Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik mechatronik
  • Kwalifikacja: ELM.03 - Montaż, uruchamianie i konserwacja urządzeń i systemów mechatronicznych
  • Data rozpoczęcia: 10 czerwca 2025 03:46
  • Data zakończenia: 10 czerwca 2025 04:06

Egzamin zdany!

Wynik: 32/40 punktów (80,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Jakie pomiary należy przeprowadzić, aby zidentyfikować awarię w urządzeniu mechatronicznym, które uruchamia wyłącznik różnicowoprądowy w chwili włączenia zasilania?

A. Poboru prądu
B. Rezystancji izolacji
C. Ciągłości uzwojeń
D. Napięcia zasilania
Wykonanie pomiaru napięcia zasilania, choć istotne w diagnozowaniu układów elektrycznych, nie jest wystarczające do zlokalizowania przyczyny zadziałania wyłącznika różnicowoprądowego. Pomiar ten dostarcza informacji o dostępności zasilania, ale nie daje odpowiedzi na pytanie o stan izolacji czy potencjalne upływy prądu. Z kolei pomiar ciągłości uzwojeń jest również niewłaściwą metodą w kontekście zadziałania wyłącznika różnicowoprądowego, ponieważ dotyczy on jedynie sprawdzenia, czy obwody są zamknięte i nie ma przerw w przewodach. Ciągłość uzwojeń nie dostarcza informacji o stanie izolacji, przez co nie pozwala na identyfikację problemu związanego z upływem prądu. Pomiar poboru prądu, chociaż może wskazywać na obciążenie układu, nie identyfikuje problemów izolacyjnych, które są kluczowe dla działania wyłączników różnicowoprądowych. Często w praktyce technicy mogą mylić zjawisko zadziałania wyłącznika z innymi problemami, co prowadzi do nieefektywnych działań naprawczych. Dlatego tak ważne jest, aby zrozumieć, że diagnostyka oparta na rezystancji izolacji jest fundamentem w zapewnieniu bezpieczeństwa i niezawodności systemów mechatronicznych.

Pytanie 7

Używane wielokrotnie w ciągu jednej godziny przyrządy oraz narzędzia powinny być zgodnie z zasadami ergonomii w

A. widoczności.
B. zasięgu ręki.
C. zapleczu zakładu pracy.
D. pomieszczeniu, gdzie znajduje się stanowisko pracy.
Odpowiedź "zasięg ręki" jest jak najbardziej trafna. Z mojego doświadczenia wynika, że ergonomiczne zasady są kluczowe w każdej pracy. Ważne jest, żeby narzędzia były pod ręką, bo to naprawdę ułatwia życie. Jak narzędzia są w zasięgu ręki, to unikamy dziwnych ruchów, które mogą prowadzić do kontuzji czy po prostu zmęczenia. Na przykład, w produkcji, gdzie często trzeba sięgać po różne rzeczy, dobrze umiejscowione narzędzia mogą zwiększyć wydajność i bezpieczeństwo. Normy jak ISO 9241 mówią, że trzeba dostosować stanowisko pracy do potrzeb ludzi, co oznacza, że wszystko musi być łatwo dostępne. Dbając o ergonomię, nie tylko pomagamy pracownikom, ale też poprawiamy wyniki firmy.

