Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 4 czerwca 2025 17:05
  • Data zakończenia: 4 czerwca 2025 17:22

Egzamin zdany!

Wynik: 31/40 punktów (77,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Na dokumentacji dotyczącej zapotrzebowania materiałowego do realizacji instalacji znajduje się symbol Cu-DHP 22x1 R220. Co to oznacza w kontekście rur?

A. o średnicy 22 mm i długości 1m, miękka
B. o średnicy 22 mm i długości 1m, twarda
C. o promieniu 22 mm i grubości 1 mm, twarda
D. o średnicy 22 mm i grubości 1mm, miękka
Odpowiedź wskazująca, że jest to rura miedziana o średnicy 22 mm i grubości 1 mm, miękka, jest poprawna ze względu na standardowe oznaczenia rur miedzianych. Symbol Cu-DHP oznacza miedź dekarbonizowaną, która jest szeroko stosowana w instalacjach wodnych i grzewczych. Średnica 22 mm to typowy rozmiar dla rur stosowanych w instalacjach domowych, co czyni je idealnymi do transportu wody oraz dla systemów grzewczych. Grubość 1 mm wskazuje na uniwersalność i łatwość w montażu, co jest korzystne w przypadku zastosowań, gdzie elastyczność materiału jest ważna. Rury miękkie są często wykorzystywane, gdyż łatwiej je formować i dopasowywać do istniejącej instalacji. Przykłady zastosowań obejmują instalacje hydrauliczne w budynkach mieszkalnych, gdzie miedź jest preferowana ze względu na swoją odporność na korozję oraz właściwości antybakteryjne. Dobrą praktyką jest stosowanie takich rur w miejscach, które wymagają częstych zmian kierunku lub w przypadku trudnego dostępu do instalacji.

Pytanie 2

Wyznacz wartość promieniowania bezpośredniego, mając na uwadze, że promieniowanie rozproszone wynosi 300 W/m², a promieniowanie całkowite 1000 W/m²?

A. 800 W/m²
B. 1000 W/m²
C. 700 W/m²
D. 1300 W/m²
Odpowiedź 700 W/m² jest poprawna, ponieważ obliczamy wartość promieniowania bezpośredniego, odejmując promieniowanie rozproszone od promieniowania całkowitego. W tym przypadku, promieniowanie całkowite wynosi 1000 W/m², a promieniowanie rozproszone to 300 W/m². Proces ten jest kluczowy w dziedzinie inżynierii energetycznej oraz architektury, gdzie właściwe zrozumienie składników promieniowania słonecznego jest istotne dla efektywności energetycznej budynków. W praktyce, znajomość tych wartości pozwala na optymalizację projektów systemów fotowoltaicznych oraz oceny wpływu zacienienia na wydajność instalacji. Zgodnie z dobrą praktyką branżową, przy planowaniu systemów odnawialnych źródeł energii, inżynierowie często korzystają z narzędzi symulacyjnych, które uwzględniają zarówno promieniowanie bezpośrednie, jak i rozproszone. Pozwala to na dokładniejsze prognozowanie wydajności systemów i efektywności wykorzystania energii słonecznej w określonych lokalizacjach.

Pytanie 3

Na podstawie danych zamieszczonych w tabeli określ miesięczne koszty pokrycia strat energii w zbiorniku SB-200. Przyjmij, że: 1 miesiąc = 30 dni, koszt 1 kWh = 0,50 zł, temperatura wody w zbiorniku 60°C.

Typ wymiennikaSB-200
SBZ-200
SB-250
SBZ-250
SB-300
SBZ-300
Pojemność znamionowal200250300
Ciśnienie znamionoweMPazbiornik 0,6, wężownice 1,0
Moc wężownicy dolnej/górnej*kW40/2937/3153/31
Dobowa energia**kWh2,02,12,7
* Przy parametrach 80/10/45 °C
** Przy utrzymaniu stałej temperatury wody 60 °C
A. 45,00 zł
B. 60,00 zł
C. 30,00 zł
D. 12,00 zł
Poprawna odpowiedź to 30,00 zł, co wynika z prawidłowego zastosowania wzoru na obliczenie miesięcznych kosztów pokrycia strat energii. Aby obliczyć miesięczne koszty, należy wziąć pod uwagę dobowe straty energii, które w przypadku zbiornika SB-200 wynoszą 2 kWh. Następnie, mnożymy tę wartość przez liczbę dni w miesiącu, co daje 60 kWh (2 kWh x 30 dni). Koszt energii elektrycznej wynosi 0,50 zł za kWh, co prowadzi do obliczenia 60 kWh x 0,50 zł = 30 zł. Zrozumienie tego procesu jest kluczowe, ponieważ pozwala na realistyczne oszacowanie kosztów eksploatacyjnych systemów grzewczych i zbiorników. Wiedza ta jest istotna w kontekście optymalizacji kosztów operacyjnych oraz efektywności energetycznej. W praktyce, aby zminimalizować straty energii, można stosować różne metody izolacji zbiorników oraz monitorowania temperatury, co jest zgodne z najlepszymi praktykami w branży.

Pytanie 4

Paliwo uzyskane z kompresji trocin, które są generowane podczas obróbki drewna oraz innych procesów związanych z jego przetwarzaniem, to

A. pelet
B. ziarno
C. ekogroszek
D. zrębki
Pelet to paliwo stałe, które powstaje poprzez sprasowanie trocin, wiórów oraz innych odpadów drzewnych. Jest to produkt ściśle związany z wykorzystaniem surowców drzewnych w sposób efektywny i ekologiczny. Pelet charakteryzuje się wysoką gęstością energetyczną, co sprawia, że jest chętnie stosowany w piecach i kotłach na biomasę. Dzięki odpowiedniej technologii produkcji, pelet cechuje się niską wilgotnością oraz stałą wielkością, co ułatwia jego transport i magazynowanie. Zastosowanie peletu w systemach grzewczych przyczynia się do redukcji emisji spalin oraz wykorzystania odnawialnych źródeł energii. Warto również zauważyć, że pelet podlega różnym normom jakościowym, co zapewnia jego wysoką efektywność spalania oraz minimalizację osadów popiołu, co jest istotne w kontekście ochrony środowiska. Pelet może być wykorzystywany w domach jednorodzinnych, a także w przemyśle, gdzie coraz częściej zastępuje tradycyjne paliwa kopalne.

Pytanie 5

Na podstawie przedstawionych w tabeli danych technicznych płaskich kolektorów słonecznych wskaż, który z nich ma najwyższą sprawność optyczną.

