pracy z cegłą pełną, gdzie konieczne jest użycie punktaka do wstępnego oznaczenia otworów. Wiertarka bez odpowiedniego wiertła widiowego może nie sprostać twardości cegły, co skutkuje trudnościami w procesie wiercenia oraz możliwym uszkodzeniem narzędzia. Piła do metalu może być używana, lecz w kontekście montażu rurek PVC, kluczowe jest posiadanie narzędzi do obróbki i mocowania, a nie tylko cięcia. Ostatecznie, brak poziomnicy w zestawie narzędzi jest istotnym błędem, ponieważ precyzyjne wypoziomowanie rurek jest kluczowe dla prawidłowego funkcjonowania instalacji. Takie nieprzemyślane podejście do przygotowania narzędzi może prowadzić do poważnych błędów w instalacji, co w dłuższym czasie może generować dodatkowe koszty związane z poprawkami i ponownym montażem.

Pytanie 35

Jakie są minimalne wartości napięć znamionowych, jakie powinien posiadać przewód użyty do instalacji jednofazowej w sieci 230/400 V, prowadzonej w otworach prefabrykowanych budynków?

A. 300/500 V
B. 300/300 V
C. 450/750 V
D. 600/1000 V
Wybór napięcia dla przewodów elektrycznych to bardzo ważna sprawa, bo wpływa na ich bezpieczeństwo i niezawodność. Przewody o napięciach 600/1000 V, 300/500 V i 300/300 V nie nadają się do instalacji jednofazowych przy 230/400 V, bo nie spełniają minimalnych wymogów. Takie 600/1000 V są robione do cięższych warunków, więc są drogie i niepotrzebne tam, gdzie wystarczą przewody 450/750 V. Natomiast 300/500 V i 300/300 V mają za małe wartości, co zwiększa ryzyko uszkodzeń i awarii. Użycie takich przewodów w instalacjach jednofazowych może prowadzić do problemów z bezpieczeństwem, jak przepięcia czy porażenia. Wiem, że często to wynika z braku wiedzy o standardach w branży. Ważne jest, żeby projektanci i instalatorzy rozumieli te specyfikacje, by uniknąć niebezpiecznych sytuacji i zapewnić, że instalacje elektryczne będą działać długo i sprawnie.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.