Pytanie 8

Aby dokręcić śrubowe połączenie z momentem obrotowym 6 Nm, należy użyć klucza

A. nasadkowego
B. imbusowego
C. oczkowego
D. dynamometrycznego
Odpowiedź 'dynamometrycznego' jest prawidłowa, ponieważ klucz dynamometryczny jest narzędziem zaprojektowanym do dokręcania śrub z określonym momentem obrotowym. Umożliwia on precyzyjne ustawienie momentu, co jest kluczowe w wielu zastosowaniach inżynieryjnych, aby uniknąć uszkodzeń komponentów, które mogą wyniknąć z nadmiernego dokręcenia. W praktyce klucze dynamometryczne są szeroko stosowane w motoryzacji, budownictwie oraz przy montażu wszelkiego rodzaju maszyn i urządzeń. Przykładowo, w przypadku dokręcania śrub w silniku samochodowym, zastosowanie momentu 6 Nm może być wymagane do zapewnienia odpowiedniej kompresji oraz szczelności, co jest kluczowe dla prawidłowego działania silnika. Ponadto, stosując klucz dynamometryczny, inżynierowie mogą dostosować moment obrotowy do specyfikacji producenta, co jest zgodne z najlepszymi praktykami inżynieryjnymi i standardami branżowymi. W ten sposób, narzędzie to nie tylko zwiększa efektywność pracy, ale również wpływa na bezpieczeństwo i trwałość montowanych elementów.

Pytanie 9

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 10

System napędowy, który składa się z silnika prądu przemiennego zasilanego przez falownik, działa poprawnie, gdy wzrost częstotliwości napięcia zasilającego prowadzi do

A. obniżenia wartości napięcia zasilania
B. wzrostu obrotów silnika
C. spadku obrotów silnika
D. zmniejszenia reaktancji uzwojeń silnika
Wzrost obrotów silnika w układzie napędowym z silnikiem prądu przemiennego zasilanym z falownika jest zgodny z zasadą, że zmiana częstotliwości napięcia zasilającego wpływa na prędkość obrotową silnika. Zgodnie z równaniem: n = (120 × f) / p, gdzie n to prędkość obrotowa w obrotach na minutę (RPM), f to częstotliwość zasilania, a p to liczba par biegunów silnika, możemy zauważyć, że zgodnie z tym równaniem, zwiększenie częstotliwości f prowadzi do proporcjonalnego wzrostu prędkości obrotowej n. Przykładowo, w zastosowaniach przemysłowych, takich jak napęd wentylatorów, pomp, czy taśmociągów, wykorzystuje się falowniki do precyzyjnego sterowania prędkością obrotową, co pozwala na oszczędność energii oraz zwiększenie efektywności procesów technologicznych. Warto także zwrócić uwagę na standardy takie jak IEC 60034, które definiują normy dla maszyn elektrycznych, w tym dla silników elektrycznych, co jest istotne dla zapewnienia ich prawidłowej pracy i bezpieczeństwa użytkowania. Zrozumienie tej zasady jest kluczowe dla inżynierów automatyków oraz techników zajmujących się systemami napędowymi.

Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 13

W systemie mechatronicznym jako sposób przenoszenia napędu użyto paska zębatego. Podczas rutynowej inspekcji paska należy ocenić jego stopień zużycia oraz

A. bicie osiowe
B. temperaturę
C. naprężenie
D. smarowanie
Naprężenie paska zębatego jest kluczowym czynnikiem wpływającym na jego wydajność oraz trwałość. Utrzymanie odpowiedniego naprężenia jest niezbędne, aby zapewnić właściwe przeniesienie napędu i uniknąć poślizgu paska. Zbyt niskie naprężenie może prowadzić do niewłaściwego zazębienia zębatek, co w efekcie zwiększa ryzyko uszkodzenia paska oraz zębatek. Z kolei zbyt wysokie naprężenie może powodować nadmierne zużycie łożysk oraz innych elementów mechanicznych, co obniża efektywność całego systemu. Przykładowo, w różnych aplikacjach przemysłowych, takich jak maszyny CNC czy taśmociągi, regularne sprawdzanie i dostosowywanie naprężenia paska jest praktyką zgodną z normami ISO 9001, co zapewnia wysoką jakość procesu produkcyjnego. Dobre praktyki inżynieryjne sugerują, aby kontrola naprężenia była przeprowadzana w cyklach serwisowych, a także po każdej wymianie paska. W przypadku wykrycia nieprawidłowości, należy dostosować naprężenie zgodnie z zaleceniami producenta, co zapewnia optymalną wydajność i minimalizuje ryzyko awarii.

