Ta odpowiedź jest prawidłowa, ponieważ tabliczka znamionowa przedstawiona na rysunku zawiera informacje charakterystyczne dla silników indukcyjnych. Silniki te są szeroko stosowane w przemyśle, szczególnie w zastosowaniach wymagających dużej mocy, jak w napędach maszyn przemysłowych. Wartości, takie jak moc 20 kW, napięcie 400 V oraz prąd 42,5 A, są typowe dla silników indukcyjnych, które często działają w zakresie napięć trójfazowych. Częstotliwość 50 Hz wskazuje na standardowy zasilacz w Europie, co dodatkowo potwierdza zastosowanie silnika w warunkach przemysłowych. Współczynnik mocy (cos φ) oraz liczba biegunów (P) są również kluczowymi parametrami, które wpływają na efektywność energetyczną silnika. W praktyce, silniki indukcyjne znajdują zastosowanie w pompach, wentylatorach, kompresorach oraz wielu innych urządzeniach, gdzie wymagana jest wysoka niezawodność i trwałość. Wiedza o charakterystyce tabliczki znamionowej jest kluczowa dla inżynierów i techników, by prawidłowo dobierać silniki do konkretnych zastosowań.
Wybranie innej opcji niż silnik indukcyjny wskazuje na pewne nieporozumienia dotyczące charakterystyki silników elektrycznych. Na przykład, prądnica prądu stałego, choć również ma tabliczkę znamionową, ma inną strukturę wewnętrzną i charakterystyki pracy. W przeciwieństwie do silnika indukcyjnego, prąd nic nie mówi o czasie pracy, a także nie zawiera współczynnika mocy ani liczby biegunów w taki sposób, jak w silniku indukcyjnym. Z kolei silniki synchroniczne działają na zasadzie synchronizacji z częstotliwością sieci, co również nie jest typowe dla silników indukcyjnych. Zawierają one inne parametry, takie jak prędkość synchroniczna, które nie pojawiają się w przypadku silników indukcyjnych. Co więcej, przetwornice jednotwornikowe, które są stosowane do konwersji napięcia i nie są silnikami, również nie pasują do opisanego kontekstu. Kluczowe jest zrozumienie, że silniki indukcyjne są jednymi z najpowszechniejszych urządzeń w przemyśle, a ich tabliczki znamionowe zawierają specyficzne dane, które pozwalają na efektywne zastosowanie i dobór odpowiednich silników w praktyce. Dlatego wiedza na temat różnic między tymi typami maszyn elektrycznych jest niezbędna dla każdego, kto pracuje w obszarze automatyki i energetyki.