Wykonano dwa niejednakowo dokładne pomiary długości odcinka L1 i L2. Każdemu z pomiarów przypisana została inna waga p:
L1 = 20,000 m, p1 = 3 L2 = 20,050 m, p2 = 2
Najbardziej prawdopodobną długością tego odcinka jest długość
Odpowiedzi
Informacja zwrotna
Odpowiedź 20,020 m jest poprawna, ponieważ przy jej obliczaniu uwzględniono wagi przypisane do pomiarów L1 i L2. W przypadku pomiarów o różnych dokładnościach, najpowszechniej stosuje się ważoną średnią arytmetyczną, która pozwala na uzyskanie bardziej precyzyjnego wyniku. Stosując wzór: L = (p1 * L1 + p2 * L2) / (p1 + p2), mamy: L = (3 * 20,000 + 2 * 20,050) / (3 + 2) = (60,000 + 40,100) / 5 = 20,020 m. W praktycznych zastosowaniach, takich jak inżynieria, budownictwo czy geodezja, przydatna jest umiejętność analizy danych pomiarowych z uwzględnieniem ich dokładności. Stosowanie ważonej średniej pozwala na lepsze modelowanie rzeczywistości, co jest kluczowe w procesach decyzyjnych oraz przy ocenie ryzyka. Dobre praktyki w tej dziedzinie zalecają zawsze analizować i uwzględniać niepewności pomiarowe, co przekłada się na wyższą jakość podejmowanych decyzji.
Analizując podane odpowiedzi, warto zwrócić uwagę na przyczyny, dla których inne opcje są niepoprawne. Odpowiedzi 20,010 m oraz 20,000 m ignorują wagi przypisane do pomiarów L1 i L2, co jest kluczowe w procesie wyznaczania najbardziej prawdopodobnej wartości. Przyjmowanie wartości średnich bez uwzględnienia dokładności pomiarów prowadzi do zniekształcenia wyników. Na przykład, 20,000 m to wartość jednego z pomiarów, ale nie bierze pod uwagę, że pomiar L2, mimo że mniej dokładny, jest bliższy rzeczywistej długości odcinka. Z kolei 20,010 m jest bliskie wartości średniej, jednak nie uwzględnia proporcji wag, co jeszcze bardziej oddala tę wartość od dokładnej odpowiedzi. Użytkownicy często popełniają błąd polegający na traktowaniu wszystkich pomiarów jako równoważnych, co jest błędne w kontekście metod statystycznych. Ważenie pomiarów jest fundamentalne dla uzyskania rzetelnych wyników, a w praktyce powinno się zawsze dążyć do uwzględnienia różnorodności w dokładności pomiarów. Ostatecznie, błędne podejścia do analizy danych pomiarowych mogą prowadzić do podejmowania decyzji, które opierają się na nieprzemyślanych lub zniekształconych informacjach, co w kontekście inżynieryjnym może mieć poważne skutki. Dlatego tak istotne jest, aby przy wyznaczaniu wartości średnich stosować metody, które uwzględniają wagi oraz dokładność pomiarów.