Pytanie 14

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 15

Zamiana tranzystorów BC109 na płytce kontrolera PLC może być przeprowadzona poprzez

A. odkręcenie tranzystora
B. wylutowanie tranzystora
C. wyjęcie tranzystora z gniazda
D. wycięcie tranzystora
Wylutowanie tranzystora jest poprawną metodą jego wymiany, ponieważ pozwala na usunięcie uszkodzonego komponentu z płytki PCB w sposób bezpieczny i skuteczny. Proces ten polega na podgrzaniu lutów łączących tranzystor z płytą za pomocą lutownicy lub stacji lutowniczej, co umożliwia jego wydobycie bez uszkodzenia otaczających elementów. Praktyka ta jest zgodna z normami IPC, które definiują wysokie standardy jakości w lutowaniu. W przypadkach, gdy tranzystor jest uszkodzony, wylutowanie jest często jedyną sensowną opcją, aby wymienić go na nowy. Należy również pamiętać o podjęciu odpowiednich środków ostrożności, takich jak użycie odpowiednich narzędzi i okularów ochronnych, aby uniknąć oparzeń czy uszkodzeń komponentów. Ponadto, w przypadku profesjonalnych napraw, warto stosować metody takie jak podgrzewanie całej płytki w piecu lutowniczym, co minimalizuje ryzyko uszkodzenia pozostałych elementów. Oprócz tego, znajomość technik wylutowywania i lutowania jest niezbędna dla osób zajmujących się elektroniką, aby zapewnić trwałość i niezawodność naprawionych urządzeń.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

Jaką metodę pomiaru prędkości obrotowej powinno się zastosować do uwzględnienia ustalonej prędkości małego obiektu, gdy przerwanie procesu produkcyjnego jest niemożliwe, a miejsce pomiaru jest trudno dostępne?

A. Stroboskopową
B. Mechaniczną
C. Elektromagnetyczną
D. Optyczną
Metoda pomiaru prędkości obrotowej za pomocą stroboskopu jest idealnym wyborem w sytuacjach, gdy zachowanie ciągłości procesu produkcji jest kluczowe, a dostęp do miejsca pomiaru jest ograniczony. Stroboskopy działają na zasadzie emitowania błysków światła o określonym interwale czasowym, co pozwala na 'zamrożenie' ruchu obiektu i jego obserwację w czasie rzeczywistym. Taki sposób pomiaru jest nieinwazyjny, co oznacza, że nie zakłóca pracy urządzenia ani nie wymaga jego zatrzymywania. W praktyce stroboskopy wykorzystywane są w różnych gałęziach przemysłu, np. w produkcji, gdzie monitorowanie prędkości obrotowej silników jest kluczowe dla zachowania normatywnych wartości pracy maszyn. Zgodnie z normą ISO 10816, regularne kontrolowanie parametrów pracy maszyn pozwala na identyfikację potencjalnych problemów, co jest niezwykle istotne dla utrzymania efektywności i bezpieczeństwa produkcji. Stroboskopy są zatem uniwersalnym narzędziem, które pozwala na precyzyjny pomiar prędkości obrotowej w trudnych warunkach operacyjnych.

Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 23

Którego urządzenia nie wolno zasilać z źródła napięcia oznaczonego jako 400 V; 3/N/PE ~50 Hz?

A. Silnika trójfazowego klatkowego o napięciu międzyfazowym 400 V skojarzonego w Δ
B. Transformatora trójfazowego o napięciu górnym 400 V i skojarzeniu Dy5
C. Silnika jednofazowego o napięciu 230 V
D. Silnika prądu stałego o napięciu 400 V
Silnik prądu stałego o napięciu 400 V nie może być zasilany ze źródła napięciowego 400 V; 3/N/PE ~50 Hz, ponieważ wymaga on specyficznego napięcia zasilania i charakterystyki napięcia stałego. Silniki prądu stałego są projektowane do pracy przy konkretnym napięciu, a ich zasilanie napięciem przemiennym mogłoby spowodować uszkodzenie mechanizmu wirnika oraz układów regulacji. W praktyce, silniki te są zasilane z falowników lub prostowników, które konwertują napięcie przemienne na stałe. Standardy IEC 60034 dotyczące maszyn elektrycznych oraz normy dotyczące bezpieczeństwa elektrycznego podkreślają konieczność stosowania odpowiednich wartości napięcia, aby zapewnić prawidłową i bezpieczną pracę urządzeń. Należy również pamiętać, że każdy silnik powinien być dopasowany do specyfikacji źródła zasilania, co zapobiega nieprawidłowym działaniom i możliwym uszkodzeniom.