Transmisyjność pokrywy przezroczystej0,920,900,860,90
Emisyjność absorbera0,100,900,800,15
Absorpcyjność absorbera0,950,880,900,90
ABCD
A. C.
B. D.
C. A.
D. B.
Kolektor A został wskazany jako ten z najwyższą sprawnością optyczną, co jest kluczowym wskaźnikiem jego wydajności. Sprawność optyczna mierzy zdolność kolektora do absorpcji światła słonecznego, co jest niezbędne dla efektywnego przetwarzania energii słonecznej na energię cieplną. Wartości te są określane przez iloczyn transmisyjności pokrywy przezroczystej oraz absorpcyjności absorbera. Kolektor A wykazuje najwyższe wartości tych parametrów, co można przypisać zastosowaniu nowoczesnych materiałów o wysokiej transmisyjności oraz nanoszenia powłok selektywnych na powierzchni absorbera. W praktyce, wysoka sprawność optyczna przekłada się na lepsze wyniki w kontekście efektywności energetycznej instalacji solarnych, co może prowadzić do znacznych oszczędności w kosztach eksploatacyjnych i zwiększenia zwrotu z inwestycji. Standardy branżowe, takie jak EN 12975, regulują sposób pomiaru tych parametrów, co potwierdza rzetelność przedstawionych wyników. Zrozumienie sprawności optycznej jest zatem kluczowe dla inżynierów zajmujących się projektowaniem systemów solarnych.

Pytanie 6

Grupę pompową w systemie solarnym należy zainstalować na rurze

A. instalacji podłogowej
B. powrotnym
C. zbiornika wzbiorczego
D. zasilającym
Grupa pompową w instalacji solarnej należy montować na przewodzie powrotnym, ponieważ to w tym miejscu następuje transport schłodzonego czynnika grzewczego z powrotem do kolektorów słonecznych. Umiejscowienie pompy na przewodzie powrotnym zapewnia optymalne warunki do pracy, umożliwiając efektywne przekazywanie ciepła z kolektorów do systemu grzewczego. W praktyce, gdy pompa znajduje się na powrocie, może ona efektywnie regulować przepływ czynnika, co sprzyja lepszemu zarządzaniu temperaturą i ciśnieniem w systemie. Dodatkowo zgodnie z zasadami dobrej praktyki instalacji solarnych, umiejscowienie pompy na powrocie minimalizuje ryzyko zjawiska kawitacji, które może wystąpić, jeśli pompa byłaby zainstalowana na przewodzie zasilającym. Warto również zauważyć, że takie położenie sprzyja łatwiejszemu serwisowaniu i konserwacji systemu, co przekłada się na dłuższą żywotność instalacji.

Pytanie 7

Rekuperator to urządzenie służące do odzyskiwania energii cieplnej z

A. ciepłej wody użytkowej
B. gruntu
C. ścieków
D. gazów
Rekuperator to fajne urządzenie, które naprawdę dobrze odzyskuje ciepło z powietrza wydobywającego się z budynków. W skrócie, działa to tak, że ciepło z powietrza, które wychodzi, przenika do świeżego powietrza, które jest wprowadzane do środka. Dzięki temu, budynki mogą lepiej wykorzystywać energię, co z kolei obniża rachunki za ogrzewanie i chłodzenie. W praktyce, rekuperatory są super w budynkach pasywnych i energooszczędnych, bo tam liczy się każde ciepło. No i co ważne, są zgodne z różnymi normami efektywności energetycznej, jak ISO 50001, więc są po prostu nowoczesnym rozwiązaniem w wentylacji.

Pytanie 8

Za montaż urządzeń z zakresu energetyki odnawialnej oraz realizację dostaw zgodnych z projektem odpowiada

A. inwestor
B. użytkownik
C. kierownik budowy
D. projektant
Kierownik budowy odgrywa kluczową rolę w procesie montażu urządzeń energetyki odnawialnej, ponieważ to on odpowiada za koordynację wszystkich działań na placu budowy. Dobrze zorganizowane i zgodne z projektem dostawy są niezbędne do prawidłowego przebiegu robót. Kierownik budowy ma za zadanie nadzorować realizację prac montażowych, zapewniając, że wszelkie urządzenia są instalowane zgodnie z obowiązującymi normami oraz wytycznymi projektowymi. Na przykład, w przypadku instalacji paneli fotowoltaicznych, kierownik budowy musi zadbać o odpowiednie przygotowanie miejsca montażu, sprawdzenie zgodności z projektem oraz zapewnienie, że wszystkie niezbędne materiały i urządzenia dotrą na czas. Przykłady dobrych praktyk obejmują regularne spotkania z zespołem projektowym oraz dostawcami, co pozwala na bieżąco monitorować postęp prac i ewentualnie wprowadzać niezbędne korekty. Dzięki takim działaniom kierownik budowy minimalizuje ryzyko opóźnień oraz błędów, które mogą wpłynąć na efektywność instalacji.

Pytanie 9

Jaką wartość odpowiada 3,3 MPa?

A. 3,3 bar
B. 33 kPa
C. 33 000 Pa
D. 33 bar
Wartość 3,3 MPa rzeczywiście odpowiada 33 barom, ponieważ przeliczenie między tymi jednostkami opiera się na standardowym przeliczniku, w którym 1 MPa jest równy 10 barom. Dlatego aby uzyskać wartość w barach, należy pomnożyć ilość megapaskali przez 10. W praktyce, znajomość tych jednostek jest niezbędna w różnych dziedzinach inżynierii, szczególnie w hydraulice i pneumatyce, gdzie ciśnienie odgrywa kluczową rolę. W zastosowaniach przemysłowych, takich jak systemy hydrauliczne, ważne jest, aby być w stanie szybko i precyzyjnie przeliczać wartości ciśnienia. Wartości ciśnienia mogą być wyrażane w różnych jednostkach, a ich poprawne konwertowanie jest istotne dla utrzymania bezpieczeństwa i efektywności systemów. Ponadto, zgodność z normami międzynarodowymi oraz zrozumienie jednostek SI (Systemu Jednostek Międzynarodowych) jest kluczowe w każdej dziedzinie techniki, co podkreśla znaczenie znajomości jednostek ciśnienia.

Pytanie 10

Do uzupełnienia systemu solarnego, który wspomaga produkcję ciepłej wody użytkowej, powinno się zastosować

A. roztwór soli kuchennej
B. wodę z instalacji kotła centralnego ogrzewania
C. mieszaninę glikolu propylenowego i wody
D. wodę destylowaną
Mieszanina glikolu propylenowego i wody jest optymalnym wyborem do napełnienia instalacji solarnej wspomagającej wytwarzanie ciepłej wody użytkowej. Glikol propylenowy działa jako środek antyzamarzający, co jest kluczowe w przypadku systemów solarnych, szczególnie w chłodniejszych klimatach. Dzięki jego stosunkowo niskiej toksyczności, glikol propylenowy jest bezpieczny dla środowiska i zdrowia, co czyni go preferowanym rozwiązaniem. Taki roztwór nie tylko zapobiega zamarzaniu cieczy w instalacji, ale także zwiększa efektywność przenoszenia ciepła. W praktyce, mieszanka ta pozwala na dłuższe eksploatowanie systemu solarnego bez ryzyka uszkodzeń spowodowanych niskimi temperaturami. W standardach branżowych i zaleceniach producentów instalacji solarnych, tego rodzaju roztwory są powszechnie polecane, co podkreśla ich znaczenie w zapewnieniu niezawodności i wydajności systemu."

