Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 3 sierpnia 2025 17:16
  • Data zakończenia: 3 sierpnia 2025 17:31

Egzamin zdany!

Wynik: 23/40 punktów (57,5%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakiego rodzaju cieczy hydraulicznej powinno się użyć w urządzeniu hydrauliczny, które może być narażone na kontakt z otwartym ogniem?

A. HTG - produkowana na bazie olejów roślinnych, rozpuszczalna w wodzie
B. HT - ester syntetyczny, najlepiej ulegający biodegradacji
C. HV - dla urządzeń funkcjonujących w zmiennych warunkach temperatury
D. HFA - emulsja olejowo-wodna, mająca w składzie ponad 80 % wody
Wybór odpowiedzi związanych z HT, HTG oraz HV nie odpowiada wymaganiom stawianym cieczy hydraulicznej pracującej w warunkach zagrożenia pożarowego. Ciekłe estry, takie jak HT, mimo że są bardziej ekologiczne i biodegradowalne, nie zapewniają wystarczającej ochrony przed ryzykiem pożaru, gdyż ich palność, choć obniżona, wciąż może stwarzać zagrożenie. Cieczy HTG, wytwarzane na bazie olejów roślinnych, oferują pewne korzyści ekologiczne, jednak ich nierozpuszczalność w wodzie sprawia, że w przypadku wycieku nie można liczyć na efekt chłodzący, co w warunkach kontaktu z ogniem jest niezwykle istotne. Z kolei ciecz HV, przeznaczona dla urządzeń pracujących w zróżnicowanych temperaturach, nie spełnia wymagań dla środowisk, gdzie kluczowe jest zachowanie niskiej palności. W kontekście bezpieczeństwa pożarowego, wybór niewłaściwej cieczy hydraulicznej może prowadzić do niebezpiecznych sytuacji, w których wycieki mogą zapalić się, narażając na straty materialne oraz zdrowotne. Zatem kluczowym błędem w myśleniu jest brak uwzględnienia aspektów związanych z palnością i bezpieczeństwem cieczy hydraulicznych w kontekście pracy w warunkach zagrożenia pożarowego.

Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

Jakie urządzenie pośredniczy w interakcji między urządzeniem mechatronicznym a jego użytkownikiem?

A. Sterownik PLC
B. Panel operatorski HMI
C. Przekaźnik programowalny
D. Robot przemysłowy
Sterownik PLC, robot przemysłowy i przekaźnik programowalny to urządzenia, które pełnią różne funkcje w systemach automatyki, ale nie służą jako bezpośredni interfejs komunikacyjny pomiędzy operatorem a maszyną. Sterownik PLC (Programmable Logic Controller) jest używany do automatyzacji procesów i zarządzania urządzeniami w zakładach produkcyjnych. Jego główną rolą jest monitorowanie sygnałów wejściowych z czujników i wykonywanie odpowiednich działań na wyjściu, jednak nie jest zaprojektowany do bezpośredniego interakcji z operatorem. Robot przemysłowy z kolei wykonuje precyzyjnie zaprogramowane ruchy i operacje, ale również nie komunikuje się bezpośrednio z użytkownikiem w sposób interaktywny. Przekaźnik programowalny działa na zasadzie przełączania sygnałów elektrycznych, co czyni go przydatnym w prostych aplikacjach, ale również nie spełnia roli interfejsu operatora. Zrozumienie tych różnic jest kluczowe dla prawidłowego projektowania i implementacji systemów mechatronicznych. Często mylnie zakłada się, że te urządzenia mogą pełnić rolę interfejsu, co prowadzi do nieefektywności w obsłudze i nadzoru nad procesami technologicznymi. Odpowiednie zastosowanie technologii HMI pozwala na lepsze zarządzanie systemami oraz poprawę wydajności pracy operatorów poprzez dostarczenie im narzędzi do efektywnej interakcji z maszynami.

Pytanie 5

W jakim urządzeniu dochodzi do przemiany energii promieniowania słonecznego na energię elektryczną?

