Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.02 - Montaż oraz instalowanie układów i urządzeń elektronicznych
  • Data rozpoczęcia: 7 kwietnia 2025 08:09
  • Data zakończenia: 7 kwietnia 2025 08:39

Egzamin niezdany

Wynik: 19/40 punktów (47,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 2

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 3

Co obejmuje schemat montażu?

A. metodę łączenia komponentów w urządzeniu oraz ich kolejność montażu
B. rysunki złożeniowe całości produktów z określonymi warunkami technicznymi
C. schematy blokowe ilustrujące współdziałanie części
D. spis elementów zamiennych oraz zasady użytkowania urządzenia
Odpowiedź wskazująca na sposób połączenia elementów w urządzeniu oraz kolejność ich montażu jest prawidłowa, ponieważ schemat montażowy ma kluczowe znaczenie dla poprawnego złożenia i działania urządzenia. W praktyce, schemat montażowy przedstawia szczegółowe instrukcje, które są niezbędne dla techników i inżynierów zajmujących się budową maszyn lub skomplikowanych systemów. Przykładem może być montaż zespołów w silnikach, gdzie precyzyjne ukazanie kolejności oraz sposobu połączenia elementów, takich jak wały, korbowody czy tłoki, jest niezbędne do zapewnienia ich prawidłowego działania oraz długowieczności. Standardy branżowe, takie jak ISO 9001, kładą duży nacisk na dokumentację procesów oraz formy wizualne, które wspierają zrozumienie i wykonywanie zadań montażowych. Zastosowanie schematu montażowego pozwala także na szybką identyfikację błędów oraz ułatwia szkolenie nowych pracowników w zakresie technik montażowych.

Pytanie 4

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 5

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 6

Który układ scalony, po podłączeniu odpowiednich elementów zewnętrznych, staje się generatorem impulsów prostokątnych?

A. SN74151
B. Z80
C. NE555
D. UL7805
Wybór UL7805 jako generatora impulsów prostokątnych jest błędny, ponieważ ten układ scalony jest regulatorem napięcia, a nie generatorem sygnałów. UL7805 ma na celu stabilizację napięcia zasilającego, co czyni go fundamentalnym elementem w zarządzaniu zasilaniem w obwodach elektronicznych, ale nie jest zaprojektowany do generowania impulsów. Z kolei SN74151 to multiplekser/demultiplekser, który służy do przekazywania sygnałów, ale nie generuje impulsów prostokątnych. Jest to element bardziej przeznaczony do selekcji sygnałów niż ich produkcji. Co więcej, Z80 to mikroprocesor, który wykonuje instrukcje zapisane w programie, ale nie działa jako generator impulsów. Często mylone są funkcjonalności różnych układów, co prowadzi do nieporozumień. Kluczowe jest zrozumienie, że każdy układ scalony ma swoje specyficzne przeznaczenie, a ich zastosowanie powinno być dostosowane do wymagań projektowych. Typowe błędy myślowe polegają na braku analizy specyfikacji technicznych układów scalonych i ich rzeczywistych zastosowań, co może prowadzić do nieefektywnego projektowania obwodów oraz wyboru niewłaściwych komponentów, co z kolei wpływa na niezawodność i wydajność całego systemu elektronicznego.

Pytanie 7

Czas potrzebny na naprawę magnetowidu to 0,5 godziny. Koszt materiałów wynosi 80 zł, a stawka godzinowa technika to 40 zł. Jaki będzie całkowity koszt naprawy, uwzględniając 22% podatek VAT?

A. 117,60 zł
B. 122,00 zł
C. 146,40 zł
D. 100,00 zł
Jak się liczy koszt naprawy magnetowidu? To całkiem proste. Musisz dodać do siebie koszty materiałów oraz opłatę dla serwisanta, a potem jeszcze doliczyć VAT. Mamy tu 80 zł na materiały i 40 zł za godzinę pracy serwisanta. Naprawa trwa pół godziny, więc serwisant dostanie 20 zł (40 zł za godzinę razy 0,5 godziny). Jak to zsumujemy, to mamy 80 zł plus 20 zł, co daje nam 100 zł przed podatkiem. Następnie bierzemy 22% z tej kwoty na VAT, co wychodzi 22 zł. Więc rzeczywisty koszt naprawy, po doliczeniu VAT-u, wyniesie 122 zł. Dobrze jest pamiętać, żeby zawsze uwzględniać wszystkie koszty, w tym podatki. To bardzo ważne, żeby mieć jasny obraz tego, ile to wszystko kosztuje w serwisie.

Pytanie 8

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 9

Podczas pomiaru ciągłości obwodów za pomocą multimetru z brzęczykiem, dochodzi do aktywacji sygnału dźwiękowego. Co to oznacza?