Pytanie 24

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 25

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 26

Instalacje pneumatyczne powinny być montowane pod lekkim kątem wznoszącym, aby ułatwić

A. odfiltrowanie cząstek stałych z powietrza
B. rozchodzenie się mgły olejowej w instalacji
C. spływ kondensatu wodnego do najniższego punktu instalacji
D. rozbijanie kropli oleju strumieniem sprężonego powietrza
Odpowiedź dotycząca spływu kondensatu wodnego do najniższego punktu instalacji jest poprawna, ponieważ odpowiednie nachylenie instalacji pneumatycznych jest kluczowe dla efektywnego zarządzania kondensatem. W instalacjach wykorzystujących sprężone powietrze, wilgoć ma tendencję do skraplania się w chłodniejszych miejscach, co prowadzi do powstawania kondensatu. Utrzymywanie niewielkiego kąta wznoszącego pozwala na naturalny spływ kondensatu do wyznaczonych punktów odprowadzających, co minimalizuje ryzyko osadzania się wody w rurach. Praktyczne przykłady skutecznego zarządzania kondensatem można znaleźć w branżach takich jak przemysł spożywczy czy farmaceutyczny, gdzie odpowiednie odprowadzanie wody jest kluczowe dla zachowania jakości produktu. Normy branżowe, takie jak ISO 8573, podkreślają znaczenie zarządzania jakością powietrza sprężonego, co obejmuje również kontrolę kondensatu, co dodatkowo uzasadnia konieczność stosowania odpowiedniego nachylenia rur.

Pytanie 27

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 28

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

Interfejs komunikacyjny umożliwia połączenie

A. modułu rozszerzającego z grupą siłowników
B. siłownika z programatorem
C. sterownika z programatorem
D. pompy hydraulicznej z silnikiem
Interfejs komunikacyjny jest kluczowym elementem systemów automatyki, który umożliwia wymianę danych pomiędzy sterownikami a programatorami. W kontekście automatyki przemysłowej, sterownik (np. PLC) zarządza procesami, a programator służy do jego programowania oraz monitorowania. Interfejsy komunikacyjne, takie jak Ethernet, Modbus, Profibus czy CAN, pozwalają na efektywne przesyłanie sygnałów i danych, co jest niezbędne do optymalizacji pracy systemów. Przykładowo, w nowoczesnych zakładach produkcyjnych, sprawna komunikacja pomiędzy sterownikami a programatorami jest kluczowa dla zdalnego monitorowania stanu maszyn oraz szybkiego reagowania na ewentualne awarie. Dobre praktyki w zakresie projektowania interfejsów komunikacyjnych obejmują zapewnienie odpowiedniej przepustowości, niezawodności oraz bezpieczeństwa przesyłu danych. Właściwe zrozumienie funkcji i zastosowania interfejsów komunikacyjnych jest niezbędne dla inżynierów zajmujących się automatyką, by tworzyć wydajne i bezpieczne systemy sterowania.

Pytanie 31

Która z wymienionych właściwości komponentów systemów automatyki, stosowanych w liniach produkcyjnych, ma kluczowe znaczenie przy projektowaniu linii do konfekcjonowania rozcieńczalników do farb i lakierów?