A. Fotoogniwie
B. Fotorezystorze
C. Fotodiodzie
D. Fototranzystorze
Fotodioda, fototranzystor i fotorezystor to urządzenia, które również reagują na światło, ale ich głównym celem nie jest przekształcanie energii promieniowania słonecznego na energię elektryczną w taki sposób, jak ma to miejsce w fotoogniwie. Fotodioda działa na zasadzie generacji prądu w odpowiedzi na naświetlenie, jednak jej zastosowanie jest głównie w detekcji światła i w systemach komunikacji optycznej, a nie w produkcji energii elektrycznej. W przypadku fototranzystora, który jest bardziej zaawansowaną formą fotodiody, także możemy mówić o detekcji światła, ale jego działanie polega na wzmocnieniu sygnału, co czyni go mniej odpowiednim do konwersji energii słonecznej na prąd. Fotorezystor, z drugiej strony, jest elementem, którego oporność zmienia się w zależności od natężenia światła, a jego zastosowanie koncentruje się na detekcji zmian oświetlenia, takich jak w automatycznych systemach oświetleniowych. Warto zauważyć, że mylenie tych technologii z fotoogniwem może wynikać z niepełnego zrozumienia podstawowych różnic w ich funkcjonalności i zastosowaniu. Każde z wymienionych urządzeń ma swoje unikalne zastosowania, ale w kontekście przekształcania energii promieniowania słonecznego w energię elektryczną, to tylko fotoogniwa spełniają tę funkcję.

Pytanie 6

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 7

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 8

Jakie urządzenie stosowane do zasilania silnika indukcyjnego potrafi regulować częstotliwość wyjściową?

A. Chopper
B. Stycznik
C. Prostownik
D. Falownik
Prostownik, jako urządzenie, konwertuje napięcie przemienne na napięcie stałe, co czyni go idealnym do aplikacji wymagających stabilizacji napięcia. Jednak prostownik nie ma zdolności regulacji częstotliwości, co czyni go nieodpowiednim wyborem do zasilania silników indukcyjnych, które wymagają zmiennej częstotliwości do płynnej regulacji prędkości obrotowej. Stycznik, z drugiej strony, jest elementem elektromechanicznym, który służy do załączania lub wyłączania obwodów elektrycznych, ale nie ma możliwości zmiany parametrów napięcia czy częstotliwości, co ogranicza jego zastosowanie w kontekście regulacji silników. Chopper, będący urządzeniem do regulacji napięcia w aplikacjach zasilania, również nie oferuje możliwości modyfikacji częstotliwości wyjściowej. Typowe błędy myślowe, które mogą prowadzić do tych niepoprawnych wniosków, obejmują mylenie funkcji prostowników i falowników, a także niedocenianie znaczenia regulacji częstotliwości w kontekście wydajności silników elektrycznych. W rzeczywistości, aby efektywnie sterować silnikami indukcyjnymi, kluczowe jest zastosowanie falowników, które są zaprojektowane z myślą o tej konkretnej funkcji.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

Podczas pracy z urządzeniem hydraulicznym pracownik odniósł ranę w udo na skutek wysunięcia siłownika i krwawi. Osoba ratująca, przystępując do udzielania pierwszej pomocy, powinna najpierw

A. umieścić poszkodowanego w bezpiecznej pozycji bocznej
B. sprawdzić, czy w okolicy są osoby posiadające kwalifikacje w reanimacji
C. założyć poszkodowanemu opatrunek uciskowy poniżej rany
D. założyć poszkodowanemu opatrunek uciskowy na ranę
Założenie opatrunku uciskowego na ranę jest kluczowym krokiem w przypadku, gdy poszkodowany krwawi. Opatrunek uciskowy ma na celu zatamowanie krwawienia poprzez zastosowanie odpowiedniego nacisku na ranę. W sytuacji, gdy krwotok jest znaczny, a czas reakcji jest ograniczony, natychmiastowe podjęcie działań może uratować życie. Dobrym przykładem zastosowania tej techniki jest stosowanie opatrunków hemostatycznych, które są zaprojektowane specjalnie do zatrzymywania krwawienia. W przypadku urazów spowodowanych np. wypadkami w pracy, pierwsza pomoc powinna być udzielana zgodnie z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie szybkiego i skutecznego działania. Należy pamiętać, że nawet przy udzielaniu pierwszej pomocy, ważne jest, aby wezwać odpowiednie służby ratunkowe, aby zapewnić dalszą pomoc medyczną. Znajomość zasad udzielania pierwszej pomocy oraz umiejętność szybkiego reagowania na sytuacje kryzysowe są niezbędne w każdym miejscu pracy, a odpowiednie szkolenia mogą znacząco zwiększyć bezpieczeństwo w środowisku zawodowym.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jakie są właściwe etapy postępowania podczas rozbierania urządzenia mechatronicznego?

A. Zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających
B. Odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających, wyciągnięcie elementów ustalających
C. Odłączenie instalacji zewnętrznych, wyciągnięcie elementów ustalających, zdjęcie osłon oraz pokryw, wyciągnięcie elementów zabezpieczających
D. Wyciągnięcie elementów zabezpieczających, odłączenie instalacji zewnętrznych, zdjęcie osłon oraz pokryw, wyciągnięcie elementów ustalających
Prawidłowa kolejność czynności podczas demontażu urządzenia mechatronicznego zaczyna się od odłączenia instalacji zewnętrznych, co jest kluczowe dla zapewnienia bezpieczeństwa i ochrony przed przypadkowymi uszkodzeniami. Po odłączeniu zasilania i innych systemów zewnętrznych, można przejść do zdjęcia osłon i pokryw, które mają na celu ochronę wewnętrznych komponentów przed zanieczyszczeniami oraz uszkodzeniami mechanicznymi. Następnie, wyciągnięcie elementów zabezpieczających jest niezbędne, by umożliwić dostęp do kluczowych części mechanizmu. Na końcu usuwa się elementy ustalające, co pozwala na swobodne wyjęcie podzespołów. Ta sekwencja jest zgodna z najlepszymi praktykami w zakresie BHP i technik demontażu, które podkreślają znaczenie bezpieczeństwa w miejscu pracy oraz minimalizację ryzyka uszkodzenia sprzętu. Przykładem zastosowania tej metody może być demontaż silnika elektrycznego, gdzie każdy z tych kroków ma kluczowe znaczenie dla skuteczności i bezpieczeństwa operacji.

Pytanie 13

Rysunek przedstawia symbol graficzny bramki

Ilustracja do pytania
A. Ex-OR
B. NOR
C. Ex-NOR
D. NAND
Symbol graficzny przedstawia bramkę Ex-OR (Exclusive OR), która jest kluczowym elementem w projektowaniu układów cyfrowych. Działa na zasadzie, że na wyjściu generuje stan wysoki (1) tylko wtedy, gdy na wejściach są różne stany – jednocześnie 1 i 0. To odróżnia ją od standardowej bramki OR, która daje wynik wysoki, gdy przynajmniej jedno z wejść ma stan wysoki. W praktyce, bramki Ex-OR są wykorzystywane w takich zastosowaniach jak sumatory w obliczeniach arytmetycznych, a także w układach logicznych, które wymagają porównywania stanów. Przykładem może być kontrola błędów w transmisji danych, gdzie bramka Ex-OR jest używana do generowania bitów parzystości. W kontekście standardów, stosowanie bramek Ex-OR jest zgodne z praktykami projektowania układów cyfrowych, które kładą nacisk na efektywność i minimalizację błędów. Zrozumienie działania tej bramki jest fundamentem dla dalszych zagadnień związanych z układami cyfrowymi i logiką.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 16

Która z poniższych metod nie jest wykorzystywana do trwałego łączenia elementów z tworzyw sztucznych?