Pytanie 11

W trakcie użytkowania systemu grzewczego opartego na energii słonecznej zauważono, że pompa solarna włącza się regularnie w porze nocnej. Możliwą przyczyną tego zjawiska może być

A. niski poziom cieczy solarnej
B. aktywowany tryb urlop na kontrolerze solarnym
C. zbyt mała histereza na regulatorze
D. uszkodzona pompa solarna
Niski poziom płynu solarnego może wydawać się logiczną przyczyną dla nieprawidłowego działania pompy, jednak nie jest to najczęstszy powód włączenia się pompy w nocy. W rzeczywistości, gdy poziom płynu jest zbyt niski, pompa najczęściej wyłącza się automatycznie, aby uniknąć uszkodzenia. Ustawienie trybu urlopowego jest bardziej prawdopodobne, ponieważ ten tryb jest stworzony, by utrzymać minimalny poziom aktywności systemu nawet podczas nieobecności użytkowników. Histereza ustawiona na regulatorze również nie wyjaśnia tej sytuacji; obniżenie wartości histerezy może prowadzić do częstszego włączania się pompy, ale nie powinno to dziać się w nocy, jeśli system jest prawidłowo skonfigurowany. Ponadto, uszkodzona pompa solarna często wykazuje inne objawy, takie jak hałas, wibracje lub całkowity brak działania. Typowym błędem myślowym jest podejście do diagnostyki w oparciu o pojedynczy objaw, zamiast analizować całość systemu. Kluczowe jest zrozumienie, że wiele czynników wpływa na działanie systemu grzewczego, a skuteczne diagnozowanie problemów wymaga systematycznego podejścia oraz uwzględnienia wszystkich komponentów i ich wzajemnych interakcji. Dlatego istotne jest, aby użytkownicy byli dobrze zaznajomieni zarówno z podstawami działania systemów solarnych, jak i z ich pełną funkcjonalnością.

Pytanie 12

Aby złączyć ze sobą dwie stalowe rury o identycznej średnicy i gwincie zewnętrznym, należy zastosować

A. odpowietrznika
B. mufy
C. redukcji
D. nypla
Mufa jest kluczowym elementem w technice łączenia rur, szczególnie tych o gwincie zewnętrznym. Użycie mufy pozwala na łatwe i efektywne połączenie dwóch rur o tej samej średnicy, co jest istotne w wielu instalacjach wodociągowych, gazowych i przemysłowych. Mufa, jako złączka, posiada wewnętrzny gwint, który idealnie pasuje do gwintu zewnętrznego rur, co gwarantuje szczelność i niezawodność połączenia. Przykładowo, w instalacjach hydraulicznych, gdzie ciśnienie jest istotnym czynnikiem, stosowanie mufy zapewnia, że połączenia nie będą narażone na przecieki. Dodatkowo, zgodność z normami branżowymi, takimi jak PN-EN 10226, zapewnia wysoką jakość i bezpieczeństwo w użytkowaniu. Warto pamiętać, że odpowiedni dobór mufy do średnicy rur jest kluczowy dla prawidłowego funkcjonowania całej instalacji, a także jej długowieczności.

Pytanie 13

Kocioł na pellet o mocy poniżej 25 kW powinien być umiejscowiony w kotłowni w taki sposób, aby przestrzeń pomiędzy tylną częścią kotła a ścianą wynosiła co najmniej

A. 1,5 m
B. 2,0 m
C. 0,7 m
D. 1,0 m
Odpowiedź 0,7 m jest poprawna, ponieważ zgodnie z obowiązującymi polskimi normami oraz przepisami, minimalna odległość między tyłem kotła a ścianą w przypadku kotłów na pellet o mocy mniejszej niż 25 kW powinna wynosić właśnie 0,7 m. Ta odległość zapewnia odpowiednią cyrkulację powietrza, co jest kluczowe dla efektywności kotła oraz jego bezpieczeństwa. Utrzymanie właściwego odstępu umożliwia także łatwy dostęp do kotła w celu przeprowadzania prac konserwacyjnych i kontroli. Na przykład, w przypadku awarii lub potrzeby czyszczenia wymiennika ciepła, dostępność przestrzeni wokół kotła jest niezbędna. Przestrzeganie tych norm jest istotne, aby uniknąć potencjalnych zagrożeń, takich jak przegrzanie czy niewłaściwa wentylacja, które mogą prowadzić do poważnych uszkodzeń urządzenia lub zagrożeń dla ludzi. Właściwe usytuowanie kotła zgodnie z normami branżowymi wspiera długotrwałą i bezproblemową eksploatację urządzenia. W kontekście instalacji kotłów, warto również zadbać o przestrzeganie zasad bezpieczeństwa i praktyk związanych z instalacjami grzewczymi, co może znacznie poprawić komfort użytkowania.

Pytanie 14

Przy jakim ciśnieniu powinien zadziałać zawór bezpieczeństwa w systemie solarnym?

A. 2 barów
B. 8 barów
C. 4 barów
D. 6 barów
Zawór bezpieczeństwa w instalacji solarnej jest kluczowym elementem zapewniającym bezpieczeństwo systemu. Ustalenie odpowiedniego ciśnienia, przy którym zawór powinien zadziałać, jest niezwykle istotne. W przypadku instalacji solarnych, wartość 6 barów jest uznawana za standardową granicę, przy której zawór bezpieczeństwa powinien otworzyć się, aby zapobiec nadmiernemu wzrostowi ciśnienia. Praktyczne zastosowanie tego rozwiązania można zaobserwować w sytuacjach, gdy ciśnienie w układzie, na przykład w wyniku niskiej temperatury lub awarii, zbliża się do tej wartości. W rzeczywistości, zawory te są projektowane zgodnie z normą PN-EN 12828, która odnosi się do projektowania i wykonania systemów grzewczych, w tym instalacji solarnych. Zastosowanie zaworu przy ciśnieniu 6 barów zapobiega ryzyku pęknięcia rur oraz uszkodzenia kolektorów słonecznych, co z kolei przekłada się na długowieczność całego systemu oraz zwiększa bezpieczeństwo użytkowania.

Pytanie 15

Tabela przedstawia kalkulację kosztów związanych z montażem 12 instalacji solarnych. Jaki będzie jednostkowy koszt montażu jednej instalacji solarnej?