A. Niezawodność
B. Efektywność
C. Iskrobezpieczeństwo
D. Bezobsługowość
Wydajność, niezawodność i bezobsługowość to istotne cechy w projektowaniu układów automatyki, ale ich znaczenie w kontekście konfekcjonowania łatwopalnych substancji chemicznych, jakimi są rozcieńczalniki do farb i lakierów, nie może przeważać nad kwestią iskrobezpieczeństwa. Wydajność może przyciągać uwagę jako znaczący wskaźnik efektywności produkcji, jednak w kontekście substancji niebezpiecznych, zbyt duża wydajność może prowadzić do zminimalizowania zabezpieczeń, co stwarza ryzyko. Niezawodność jest istotna dla zapewnienia ciągłości i stabilności produkcji, lecz w przypadku wystąpienia awarii w systemie bez odpowiednich zabezpieczeń przeciwiskrowych, skutki mogą być katastrofalne. Bezobsługowość, mimo że zwiększa wygodę użytkowania i zmniejsza konieczność interwencji ze strony operatorów, może prowadzić do sytuacji, w których nie podejmuje się wystarczających działań kontrolnych dla zapobiegania zagrożeniom. Najistotniejsze w tym przypadku jest zapewnienie podstawowego bezpieczeństwa, które nie jest możliwe bez uwzględnienia normiskrobezpieczeństwa, co powinno być priorytetem w każdym projekcie związanym z automatyzacją procesów przemysłowych w strefach ryzyka. Pomijając zagadnienia iskrobezpieczeństwa, projektant naraża nie tylko zdrowie pracowników, ale również generuje potencjalne straty finansowe związane z przerwami w produkcji oraz odpowiedzialnością prawną.

Pytanie 32

Wskaż na podstawie tabeli wymiary wpustu pryzmatycznego, który można osadzić na wale o średnicy 12 mm.

Wałek – d mmWpust
ponaddob x h mm
682 x 2
8103 x 3
10124 x 4
12175 x 5
17226 x 6
22308 x 7

A. 3 x 3 mm
B. 5 x 5 mm
C. 4 x 4 mm
D. 6 x 6 mm
Odpowiedź 4 x 4 mm jest poprawna, ponieważ zgodnie z danymi przedstawionymi w tabeli, wymiary wpustu pryzmatycznego powinny być dostosowane do średnicy wału. Dla wałów o średnicy od 10 mm do 12 mm, wymagany wpust ma wymiary 4 x 4 mm. Odpowiednie dopasowanie wymiarów wpustu jest kluczowe dla prawidłowego przenoszenia momentu obrotowego oraz zapewnienia stabilności i trwałości mechanizmu. Zastosowanie niewłaściwych wymiarów wpustu może prowadzić do luzów, co z kolei może skutkować uszkodzeniem elementów współpracujących. W praktyce, poprawnie dobrany wpust pryzmatyczny stosuje się w wielu zastosowaniach, w tym w przekładniach, wałach napędowych oraz silnikach, gdzie precyzyjne połączenie elementów jest niezbędne. Dobrą praktyką w inżynierii mechanicznej jest zawsze odniesienie się do standardów przemysłowych, takich jak ISO, które precyzują wymagania dotyczące wymiarów i tolerancji wpustów. Takie podejście zapewnia nie tylko funkcjonalność, ale również bezpieczeństwo i niezawodność konstrukcji.

Pytanie 33

Jaki środek smarny oraz o jakiej konsystencji powinno się wykorzystać w celu zmniejszenia oporu tarcia w siłownikach pneumatycznych?