A. Zgrzewania
B. Spawania
C. Klejenia
D. Zaginania
Zaginanie to proces, który polega na deformacji materiału w celu nadania mu odpowiedniego kształtu, ale nie łączy trwale dwóch lub więcej elementów. W kontekście tworzyw sztucznych, zaginanie może być wykorzystane do formowania jednego elementu, na przykład przy produkcji obudów czy detali dekoracyjnych. Nie wymaga to jednak żadnych dodatkowych technik łączenia, co czyni je nieodpowiednim wyborem do trwałego łączenia. Techniki takie jak zgrzewanie, spawanie czy klejenie są stosowane do tworzenia trwałych połączeń, natomiast zaginanie jest bardziej procesem wytwórczym. Zgodnie z normami branżowymi, takimi jak ISO 527 dotyczące właściwości mechanicznych tworzyw sztucznych, zginanie może być stosowane do testowania elastyczności materiałów, ale nie do ich łączenia. Przykładem zastosowania zaginania może być produkcja elementów meblowych, gdzie tworzywa sztuczne są formowane w odpowiednie kształty bez potrzeby ich łączenia z innymi elementami. Dlatego zaginanie jest techniką, która doskonale sprawdza się w kształtowaniu detali, ale nie w ich trwałym łączeniu.

Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jakiego urządzenia należy użyć do określenia natężenia prądu płynącego przez urządzenie bez konieczności przerywania obwodu?

A. Multimetra analogowego
B. Multimetra uniwersalnego
C. Amperomierza cęgowego
D. Amperomierza tablicowego
Amperomierz cęgowy jest narzędziem, które pozwala na pomiar natężenia prądu w obwodzie bez konieczności przerywania go. Działa na zasadzie pomiaru pola magnetycznego generowanego przez przepływający prąd. W praktyce oznacza to, że wystarczy nałożyć cęgowy uchwyt na przewód, przez który płynie prąd, aby uzyskać dokładny odczyt. Takie podejście jest niezwykle przydatne w sytuacjach, gdy wyłączenie obwodu mogłoby spowodować zakłócenia w pracy urządzeń, na przykład w przypadku urządzeń przemysłowych czy elektronicznych. Amperomierze cęgowe są często stosowane w branży elektroenergetycznej oraz przy konserwacji i naprawach sprzętu elektrycznego. Warto również zauważyć, że nowoczesne modele amperomierzy cęgowych mogą mieć dodatkowe funkcje, takie jak pomiar napięcia, rezystancji czy częstotliwości, co czyni je wielofunkcyjnymi narzędziami, które spełniają standardy branżowe dotyczące bezpieczeństwa i wydajności.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Elektryczne żelazko wyposażone w termoregulator bimetaliczny stanowi przykład

A. układu regulacji automatycznej
B. układu sterowania programowalnego
C. sterowania sekwencyjnego
D. sterowania w układzie otwartym
Układ sterowania programowalnego, sterowanie sekwencyjne oraz sterowanie w układzie otwartym to koncepcje, które różnią się zasadniczo od regulacji automatycznej. Układ sterowania programowalnego odnosi się do systemów, które działają na podstawie zaprogramowanych instrukcji, co oznacza, że ich działanie jest z góry ustalone i nie zmienia się w odpowiedzi na zmiany w otoczeniu. Przykłady obejmują roboty przemysłowe, które wykonują zaprogramowane zadania, ale nie dostosowują się do zmieniających się warunków. Kolejną błędną koncepcją jest sterowanie sekwencyjne, które polega na realizacji zadań w określonej kolejności, bez możliwości automatycznego dostosowywania parametrów w odpowiedzi na rzeczywiste potrzeby. W kontekście żelazka elektrycznego, takie podejście nie byłoby efektywne, ponieważ wymagałoby manualnej interwencji użytkownika przy każdej zmianie rodzaju tkaniny. Z kolei sterowanie w układzie otwartym nie ma mechanizmu sprzężenia zwrotnego; oznacza to, że urządzenie nie reaguje na rzeczywiste zmiany parametrów, co w przypadku żelazka mogłoby prowadzić do zbyt wysokiej lub zbyt niskiej temperatury, a tym samym do uszkodzenia tkanin. Wszystkie te podejścia są niewłaściwe w kontekście regulacji temperatury, gdzie wymagana jest automatyczna adaptacja do warunków pracy, co jest integralną częścią działania żelazka elektrycznego z termoregulatorem bimetalicznym.