Rodzaj kosztówWartość [zł]
Materiały wraz z narzutami75 650,00
Wynagrodzenia dla robotników wraz z narzutami45 680,00
Koszty ogólne budowy8 900,00
Koszty pośrednie firmy2 100,00
A. 10 110,83 zł
B. 6 304,17 zł
C. 10 852,50 zł
D. 11 027,50 zł
Wybór jednej z pozostałych odpowiedzi może wynikać z błędnej analizy kosztów lub nieprawidłowego zastosowania podstawowych zasad kalkulacji finansowych. Na przykład, odpowiedzi takie jak 10 110,83 zł, 6 304,17 zł lub 10 852,50 zł mogą sugerować pominięcie części kosztów lub błędne zrozumienie jednostkowego kosztu. Często błędem jest zsumowanie tylko wybranych pozycji kosztowych, a nie całkowitych wydatków związanych z całym projektem. Takie podejście może prowadzić do nieadekwatnych kalkulacji, które nie odzwierciedlają rzeczywistych wydatków, a przez to mogą zniekształcać ekonomiczną analizę projektu. Ponadto, brak znajomości metodologii obliczania kosztów lub nieprawidłowe zakładanie liczby instalacji może prowadzić do mylnych wniosków. W branży energii odnawialnej, dokładne zrozumienie kosztów jest niezbędne, aby podejmować świadome decyzje, które są zgodne z zasadami efektywności kosztowej oraz zrównoważonego rozwoju. Należy także zwrócić uwagę na to, że błędne kalkulacje mogą skutkować poważnymi konsekwencjami finansowymi, co podkreśla potrzebę dokładności i staranności w procesie obliczania kosztów.

Pytanie 16

W skład odnawialnych źródeł energii wchodzą

A. energia wiatru, energia wody, ropa naftowa
B. energia geotermalna, energia słoneczna, węgiel
C. energia geotermalna, energia biomasy, biogaz
D. węgiel kamienny, węgiel brunatny, gaz ziemny
Odpowiedź wskazująca na energię geotermalną, energię biomasy oraz biogaz jako odnawialne źródła energii jest prawidłowa, ponieważ wszystkie te źródła są zdolne do regeneracji w krótkim czasie i nie prowadzą do wyczerpywania zasobów naturalnych. Energia geotermalna wykorzystuje ciepło z wnętrza Ziemi, co sprawia, że jest to jeden z najbardziej stabilnych i niezawodnych źródeł energii. Można ją wykorzystać do ogrzewania budynków oraz do produkcji energii elektrycznej. Energia biomasy, z kolei, jest pozyskiwana z materiałów organicznych, takich jak odpady rolnicze czy drewno, co pozwala na zamianę odpadów w wartościowe źródło energii, przyczyniając się jednocześnie do zrównoważonego rozwoju. Biogaz, wytwarzany z fermentacji organicznych odpadów, może być wykorzystywany jako paliwo do silników czy do produkcji energii elektrycznej. Dobre praktyki branżowe promują rozwój technologii związanych z tymi źródłami, aby zwiększyć efektywność i zmniejszyć emisję gazów cieplarnianych. Te odnawialne źródła energii mają ogromny potencjał w ramach strategii zrównoważonego rozwoju i walki ze zmianami klimatycznymi.

Pytanie 17

Kiedy temperatura zasilania systemu grzewczego wynosi 70°C, w jakim trybie powinna działać pompa ciepła?

A. biwalentnym rozdzielonym
B. biwalentnym równoległym
C. monoenergetycznym
D. monowalentnym
Pompa ciepła w systemie biwalentnym równoległym to naprawdę fajne rozwiązanie, gdy mamy temperaturę zasilania na poziomie 70°C. Dzięki temu systemowi możemy korzystać z pompy ciepła i dodatkowego źródła ciepła jednocześnie, co daje nam większą swobodę w ogrzewaniu budynku. W praktyce to znaczy, że gdy na zewnątrz robi się chłodniej, pompa ciepła może współpracować z kotłem gazowym albo innym źródłem ciepła, żeby utrzymać komfortową temperaturę w środku. A co ważne, taki system jest zgodny z aktualnymi normami dotyczącymi efektywności energetycznej i pomaga zmniejszyć emisję CO2, co przy okazji obniża koszty ogrzewania. Na przykład, w budynku mieszkalnym pompa ciepła może ogrzewać w cieplejsze dni, a dodatkowe źródło ciepła startuje, gdy przychodzą mrozy, co zapewnia nam ciepło przez cały rok.

Pytanie 18

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm pod najwyższą częścią kotła
B. Na powrocie, 10 cm ponad najwyższą częścią kotła
C. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
D. Na zasilaniu, 10 cm pod najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 19

Aby przetransportować kolektor słoneczny na dach niskiego budynku jednorodzinnego, należy wykorzystać

A. rusztowanie
B. żuraw
C. drabinę
D. wyciąg
Z mojej perspektywy, wyciąg to najlepszy sposób na przeniesienie kolektora słonecznego na dach niskiego domku jednorodzinnego. Dzięki niemu można bezpiecznie i skutecznie podnieść ciężkie rzeczy. To naprawdę ważne, bo z jednej strony chronimy kolektor przed zniszczeniem, a z drugiej, mamy kontrolę nad tym, co się dzieje podczas podnoszenia. W praktyce, na budowach często korzysta się z wyciągów do transportu różnych materiałów. To też jest zgodne z zasadami BHP, które kładą duży nacisk na bezpieczeństwo w pracy. No i nie zapominajmy, że dzięki wyciągowi potrzebujemy mniej ludzi do przenoszenia ciężkich przedmiotów, co oszczędza czas i redukuje ryzyko wypadków. A jeśli chodzi o instalację kolektorów na dachu, to wyciąg pozwala na precyzyjne ustawienie paneli w najlepszej pozycji. A to jest kluczowe dla ich wydajności energetycznej.

Pytanie 20

Który typ podłoża wspomaga przekazywanie ciepła do kolektora gruntowego?

A. Wilgotny i piaszczysty
B. Suchy i gliniasty
C. Twardy i piaszczysty
D. Wilgotny i gliniasty
Wybór odpowiedzi dotyczących suchego gruntu, zarówno piaszczystego, jak i gliniastego, nie jest najlepszy. Te materiały mają słabe właściwości przewodzenia ciepła. Suchy grunt piaszczysty może przepuszczać wodę, ale ciepło ucieka mu zbyt szybko. Z kolei suchy grunt gliniasty, mimo że lepszy od piasku, też musi być trochę wilgotny, żeby dobrze przewodzić ciepło. A jak jest za suchy, to się kurczy i mogą powstawać szczeliny, co wpływa na kontakt z kolektorem. Ważne jest, żeby nie lekceważyć roli wilgotności gruntu przy projektowaniu systemów geotermalnych. Warto zrozumieć, jak wilgoć, rodzaj gruntu i przewodnictwo cieplne się ze sobą łączą, bo to klucz do efektywnego działania takich systemów. Wilgotne gliny naprawdę robią różnicę w wymianie energii z kolektorem gruntowym.

Pytanie 21

Aby zainstalować system rur PP, jakie narzędzia są potrzebne?

