Obliczanie przyspieszenia normalnego pojazdu poruszającego się po torze kołowym można wykonać, stosując wzór a_n = v^2 / r, gdzie a_n to przyspieszenie normalne, v to prędkość, a r to promień toru. W tym przypadku mamy prędkość v = 20 m/s oraz promień r = 200 m. Podstawiając te wartości do wzoru, otrzymujemy a_n = (20 m/s)^2 / 200 m = 400 m^2/s^2 / 200 m = 2 m/s². Przyspieszenie normalne jest kluczowe w kontekście ruchu po okręgu, ponieważ odpowiada za zmianę kierunku prędkości pojazdu, co jest istotne w wielu dziedzinach, takich jak inżynieria mechaniczna, motoryzacja czy sport. Praktyczne zastosowanie tej wiedzy można zaobserwować na przykład w projektowaniu zakrętów na drogach lub torach wyścigowych, gdzie odpowiednie obliczenia przyspieszeń są niezbędne do zapewnienia bezpieczeństwa i wydajności pojazdów.
Odpowiedzi, które nie są poprawne, często wynikają z nieporozumienia dotyczącego zasad dynamiki ruchu. Na przykład, odpowiedź 4 m/s² może być mylnie interpretowana jako przyspieszenie, które wydaje się bardziej odpowiednie dla sytuacji, gdy siły działające na pojazd są wyraźnie większe niż te rzeczywiście występujące. Jednak przyspieszenie normalne jest związane z prędkością i promieniem toru, a nie z siłą bezpośrednio. Odpowiedź 1 m/s² może sugerować, że pojazd porusza się w sposób, który nie wymaga dużego przyspieszenia, co jest mylne, gdyż w przypadku ruchu po okręgu nawet przy stałej prędkości konieczne jest ciągłe dostosowywanie kierunku, co wiąże się z większym przyspieszeniem. Odpowiedź 8 m/s² może być wynikiem niewłaściwego zrozumienia pojęcia przyspieszenia normalnego i jego matematycznego wyrażenia. Często występuje błąd w obliczeniach polegający na nieprawidłowym stosowaniu wzorów lub pomijaniu jednostek. W celu uniknięcia takich pułapek, kluczowe jest zrozumienie, że przyspieszenie normalne nie odnosi się do wypadkowego przyspieszenia linearnego, lecz jest to specyficzny przypadek związany z ruchem po okręgu, gdzie zmiana kierunku prędkości wymaga działania na pojazd sił, które mogą być niejasne dla osób nieprzeszkolonych w zakresie fizyki ruchu. Dlatego tak ważne jest, aby dokładnie znać i stosować poprawne wzory oraz zasady fizyczne w analizie ruchu pojazdów.