A. Olej w postaci płynnej
B. Olej w postaci mgły olejowej
C. Półciekły smar plastyczny
D. Smar o stałej konsystencji
W przypadku siłowników pneumatycznych, wybór odpowiedniego środka smarnego jest kluczowy dla zapewnienia ich prawidłowego funkcjonowania. Półciekły smar plastyczny, mimo że może być skuteczny w niektórych zastosowaniach, nie jest najlepszym rozwiązaniem dla systemów pneumatycznych. Tego typu smar nie ma odpowiedniej zdolności do rozprzestrzeniania się w systemie, co prowadzi do nierównomiernego smarowania i zwiększonego tarcia. Z kolei smar o stałej konsystencji również nie zaspokaja potrzeb dynamicznych siłowników, które wymagają smarów o mniejszej lepkości, aby zapewnić swobodny ruch. Olej w postaci płynnej może być lepszą alternatywą, ale nie osiąga efektywności oleju w postaci mgły, który dzięki swojej formie zapewnia doskonałą penetrację i dystrybucję. Wybór niewłaściwego środka smarnego może prowadzić do zwiększonego zużycia elementów, a w konsekwencji do awarii urządzeń. W praktyce, wiele osób może myśleć, że wszelkie oleje są wystarczające do smarowania, co jest błędem. Optymalne smarowanie wymaga nie tylko odpowiedniego środka, ale także zrozumienia mechanizmów tarcia i zużycia, co jest fundamentalne dla prawidłowego funkcjonowania systemów pneumatycznych.

Pytanie 34

Podczas rozbierania łożysk kulkowych powinno się wykorzystać

A. ściągacz
B. klucz dynamometryczny
C. palnik gazowy
D. młotek
Ściągacz to narzędzie specjalnie zaprojektowane do usuwania łożysk, kołków i innych elementów, które mogą być trudne do wyjęcia z powodu ich pasowania lub osadzenia na wrzecionie. W przypadku łożysk kulkowych, ściągacz umożliwia równomierne i bezpieczne usunięcie łożyska z wału lub obudowy bez ryzyka uszkodzenia elementów. Użycie ściągacza minimalizuje ryzyko uszkodzeń powierzchni oraz zmniejsza potrzebę stosowania siły, co wpływa na przedłużenie żywotności zarówno łożyska, jak i wału. W praktyce, podczas serwisowania maszyn lub pojazdów, ściągacz jest często standardowym wyposażeniem warsztatu, zgodnym z branżowymi standardami bezpieczeństwa i efektywności. Zaleca się stosowanie ściągaczy o odpowiednim rozmiarze, co zapewnia precyzyjne dopasowanie do usuwanego elementu. Dodatkowo, warto zapoznać się z procedurami demontażu opisanymi w dokumentacji technicznej producentów, aby zapewnić prawidłowe wykonanie operacji.

Pytanie 35

Jakie środki ochrony osobistej, oprócz kasku ochronnego, powinien założyć pracownik wykonujący konserwację wyłączonego z eksploatacji urządzenia mechatronicznego w hali produkcyjnej?

A. Buty ochronne
B. Odzież ochronna
C. Okulary ochronne
D. Rękawice ochronne
Podczas pracy w hali produkcyjnej, gdzie konserwacja urządzenia mechatronicznego jest przeprowadzana, wybór odpowiednich środków ochrony indywidualnej jest kluczowy dla zapewnienia bezpieczeństwa pracowników. Chociaż odzież ochronna, okulary ochronne i buty ochronne są istotnymi elementami ochrony, to ich rolę w kontekście konserwacji często się bagatelizuje. Odzież ochronna, mimo że chroni przed zabrudzeniami i drobnymi urazami, nie zapewnia takiego poziomu ochrony dłoni, jak rękawice ochronne. Często można spotkać nieprawidłowe przekonanie, że odzież wystarczająco chroni przed kontaktami z ostrymi elementami lub substancjami chemicznymi. Ponadto, okulary ochronne, które mają na celu zabezpieczenie oczu przed odpryskami, nie chronią innych części ciała, takich jak ręce, które są narażone na bezpośrednie uszkodzenia. Buty ochronne, choć są niezbędne dla ochrony stóp przed ciężkimi przedmiotami czy upadkami, nie zmieniają faktu, że to rękawice są najbardziej krytycznym elementem ochrony podczas wykonywania precyzyjnych operacji wymagających dużej zręczności i bliskiego kontaktu z urządzeniem. W rzeczywistości, brak odpowiednich rękawic może prowadzić do poważnych urazów, co podkreśla znaczenie ich użycia w każdym przypadku, gdzie ryzyko uszkodzenia dłoni jest obecne. Dlatego ważne jest, aby nie lekceważyć znaczenia rękawic ochronnych i zrozumieć, że są one nie tylko dodatkiem do stroju roboczego, ale kluczowym elementem systemu zabezpieczeń w środowisku przemysłowym.