A. nożyce do rur, gratownik oraz zestaw kluczy płaskich
B. obcinaki do rur, kalibrator oraz zaciskarka
C. nożyce do rur, gratownik i zgrzewarka
D. obcinaki do rur, gratownik oraz klej
Odpowiedź, że do montażu instalacji w systemie rur PP należy dysponować nożycami do rur, gratownikiem i zgrzewarką, jest prawidłowa ze względu na specyfikę materiału i metody łączenia. Nożyce do rur umożliwiają precyzyjne cięcie rur PP, co jest kluczowe dla zachowania integralności połączeń. Gratownik służy do wygładzania krawędzi, co zapobiega uszkodzeniom materiału i zapewnia lepszą jakość połączenia. Zgrzewarka, natomiast, jest niezbędna do efektywnego łączenia rur PP poprzez zgrzewanie, co jest jedną z najlepszych praktyk w instalacjach wodno-kanalizacyjnych. Zgrzewanie rur PP pozwala na uzyskanie trwałego, szczelnego połączenia, które wytrzymuje wysokie ciśnienie oraz zmiany temperatury. Stosowanie tych narzędzi jest zgodne z normami branżowymi, które kładą nacisk na bezpieczeństwo oraz efektywność instalacji. Dobrze przeprowadzony montaż nie tylko przedłuża żywotność instalacji, ale również minimalizuje ryzyko awarii.

Pytanie 22

W trakcie konserwacji instalacji centralnego ogrzewania do czynnika grzewczego wprowadza się inhibitory w celu

A. poprawy przewodności cieplnej czynnika grzewczego
B. pozbycia się kamienia kotłowego z systemu
C. oczyszczenia czynnika grzewczego z zanieczyszczeń
D. zmniejszenia korozji instalacji
Inhibitory korozji są substancjami chemicznymi dodawanymi do czynnika grzewczego w instalacjach centralnego ogrzewania w celu ograniczenia korozji elementów metalowych systemu. Korozja jest naturalnym procesem, który może prowadzić do intensywnego zużycia sprzętu, a w skrajnych przypadkach - do jego awarii. Inhibitory działają na zasadzie tworzenia ochronnej warstwy na powierzchni metalu, co zmniejsza kontakt z agresywnymi substancjami chemicznymi w wodzie. Przykłady zastosowania to dodawanie inhibitorów takich jak azotany czy fosforany, które są zgodne z normami takimi jak PN-EN 14731, które dotyczą jakości wody w instalacjach grzewczych. Działanie inhibitorów jest kluczowe dla wydłużenia żywotności instalacji, co przekłada się na mniejsze koszty konserwacji oraz zwiększoną efektywność energetyczną systemu.

Pytanie 23

W Polsce płaskie kolektory słoneczne powinny być umieszczane na dachu budynku, skierowane w stronę

A. zachodnią
B. wschodnią
C. północną
D. południową
Kolektory słoneczne płaskie powinny być zorientowane na południe, aby maksymalizować ilość otrzymywanego promieniowania słonecznego przez cały dzień. Dzięki takiej orientacji, kolektory są w stanie wykorzystać maksymalne nasłonecznienie, zwłaszcza w godzinach szczytowych, kiedy słońce znajduje się najwyżej na niebie. W Polsce, ze względu na nasze położenie geograficzne, orientacja południowa jest kluczowa dla uzyskania optymalnej efektywności energetycznej. Przykładowo, instalacje w orientacji południowej mogą zwiększyć wydajność kolektorów o 15-30% w porównaniu do innych kierunków. Dobre praktyki wskazują, że przy projektowaniu systemów solarnych należy także uwzględniać kąt nachylenia kolektorów, który powinien wynosić od 30 do 45 stopni, co dodatkowo wspiera efektywność zbierania energii. W związku z tym, podejmowanie decyzji o lokalizacji i orientacji kolektorów powinno być oparte na analizach nasłonecznienia oraz lokalnych warunkach klimatycznych, co przyczynia się do maksymalizacji zysków energetycznych.

Pytanie 24

Jakiego rodzaju zgrzewarki używa się do łączenia rur z PP-R w systemach ciepłej wody użytkowej?

A. Trzpieniowej
B. Polifuzyjnej
C. Doczołowej
D. Elektrooporowej
Zgrzewarka polifuzyjna jest kluczowym narzędziem do łączenia rur z PP-R w instalacjach ciepłej wody użytkowej. Proces zgrzewania polifuzyjnego polega na podgrzewaniu końcówek rur oraz złączek, co umożliwia ich połączenie w sposób trwały i odporny na wysokie temperatury. Metoda ta zapewnia nie tylko wysoką jakość połączeń, ale również ich szczelność, co jest szczególnie istotne w kontekście instalacji wodociągowych. Przykładowo, w budownictwie mieszkalnym zgrzewanie polifuzyjne jest często stosowane do instalacji systemów grzewczych oraz ciepłej wody użytkowej, gdzie wymagane są połączenia odporne na ciśnienie i temperaturę. Ponadto, zgodnie z normami PN-EN 1555 oraz PN-EN ISO 15874, zgrzewanie polifuzyjne jest uznawane za metodę preferowaną do łączenia rur wykonanych z polipropylenu. Dzięki odpowiedniemu doborowi temperatury i czasu zgrzewania, można uzyskać połączenia, które są nie tylko mocne, ale także odporne na korozję, co przekłada się na długotrwałą eksploatację systemów wodociągowych.

Pytanie 25

Panele fotowoltaiczne zamocowane na stałych uchwytach (bez opcji regulacji kąta przez cały rok), zainstalowane na terytorium Polski, powinny być nachylone w stosunku do poziomu pod kątem:

A. 45°
B. 55°
C. 65°
D. 35°
Wybór kąta nachylenia ogniw fotowoltaicznych o wartości 55° lub 65° może prowadzić do obniżenia efektywności systemu. Wyższe kąty nachylenia mogą być korzystne w krajach o bardziej stonowanej pozycji Słońca, jednak w polskich warunkach klimatycznych, gdzie Słońce nie osiąga ekstremalnych wysokości, mogą nie zapewniać optymalnej produkcji energii. Ustawienie paneli pod kątem 35° również nie jest optymalne, ponieważ zbyt płaskie nachylenie prowadzi do suboptymalnego zbierania promieniowania słonecznego w okresach zimowych, kiedy Słońce znajduje się nisko na niebie. Użytkownicy często mylą te kąty, nie zastanawiając się nad zmiennością pozycji Słońca w ciągu roku. Ponadto, niewłaściwy kąt nachylenia może prowadzić do problemów z gromadzeniem się śniegu i brudu, co istotnie obniża wydajność ogniw. Najlepsze praktyki w branży energii odnawialnej wskazują na 45° jako najbardziej uniwersalne rozwiązanie, które zaspokaja potrzeby zarówno w zakresie efektywności, jak i konserwacji paneli. Dobrze jest również pamiętać, że przy wyborze kąta nachylenia warto kierować się zaleceniami producentów paneli oraz lokalnymi warunkami geograficznymi i atmosferycznymi.

Pytanie 26

Którego rodzaju kosztorysu nie tworzy wykonawca prac?