Pytanie 23

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Jaką sprężarkę klasyfikuje się jako sprężarkę wyporową?

A. Turbosprężarkę
B. Sprężarkę osiową
C. Sprężarkę śrubową
D. Sprężarkę promieniową
Sprężarki promieniowe, osiowe i turbosprężarki to przykłady sprężarek dynamicznych, które działają na zupełnie innych zasadach niż sprężarki wyporowe. Sprężarki promieniowe wprowadzają powietrze w kierunku promieniowym, a energia kinetyczna jest przekazywana na sprężany gaz, co prowadzi do wzrostu ciśnienia. Natomiast sprężarki osiowe wykorzystują wirnik, który poprzez obrót generuje siłę odśrodkową, sprężając gaz wzdłuż osi wirnika. Turbosprężarki z kolei, będące specyficznym rodzajem sprężarek, są często używane w silnikach spalinowych do zwiększenia mocy, jednak ich zasada działania opiera się głównie na odzyskiwaniu energii ze spalin. Typowe błędy myślowe, które prowadzą do mylenia tych typów sprężarek ze sprężarkami wyporowymi, obejmują nieznajomość podstawowych różnic w mechanizmach działania. Warto podkreślić, że sprężarki wyporowe są bardziej efektywne w aplikacjach wymagających stałego ciśnienia, podczas gdy sprężarki dynamiczne są bardziej odpowiednie w zastosowaniach, gdzie kluczowe znaczenie ma wysoka prędkość i wydajność przepływu, jak na przykład w systemach wentylacyjnych czy chłodziarek. Zrozumienie tych różnic jest istotne dla prawidłowego doboru sprężarki do określonej aplikacji przemysłowej.

Pytanie 27

Który z wymienionych parametrów nie odnosi się do frezarki CNC?

A. Gramatura wtrysku.
B. Liczba wrzecion.
C. Najwyższa prędkość ruchu dla poszczególnych osi.
D. Dokładność pozycjonowania.
Gramatura wtrysku to parametr odnoszący się głównie do procesów wtrysku tworzyw sztucznych, a nie frezowania. Frezarki numeryczne są urządzeniami przeznaczonymi do obróbki skrawaniem, a ich kluczowe parametry dotyczą precyzji i wydajności obróbczej. Liczba wrzecion, powtarzalność pozycjonowania oraz maksymalna prędkość ruchu dla poszczególnych osi to istotne wskaźniki efektywności operacyjnej frezarek. Na przykład, liczba wrzecion określa, ile narzędzi może być jednocześnie używanych do obróbki, co wpływa na zwiększenie wydajności procesu. Powtarzalność pozycjonowania definiuje zdolność maszyny do powtarzania tych samych operacji z dokładnością, co jest kluczowe w produkcji seryjnej. Maksymalna prędkość ruchu osi wpływa na szybkość realizacji zleceń, co ma bezpośrednie przełożenie na czas produkcji oraz koszty. Zrozumienie tych parametrów jest niezbędne dla efektywnego planowania procesów produkcyjnych oraz optymalizacji pracy frezarek numerycznych.

Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

Jaką średnicę powinien mieć otwór, aby pomieścić nit o średnicy 2 mm?

A. 2,1 mm
B. 1,9 mm
C. 2,0 mm
D. 2,3 mm
Wybór średnicy 2,0 mm sugeruje, że otwór powinien być identyczny z średnicą nitu, co jest niewłaściwe w kontekście praktycznego montażu. Taki otwór może być zbyt ciasny, co prowadzi do problemów przy wprowadzaniu nitu. W przypadku nitu o średnicy 2 mm, otwór musi być większy, aby zapewnić odpowiedni luz, który jest niezbędny do komfortowego montażu. Ponadto, wybór 1,9 mm również jest błędny, ponieważ zmniejsza luz, co znów może prowadzić do trudności w wprowadzeniu nitu oraz zwiększa ryzyko uszkodzenia materiału. Z kolei 2,3 mm, czyli zbyt duży otwór, może skutkować niewłaściwym osadzeniem nitu, co z kolei wpływa na trwałość i funkcjonalność połączenia. Wszelkie nieprawidłowe podejścia w kontekście średnicy otworu mogą prowadzić do niskiej jakości połączeń, co w konsekwencji zagraża integralności konstrukcji. W inżynierii montażowej stosuje się standardowe tolerancje, które pomagają w określeniu odpowiednich wymiarów otworów. Niezrozumienie tych zasad może prowadzić do nieodwracalnych błędów w produkcie końcowym czy w zakresie bezpieczeństwa. Dlatego tak istotne jest, aby przy projektowaniu połączeń zwracać uwagę na standardy dotyczące luzu, co jest kluczowe w każdym procesie technologii montażu.