Pytanie 36

Układ mechatroniczny jest zbudowany z elementu wykonawczego funkcjonującego w specjalnej osłonie, pod wysokim ciśnieniem roboczym, oraz z komponentów sterujących połączonych wzmocnionymi przewodami pneumatycznymi, które są mocowane za pomocą złączy wtykowych. Osoba obsługująca ten układ może być szczególnie narażona na uderzenie

A. tłoczyskiem siłownika
B. przerwanym przewodem pneumatycznym
C. nieprawidłowo zamocowanym przewodem pneumatycznym
D. siłownikiem
Odpowiedź "źle zamocowanym przewodem pneumatycznym" jest prawidłowa, ponieważ nieprawidłowe mocowanie przewodów pneumatycznych może prowadzić do sytuacji, w której przewód może się odłączyć lub spowodować niekontrolowane ruchy elementów wykonawczych. Zgodnie z normami bezpieczeństwa w przemyśle, takimi jak ISO 4414, kluczowe jest, aby przewody pneumatyczne były prawidłowo zamocowane i zabezpieczone przed wszelkimi uszkodzeniami mechanicznymi. Przykładem może być zastosowanie złączy wtykowych, które powinny być regularnie kontrolowane pod kątem ich stanu technicznego. W praktyce, w systemach mechatronicznych, należy także stosować odpowiednie uchwyty i prowadnice, które minimalizują ryzyko przypadkowego usunięcia przewodu. Niezapewnienie prawidłowego mocowania przewodu pneumatycznego może prowadzić do poważnych wypadków, w tym do uderzeń osób pracujących w pobliżu układów mechatronicznych. Dlatego szkolenia dla personelu eksploatującego takie systemy powinny kłaść duży nacisk na techniki prawidłowego mocowania i kontroli stanu przewodów pneumatycznych.

Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 39

Po programowym aktywowaniu czterech wyjść tranzystorowych w sterowniku PLC, które sterują cewkami elektrozaworów, stwierdzono, że nie wszystkie działają poprawnie. Pomiar napięcia UBE (między bazą a emiterem) tranzystorów na poszczególnych wyjściach wykazał następujące wartości: UBE1 = 1 V, UBE2 = 3 V, UBE3 = 0,7 V, UBE4 = 5 V. Wyniki pomiarów sugerują uszkodzenie

A. tranzystorów na wyjściach 2 i 4
B. wyłącznie tranzystora na wyjściu 4
C. tranzystorów na wyjściach 1 i 3
D. wyłącznie tranzystora na wyjściu 3
Zauważyłeś, że odpowiedź wskazuje na problemy z tranzystorami na wyjściach 2 i 4, co jest całkiem słuszne. Jak spojrzysz na pomiary napięcia UBE, to na wyjściu 4 wynosi ono 5 V. To oznacza, że tranzystor działa na pełnych obrotach, a dla typowych tranzystorów krzemowych powinno być w okolicach 0,7 V. Z kolei, na wyjściu 2 mamy 3 V, co jest zbyt dużo – to znaczy, że coś tu nie gra i tranzystor nie pracuje tak, jak powinien. Jak się takie rzeczy zdarzają, to mogą być problemy z działaniem podłączonych cewków, a to może być kłopotliwe. W przypadku sterowników PLC wszystko musi działać jak w zegarku, żeby system był ok. W sytuacjach awaryjnych, lepiej też regularnie robić testy i konserwację, by wyłapać takie usterki na czas. No i nie zaszkodzi znać standardy, jak IEC 61131, bo mogą pomóc unikać tego typu problemów w przyszłości.

Pytanie 40

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.