A. Inwestorskiego
B. Zamiennego
C. Powykonawczego
D. Ofertowego
Wiesz, wykonawca nie zajmuje się robieniem kosztorysu inwestorskiego. To inwestor albo jego przedstawiciel powinien tym się zająć. Kosztorys inwestorski to taki dokument, który szacuje, ile będzie kosztować cały projekt budowlany. Przydaje się głównie do planowania finansowego i oceny, czy inwestycja się opłaca. Z mojego doświadczenia, taki kosztorys musi być zrobiony według norm, na przykład PN-ISO 9001, żeby był rzetelny i przejrzysty. Generalnie powinien zawierać szczegółowy opis robót, materiałów i przewidywanych kosztów, co pozwala inwestorowi podjąć świadomą decyzję przy wyborze wykonawcy. Oczywiście w czasie przetargów, wykonawcy też robią kosztorysy ofertowe i powykonawcze, ale i tak za kosztorys inwestorski odpowiada inwestor, co jest zgodne z najlepszymi praktykami w branży budowlanej.

Pytanie 27

Przedmiar robót instalacji fotowoltaicznej powinien być sporządzony w kolejności

A. technologicznej realizacji robót, z określeniem ilości jednostek przedmiarowych
B. technologicznej realizacji robót, z określeniem cen jednostkowych robót
C. alfabetycznej wykonywanych robót, z określeniem cen jednostkowych robót
D. alfabetycznej wykonywanych robót, z określeniem ilości jednostek przedmiarowych
W kontekście przedmiaru robót instalacji fotowoltaicznej, istnieją pewne nieporozumienia dotyczące organizacji i struktury dokumentacji. Na przykład, metodologia oparcia przedmiaru na technologicznej kolejności wykonania robót zamiast alfabetycznej może prowadzić do chaosu w dokumentacji, zwłaszcza w złożonych projektach. Zamiast przejrzystości, taka struktura może zniekształcać logiczny porządek i utrudniać znalezienie konkretnych informacji. Ponadto, pomijanie podawania cen jednostkowych robót oznacza ryzyko braku oszacowania kosztów i może prowadzić do nieprzewidzianych wydatków w trakcie realizacji projektu. Kolejny błąd to podejście, które łączy alfabetyczne porządkowanie robót z ilościami jednostek przedmiarowych, co jest niewystarczające. Takie podejście nie daje pełnej wizji kosztów, co jest niezbędne w procesie planowania budżetu. W branży budowlanej i instalacyjnej stosuje się zasady, które promują systematyczność i przejrzystość w dokumentacji, a błędy w przedmiarze mogą prowadzić do poważnych konsekwencji finansowych i organizacyjnych. Dlatego kluczowe jest stosowanie sprawdzonych praktyk oraz standardów, aby zapewnić skuteczność i rzetelność realizowanych projektów.

Pytanie 28

Do instalacji ogrzewania podłogowego zasilanego pompą ciepła wykorzystuje się rury

A. z tworzywa sztucznego
B. żeliwne
C. stalowe
D. kamionkowe
Instalację ogrzewania podłogowego zasilaną z pompy ciepła wykonuje się najczęściej z rur z tworzywa sztucznego, takich jak polietylen (PE) lub polipropylen (PP). Te materiały charakteryzują się doskonałą odpornością na korozję, co jest kluczowe w systemach, w których krążą płyny o różnej chemicznej charakterystyce. Ponadto, rury z tworzywa sztucznego mają dobre właściwości izolacyjne, co pozwala na efektywne wykorzystanie energii z pompy ciepła. Elastyczność tych materiałów ułatwia montaż, pozwalając na łatwe formowanie i dostosowanie do najbardziej wymagających układów. W praktyce, stosując rury z tworzywa sztucznego, można zredukować ilość połączeń i złączy, co z kolei zmniejsza ryzyko wycieków. Standardy branżowe, takie jak PN-EN 1264 dotyczące ogrzewania podłogowego, podkreślają zalety używania tych materiałów i ich zgodność z nowoczesnymi technologiami ogrzewania. Dodatkowo, ich lekkość w porównaniu do rur stalowych czy żeliwnych sprawia, że instalacja staje się prostsza i szybsza, co jest nieocenione w praktyce budowlanej.

Pytanie 29

Kiedy powinien być przeprowadzany przegląd techniczny kotła na biomasę?

A. przynajmniej dwa razy w roku
B. jeden raz w roku, najlepiej po zakończeniu sezonu grzewczego
C. raz w roku, najlepiej przed rozpoczęciem sezonu grzewczego
D. co dwa lata
Myślę, że pomysł, żeby przeglądać kocioł na biomasę co najmniej dwa razy w roku, może wydawać się sensowny, ale tak naprawdę nie jest to wymagane. Częste sprawdzanie może tylko zwiększyć wydatki i zakłócić pracę kotła. Z kolei pomysł, żeby robić przegląd co dwa lata, to chyba nie najlepszy wybór. Takie rzadsze kontrole nie dają pewności, że sprzęt działa jak trzeba, co może prowadzić do poważnych problemów. Kotły na biomasę potrzebują regularnej konserwacji, żeby działały efektywnie i bezpiecznie, a roczny przegląd przed sezonem grzewczym to chyba najlepsza opcja. Często producenci kotłów też polecają roczne przeglądy w instrukcjach, bo zależy im na bezpieczeństwie użytkowników oraz ochronie środowiska. Niestety, wielu ludzi lekceważy te przeglądy, co skutkuje nagromadzeniem usterek i wyższymi kosztami, a to nie jest dobre. Odpowiednia konserwacja grzewczych urządzeń to klucz do ich długotrwałej wydajności.

Pytanie 30

Przetwornica napięcia to urządzenie stosowane w systemach fotowoltaicznych do

A. ochrony akumulatora przed przeładowaniem
B. przemiany napięcia zmiennego w napięcie stałe
C. zapewnienia stabilnego napięcia w akumulatorze
D. przemiany napięcia stałego w napięcie zmienne
Przetwornica napięcia odgrywa kluczową rolę w instalacjach fotowoltaicznych, gdzie napięcie stałe (DC) generowane przez panele słoneczne musi być przekształcone na napięcie zmienne (AC), aby mogło być efektywnie wykorzystywane w domowych systemach elektrycznych i integrowane z siecią energetyczną. Ta konwersja jest niezbędna, ponieważ większość urządzeń domowych, takich jak lodówki, telewizory czy oświetlenie, działa na napięciu zmiennym. Przykłady zastosowania przetwornic obejmują systemy off-grid, gdzie energia słoneczna jest przechowywana w akumulatorach i wykorzystywana w sposób ciągły. Zgodnie z najlepszymi praktykami, przetwornice powinny być odpowiednio dobrane do mocy generowanej przez panele oraz wymaganej mocy obciążenia, aby zapewnić efektywność energetyczną i długowieczność systemu. Standardy międzynarodowe, takie jak IEC 62109, regulują bezpieczeństwo i wydajność przetwornic, co jest istotne dla zapewnienia niezawodności systemów OZE.