Pytanie 30

Jakim urządzeniem można zmierzyć siłę nacisku tłoka w siłowniku hydraulicznym?

A. termistorem
B. tensometrem
C. pirometrem
D. hallotronem
Pomiar siły nacisku tłoka siłownika hydraulicznego za pomocą termistora, hallotronu czy pirometru jest nieadekwatny, gdyż każde z tych urządzeń ma inne zastosowanie i nie jest przeznaczone do pomiaru siły mechanicznej. Termistor jest czujnikiem temperatury, który wykorzystuje zależność oporu elektrycznego od temperatury. W przypadku siłowników hydraulicznych istotne jest mierzenie siły, a nie temperatury, więc nie może on być użyty do tego celu. Hallotron, z drugiej strony, jest czujnikiem pola magnetycznego, który działa na zasadzie pomiaru siły magnetycznej, co nie ma związku z mechanicznymi siłami działającymi w tłoku siłownika. Nieodpowiednie jest także użycie pirometru, który służy do pomiaru temperatury obiektów na podstawie promieniowania podczerwonego. Właściwe podejście do pomiaru siły w hydraulice wymaga zastosowania specjalistycznych czujników, takich jak tensometry, które są zaprojektowane do tego celu. Użycie niewłaściwych narzędzi pomiarowych może prowadzić do błędnych wyników i wpływać negatywnie na efektywność działania systemu hydraulicznego, co jest sprzeczne z najlepszymi praktykami inżynieryjnymi. Kluczowe jest, aby stosować odpowiednie metody pomiarowe w kontekście danego zastosowania, co jest fundamentem dobrego projektowania systemów i urządzeń.

Pytanie 31

Jakie są kolejne kroki w przygotowaniu sprężonego powietrza do systemu pneumatycznego?

A. nasycenie mgłą olejową (jeśli jest to potrzebne), osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie
B. osuszenie oraz filtrowanie powietrza, obniżenie ciśnienia do wartości wymaganej w systemie, nasycenie mgłą olejową
C. nasycenie mgłą olejową, obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza
D. obniżenie ciśnienia do wartości wymaganej w systemie, osuszenie oraz filtrowanie powietrza, nasycenie mgłą olejową
Twoja odpowiedź dotycząca osuszania i filtrowania powietrza, redukcji ciśnienia i nasycenia mgłą olejową jest jak najbardziej na miejscu. To ważne etapy, które pozwalają na przygotowanie sprężonego powietrza, które będzie dobrze działać w systemach pneumatycznych. Osuchanie i filtrowanie powietrza są kluczowe, żeby pozbyć się wszelkich zanieczyszczeń, bo woda, olej czy jakieś drobinki mogą zepsuć sprzęt i sprawić, że cała maszyna przestanie działać, a to już nie jest przyjemne. Po osuszeniu powietrze musi być odpowiednio nasycone olejem, żeby elementy ruchome się nie zacierały, co znacznie wydłuża ich żywotność. Dobrym przykładem jest produkcja, gdzie jakość sprężonego powietrza naprawdę może zmienić efektywność pracy.

