Poprawna odpowiedź to B, ponieważ na schemacie wyraźnie przedstawiono zasilanie sterownika napięciem 12 V DC, co jest standardowym napięciem zasilającym dla wielu systemów sterujących, zapewniającym stabilne działanie elektroniki. Wysoka niezawodność układów zasilania opartych na 12 V DC jest zgodna z normami branżowymi, co czyni je powszechnie stosowanymi w aplikacjach automatyki. Z kolei napięcie 30 V DC zasilające silnik jest również typowe dla zastosowań w przemyśle, gdzie silniki wymagają wyższych napięć, aby uzyskać odpowiednią moc. Zastosowanie odpowiednich napięć zasilających jest kluczowe dla efektywności energetycznej i zabezpieczeń w systemach napędowych. Przykładem zastosowania tej wiedzy jest dobór odpowiednich zasilaczy oraz komponentów, które muszą być kompatybilne z wymaganiami napięciowymi, aby uniknąć uszkodzeń sprzętu. Wiedza o napięciach zasilających jest fundamentalna w projektowaniu układów elektronicznych oraz w pracy z systemami automatyki przemysłowej, co podkreśla istotność tej tematyki.
Analizując błędne odpowiedzi, można zauważyć powszechny problem z błędną interpretacją schematów oraz specyfikacji zasilania. Przy wyborze napięcia dla sterownika i silnika, kluczowe jest prawidłowe rozpoznanie oznaczeń na schematach, co jest fundamentalnym aspektem pracy z elektroniką. Niestety, nierzadko dochodzi do mylnych wniosków dotyczących napięć, co może prowadzić do niewłaściwego doboru komponentów. Przykładowo, napięcia zbyt wysokie lub zbyt niskie w stosunku do specyfikacji komponentów mogą skutkować ich uszkodzeniem lub nieefektywnym działaniem. Zastosowania w automatyce wymagają precyzyjnego zrozumienia zasad zasilania, a każde niewłaściwe napięcie może prowadzić do nieprzewidzianych awarii. Typowym błędem jest niezrozumienie, że różne części systemu mogą wymagać różnych napięć, co było istotnym czynnikiem w tej konkretnej analizie. Niezbędna jest znajomość standardów, takich jak IEC 61000, które określają wymagania dotyczące zasilania i ochrony urządzeń elektronicznych. Kluczowym elementem skutecznej pracy z elektroniką jest umiejętność czytania schematów i dostosowywania komponentów zgodnie z ich specyfikacjami, co jest niezbędne dla bezpieczeństwa i efektywności operacyjnej systemów automatyki.