Pytanie 31

Kolektory słoneczne umieszczone na gruncie, w przeciwieństwie do tych instalowanych na dachach, są bardziej podatne na

A. większe pokrycie śniegiem.
B. większe straty ciepła.
C. częstsze uszkodzenia mechaniczne.
D. gorsze warunki nasłonecznienia.
Kolektory słoneczne montowane na powierzchni terenu rzeczywiście są bardziej narażone na uszkodzenia mechaniczne. W porównaniu z instalacjami dachowymi, które korzystają z naturalnej ochrony budynku, kolektory na gruncie mogą być narażone na różnorodne zagrożenia. Przykładowo, mogą być łatwym celem dla zwierząt, które mogą próbować zniszczyć instalację w poszukiwaniu schronienia lub pożywienia. Dodatkowo, na poziomie terenu, kolektory mogą być uszkodzone przez ruch ludzi czy pojazdów, zwłaszcza w miejscach publicznych. Ekstremalne warunki atmosferyczne, takie jak silny wiatr i grad, również mogą prowadzić do uszkodzeń, ponieważ kolektory są bezpośrednio wystawione na te czynniki. W praktyce, aby zminimalizować ryzyko uszkodzeń mechanicznych, zaleca się stosowanie osłon lub lokalizowanie kolektorów w obszarach, gdzie są mniej narażone na takie zagrożenia. Dobre praktyki instalacyjne uwzględniają również analizę lokalnych warunków środowiskowych, co może pomóc w wyborze odpowiedniej lokalizacji dla kolektorów.

Pytanie 32

Co oznacza symbol PE-HD na rurze?

A. polietylen o wysokiej gęstości
B. polietylen o średniej gęstości
C. polietylen o niskiej gęstości
D. homopolimer polietylenu
Oznaczenie PE-HD odnosi się do polietylenu wysokiej gęstości, który jest jednym z najczęściej stosowanych tworzyw sztucznych w branży budowlanej oraz przemysłowej. PE-HD charakteryzuje się wysoką odpornością na chemikalia, działanie wysokich temperatur oraz promieniowanie UV, co czyni go idealnym materiałem do produkcji rur wykorzystywanych w różnych systemach wodociągowych, kanalizacyjnych oraz gazowych. Dzięki swojej gęstości i strukturze, PE-HD ma również dobrą odporność na uszkodzenia mechaniczne, co jest szczególnie ważne w przypadku instalacji w trudnych warunkach. Standardy ISO 4427 oraz EN 12201 określają wymagania techniczne dla rur PE-HD, co zapewnia ich wysoką jakość oraz niezawodność. W praktyce, rury oznaczone jako PE-HD są powszechnie stosowane do transportu wody pitnej oraz ścieków, a także w systemach irygacyjnych. Warto również zauważyć, że proces recyklingu PE-HD jest stosunkowo prosty, co przyczynia się do zrównoważonego rozwoju i ochrony środowiska.

Pytanie 33

Jaką liczbę łopat wirnika należy uznać za optymalną w turbinie wiatrowej?

A. 7
B. 2
C. 5
D. 3
Optymalna liczba łopat wirnika w turbinie wiatrowej wynosi zazwyczaj trzy. Taka konfiguracja zapewnia równowagę pomiędzy efektywnością generowania energii a stabilnością działania. Trzy łopaty pozwalają na optymalne wykorzystanie siły wiatru, co zwiększa wydajność turbiny. Dzięki równomiernemu rozkładowi masy, wirnik z trzema łopatami działa płynniej, co minimalizuje drgania i hałas. Dodatkowo, turbiny z trzema łopatami są bardziej odporne na silne wiatry, co zwiększa ich trwałość i niezawodność. Przykłady zastosowania takich turbin można znaleźć w wielu nowoczesnych farmach wiatrowych, gdzie ich konstrukcja została dostosowana do standardów IEC 61400, które określają wymagania dotyczące projektowania i testowania turbin wiatrowych. Trzy łopaty zapewniają również lepszą możliwość dostosowania do różnych warunków wiatrowych, co jest kluczowe w kontekście zmieniającego się klimatu i lokalnych uwarunkowań geograficznych.

Pytanie 34

Oblicz objętość pomieszczenia o wymiarach 4 x 3 m oraz wysokości 3 m?

A. 24 m3
B. 15 m3
C. 48 m3
D. 36 m3
Aby obliczyć kubaturę pomieszczenia, należy zastosować wzór: V = długość x szerokość x wysokość. W przypadku podanych wymiarów, mamy długość 4 m, szerokość 3 m oraz wysokość 3 m. Po podstawieniu wartości do wzoru otrzymujemy V = 4 m x 3 m x 3 m = 36 m³. Ta obliczona kubatura jest kluczowa w wielu zastosowaniach, takich jak określenie objętości powietrza w pomieszczeniu, co wpływa na systemy wentylacyjne i klimatyzacyjne. W praktyce, znajomość kubatury pomieszczeń jest również istotna podczas planowania ogrzewania, ponieważ obliczenia te mogą pomóc w określeniu mocy grzewczej potrzebnej do utrzymania komfortowej temperatury. Dodatkowo, w budownictwie, odpowiednie obliczenie kubatury ma znaczenie dla uzyskania niezbędnych pozwoleń oraz spełnienia norm budowlanych, co jest istotne dla bezpieczeństwa i efektywności energetycznej budynku.

Pytanie 35

Przechowując rury preizolowane na otwartej przestrzeni w różnych warunkach pogodowych, nie ma potrzeby chronienia ich przed

A. ekstremalnymi temperaturami
B. wiatrem
C. wilgocią
D. promieniowaniem UV
Wybór opcji 'wiatrem' jako odpowiedzi prawidłowej opiera się na zasadach dotyczących składowania rur preizolowanych. Rury te, ze względu na swoje właściwości izolacyjne oraz konstrukcyjne, nie są wrażliwe na działanie wiatru, ponieważ ich mechaniczne właściwości nie ulegają osłabieniu pod wpływem siły wiatru. W praktyce, rury preizolowane mogą być składowane na zewnątrz w różnych warunkach atmosferycznych, a ich struktura nie wymaga specjalnych zabezpieczeń przed wiatrem. Zgodnie z normą PN-EN 253, która dotyczy rur preizolowanych, kluczowe jest jedynie zabezpieczenie przed czynnikami, które mogą wpływać na ich izolacyjność, jak wilgoć, ekstremalne temperatury oraz promieniowanie UV. W przypadku wilgoci, niewłaściwe składowanie może prowadzić do kondensacji, co z kolei wpływa na właściwości izolacyjne, a ekstremalne temperatury mogą powodować odkształcenia materiałów. Rury powinny być również chronione przed promieniowaniem UV, które może degradacja materiału polimerowego. Dlatego odpowiednie środki zabezpieczające powinny być stosowane w odniesieniu do wilgoci, ekstremalnych temperatur oraz promieniowania UV, a nie w odniesieniu do wiatru.