Pytanie 32

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 33

W normalnych warunkach działania wyłącznika różnicowoprądowego wektorowa suma natężeń prądów sinusoidalnych przepływających w przewodach fazowych oraz neutralnym wynosi

A. 2 A
B. 0 A
C. 3 A
D. 1 A
W przypadku wyłącznika różnicowoprądowego, jego podstawowym zadaniem jest monitorowanie różnicy natężeń prądu między przewodami fazowymi a przewodem neutralnym. W warunkach normalnej pracy, gdy urządzenie działa prawidłowo, suma wektorowa natężeń prądów płynących przez przewody powinna wynosić 0 A. Oznacza to, że prąd wpływający do obwodu przez przewód fazowy jest równy prądowi wypływającemu przez przewód neutralny. Przykładowo, jeśli w obwodzie mamy trzy przewody fazowe, każdy z określonym natężeniem prądu, to ich suma wektorowa, uwzględniająca odpowiednie fazy, powinna wskazywać na zerowe natężenie w przewodzie neutralnym. Zgodnie z normą PN-IEC 61008, wyłączniki różnicowoprądowe są projektowane w taki sposób, aby skutecznie wykrywać różnice prądów oraz zapewniać bezpieczeństwo użytkowników poprzez automatyczne odłączenie obwodu w przypadku wykrycia upływu prądu. Taka funkcjonalność jest kluczowa w instalacjach elektrycznych, gdzie bezpieczeństwo i ochrona przed porażeniem prądem są priorytetami.

Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 36

Parametry zamieszczone w tabeli charakteryzują

ParametrWartość
Wydajność21 l/min
Prędkość obrotowa1500 obr./min
objętość geometryczna14 cm³/obr.
zakres obrotówod 800 do 3500 obr/min
ciśnienie nominalne25 MPa
ciśnienie maksymalne26 MPa
A. silnik hydrauliczny.
B. pompę hydrauliczną.
C. kompresor olejowy.
D. silnik elektryczny.
Parametry przedstawione w tabeli jednoznacznie wskazują na pompę hydrauliczną. Wydajność 21 l/min, prędkość obrotowa 1500 obr./min oraz zakres obrotów od 800 do 3500 obr./min są typowe dla tego typu urządzeń. Pompy hydrauliczne są kluczowymi elementami w układach hydraulicznych, wykorzystywanych w różnych aplikacjach przemysłowych, takich jak maszyny budowlane, rolnicze oraz w systemach automatyki. Objętość geometryczna 14 cm3/obr. i ciśnienie nominalne 25 MPa są również charakterystyczne dla hydrauliki. Dobre praktyki obejmują regularne monitorowanie tych parametrów, co pozwala na optymalizację wydajności i zapobieganie awariom. W przypadku pomp hydraulicznych, ich dobór do konkretnego zastosowania jest kluczowy, aby zapewnić efektywność systemu oraz jego niezawodność. Warto również zwrócić uwagę na normy branżowe, które regulują parametry działania pomp hydraulicznych, co potwierdza znaczenie tych wartości w prawidłowym ich funkcjonowaniu.

Pytanie 37

Jaki typ smaru powinno się zastosować do smarowania elementów gumowych?

A. Grafitowy
B. Molibdenowy
C. Silikonowy
D. Litowy
Smar silikonowy jest idealnym wyborem do smarowania gumowych elementów ze względu na swoje właściwości chemiczne i fizyczne. Silikon wykazuje doskonałą adhezję do powierzchni gumowych, co przekłada się na długotrwałą ochronę przed zużyciem. Jest odporny na wysokie temperatury, co czyni go odpowiednim do zastosowań, w których gumowe elementy mogą być narażone na działanie ciepła. Ponadto, smar silikonowy nie powoduje degradacji materiałów elastomerowych, w przeciwieństwie do innych smarów, które mogą prowadzić do pęknięć lub twardnienia gumy. Przykłady zastosowania smaru silikonowego obejmują uszczelki w oknach, elementy zawieszenia w samochodach, a także w urządzeniach gospodarstwa domowego, takich jak pralki czy zmywarki. Stosując smar silikonowy, można znacznie wydłużyć żywotność gumowych części oraz poprawić ich działanie poprzez redukcję tarcia. Zgodnie z dobrymi praktykami branżowymi, smar silikonowy powinien być stosowany w każdej aplikacji wymagającej smarowania elementów gumowych, aby zapewnić ich optymalne funkcjonowanie.

Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.