Pytanie 36

W celu przygotowania materiałowego zestawienia do montażu instalacji solarnej, tworzy się

A. obmiar robót
B. zapytanie ofertowe
C. przedmiar robót
D. harmonogram wykonywanych prac
Odpowiedź "przedmiar robót" jest prawidłowa, ponieważ przedmiar robót to dokument, który szczegółowo określa rodzaje i ilości materiałów, które będą potrzebne do realizacji projektu, w tym montażu instalacji solarnej. W kontekście instalacji solarnej, przedmiar robót powinien zawierać elementy takie jak panele słoneczne, inwertery, okablowanie oraz inne komponenty niezbędne do prawidłowego działania systemu. Sporządzenie przedmiaru robót jest kluczowe dla dokładnego oszacowania kosztów projektu oraz dla zapewnienia, że wszystkie niezbędne materiały zostaną uwzględnione i dostarczone na czas. Standardy branżowe, takie jak normy ISO dotyczące zarządzania projektami, podkreślają znaczenie rzetelnego przedmiaru jako podstawy do efektywnego planowania i kontroli wydatków. W praktyce, dobrze opracowany przedmiar robót umożliwia również lepsze porównanie ofert od różnych dostawców oraz ułatwia komunikację z wykonawcami, co przyczynia się do bardziej płynnego przebiegu realizacji projektu.

Pytanie 37

Aby zamontować kocioł na biomasę inwestor zebrał 4 oferty i dokonał ich zestawienia. Wskaż ofertę, w której sprawność kotła jest największa.

Nominalna moc kotła kWSprawność cieplna %Zużycie paliwa kg/hMaksymalna temperatura robocza °CPojemność wodna kotła dm³
A.2387,7-88,12,685100
B.2381,8-83,52,685100
C.25902,495190
D.3090-922,48570
A. A.
B. D.
C. B.
D. C.
Wybór czegoś innego niż oferta D może wynikać z typowych błędów, jakie często popełniamy przy ocenie ofert. Często ludzie skupiają się na jednym parametrze, np. cena czy wygląd, a nie biorą pod uwagę najważniejszych wskaźników, jak sprawność kotła. W przypadku ofert A, B i C, ich sprawności są znacznie niższe, co przekłada się na więcej emitowanych spalin i większe zużycie paliwa. No i wybierając kotły z niższą sprawnością, można się narazić na wyższe koszty eksploatacji. Kiedy ludzie analizują dane techniczne, czasem źle je interpretują. Producent podaje sprawność, ale najczęściej dotyczy to optymalnych warunków pracy, a te nie zawsze są osiągalne w rzeczywistości. Oferta C, mimo że podaje 90% sprawności, nie jest lepsza od D pod względem efektywności, co ważne, jeśli myślimy o długoterminowych oszczędnościach. Pamiętajmy też o ekologii; wybierając kotły z niższą sprawnością, wpływamy negatywnie na jakość powietrza, a to już jest sprzeczne z normami ochrony środowiska.

Pytanie 38

Które z wymienionych typów ogniw fotowoltaicznych wyróżnia się najwyższą sprawnością?

A. Polikrystaliczne
B. Monokrystaliczne
C. a-Si
D. CdTe
Ogniwa CdTe, a-Si oraz polikrystaliczne, choć również znajdują zastosowanie w systemach fotowoltaicznych, nie osiągają tak wysokiej sprawności jak ogniwa monokrystaliczne. Ogniwa CdTe, oparte na tellurku kadmu, są popularne w instalacjach dużej skali, ale ich sprawność rzadko przekracza 12-14%. Wynika to z ich technologii produkcji, która, mimo że jest kosztowo efektywna, ogranicza ich wydajność. Amorficzny krzem (a-Si) charakteryzuje się dużą elastycznością i niską wagą, co czyni go odpowiednim do zastosowań w trudnych warunkach, jednak jego sprawność nie przekracza zazwyczaj 10%. Polikrystaliczne ogniwa, które są zbudowane z wielu kryształów, oferują sprawność na poziomie 15-20%, co czyni je mniej efektywnymi w porównaniu do monokrystalicznych. Często mylnie uważa się, że niższa cena ogniw polikrystalicznych rekompensuje ich niższą wydajność, co jest błędnym założeniem. Wybór konkretnego typu ogniwa powinien opierać się na analizie efektywności energetycznej oraz kosztów przez cały okres eksploatacji. Zrozumienie różnic pomiędzy typami ogniw jest kluczowe dla podejmowania świadomych decyzji inwestycyjnych w sektorze energii odnawialnej.

Pytanie 39

Z kolektora słonecznego o powierzchni 3 m² oraz efektywności przekazywania energii cieplnej wynoszącej 80% przy nasłonecznieniu 1000 W/m² można uzyskać moc równą

A. 2400 W
B. 800 W
C. 1600 W
D. 3000 W
Kolektor słoneczny o powierzchni 3 m² i sprawności 80% przy nasłonecznieniu 1000 W/m² rzeczywiście może generować moc 2400 W. Aby zrozumieć ten proces, warto przyjrzeć się, jak obliczamy moc, którą kolektor jest w stanie przekazać. Mnożymy powierzchnię kolektora przez natężenie promieniowania słonecznego oraz sprawność urządzenia. W tym przypadku obliczenia wyglądają następująco: 3 m² x 1000 W/m² = 3000 W, a następnie uwzględniając sprawność 80%, otrzymujemy 3000 W x 0,8 = 2400 W. W kontekście praktycznym, moc uzyskana z kolektora słonecznego może być wykorzystywana do podgrzewania wody w systemach grzewczych, co jest ekologicznym rozwiązaniem redukującym emisję CO2. Warto również zauważyć, że efektywność kolektorów słonecznych została potwierdzona w standardach branżowych, takich jak Solar Keymark, co dodatkowo podkreśla ich wiarygodność i wydajność w zastosowaniach komercyjnych i przemysłowych.

Pytanie 40

Jakie jest zadanie krat wlotowych w hydroelektrowni?

A. zabezpieczenie turbiny przed zanieczyszczeniami
B. zatrzymanie przepływu wody do turbiny
C. kontrola strumienia wody wpływającego do turbiny
D. obniżenie poziomu wody w turbinie
Kraty wlotowe w elektrowni wodnej pełnią kluczową rolę w ochronie turbiny przed zanieczyszczeniami, które mogą wpływać na jej wydajność i trwałość. Te urządzenia filtracyjne zatrzymują różnego rodzaju zanieczyszczenia, takie jak piasek, liście czy inne obiekty, które mogłyby uszkodzić wirnik turbiny lub obniżyć jej efektywność. Ochrona turbiny przed zanieczyszczeniami jest zgodna z najlepszymi praktykami w branży hydroenergetycznej, gdzie dbałość o komponenty systemów energetycznych ma kluczowe znaczenie dla ich długowieczności. W praktyce, skuteczna filtracja wlotowa pozwala na minimalizację kosztów konserwacji oraz zwiększenie niezawodności operacyjnej elektrowni. Warto zauważyć, że stosowanie krat wlotowych jest standardem w projektowaniu elektrowni, co jest podkreślone w dokumentach technicznych i normach branżowych, takich jak normy ISO dotyczące efektywności energetycznej oraz ochrony środowiska. Dzięki odpowiednim kratkom wlotowym, elektrownie są w stanie działać z maksymalną wydajnością, co przekłada się na wyższą produkcję energii oraz mniejsze straty eksploatacyjne.