A. badany obwód jest ciągły
B. w badanym obwodzie znajduje się złącze półprzewodnikowe
C. w badanym obwodzie znajduje się źródło prądowe
D. badany obwód jest uszkodzony
Pomiar ciągłości obwodu za pomocą multimetru z brzęczykiem jest kluczowym narzędziem w diagnostyce elektrycznej. Kiedy multimetr sygnalizuje dźwiękiem, oznacza to, że badany obwód jest ciągły, co potwierdza, że nie ma przerwy w połączeniu elektrycznym. Dźwięk wskazuje na to, że przepływ prądu jest możliwy, a zatem obwód jest sprawny. W praktyce, takie pomiary są niezbędne w instalacjach elektrycznych, gdyż pozwalają szybko zidentyfikować uszkodzenia kabli, złe połączenia lub problemy z urządzeniami. Na przykład, podczas sprawdzania instalacji w budynku, jeśli multimetr nie wydaje dźwięku, wskazuje to na problem, który wymaga dalszej diagnostyki. W branży elektrycznej standardy takie jak IEC 61010-1 definiują wymagania dotyczące bezpieczeństwa sprzętu pomiarowego, co podkreśla znaczenie stosowania odpowiednich narzędzi do analizy ciągłości obwodów. Dlatego umiejętność interpretacji wyników pomiarów jest niezbędna dla każdego elektryka.

Pytanie 10

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 11

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 12

Jak zwiększenie rezystancji obciążenia w układach wzmacniaczy rezystancyjnych wpłynie na

A. wzrost mocy wyjściowej
B. zmniejszenie pasma przenoszenia
C. podwyższenie napięcia zasilającego
D. spadek mocy wyjściowej
Zrozumienie wpływu rezystancji obciążenia na wzmacniacze rezystancyjne jest kluczowe w projektowaniu i użytkowaniu systemów elektronicznych. Wybór odpowiedzi sugerujących, że zwiększenie rezystancji obciążenia prowadzi do zwiększenia napięcia zasilania lub wzrostu mocy wyjściowej, opiera się na nieprawidłowym rozumieniu podstawowych zasad działania wzmacniaczy. W rzeczywistości, napięcie zasilania jest na stałym poziomie, które jest dostosowane do wymagań układu. Zwiększenie rezystancji obciążenia nie wpływa na to napięcie; zamiast tego, zmiana ta wpływa na ilość prądu, który może przepływać przez obciążenie. Wzrost rezystancji oznacza spadek prądu, co w konsekwencji prowadzi do zmniejszenia mocy wyjściowej, a nie jej wzrostu. Odpowiedzi sugerujące zmniejszenie pasma przenoszenia także są mylące. Pasmo przenoszenia wzmacniacza zależy głównie od jego topologii oraz użytych komponentów, a nie tylko od rezystancji obciążenia. W praktyce, niewłaściwe połączenie lub zła wartość rezystancji obciążenia mogą prowadzić do nieoptymalnego działania urządzenia, co jest często wynikiem braku zrozumienia związku pomiędzy rezystancją a parametrami wyjściowymi wzmacniacza. Takie błędne myślenie może prowadzić do nieefektywnego projektowania systemów audio czy pomiarowych, co podkreśla znaczenie znajomości teorii w praktyce inżynieryjnej.

Pytanie 13

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 14

Co oznacza funkcja ARW w radiowych odbiornikach?

A. odbiór komunikatów drogowych
B. odbiór tekstowych komunikatów
C. automatyczną regulację wzmocnienia
D. wybieranie oraz wyszukiwanie rodzaju programu
Funkcja automatycznej regulacji wzmocnienia (ARW) w odbiornikach radiowych jest kluczowym elementem zapewniającym stabilność sygnału audio. ARW automatycznie dostosowuje poziom wzmocnienia sygnału, co jest szczególnie przydatne w sytuacjach, gdy sygnał odbierany jest niestabilny lub zmienia się w czasie, na przykład podczas przejazdu przez obszary o różnej jakości sygnału. Dzięki ARW, użytkownicy mogą cieszyć się lepszą jakością dźwięku, ponieważ funkcja ta minimalizuje szumy i przerywania w audio. W praktyce, ARW znajduje zastosowanie w odbiornikach radiowych, systemach audio w samochodach oraz w urządzeniach przenośnych, gdzie utrzymanie stabilności sygnału ma kluczowe znaczenie. Zgodnie z dobrą praktyką branżową, implementacja ARW w urządzeniach radiowych jest standardem, co przyczynia się do poprawy doświadczeń użytkowników i zwiększa ich zadowolenie z korzystania z technologii radiowej. Przykładem zastosowania ARW może być radioodbiornik, który automatycznie dostosowuje wzmocnienie sygnału w trakcie zmiany położenia użytkownika, utrzymując jednocześnie jakość dźwięku na stałym poziomie.

Pytanie 15

Jaką minimalną przestrzeń należy utrzymać (dla kabla o długości przekraczającej 35 m – nie odnosi się to do ostatnich 15 m) pomiędzy zasilaniem a nieekranowaną skrętką komputerową w konfiguracji bez separatora?

A. 50 mm
B. 100 mm
C. 20 mm
D. 200 mm
Wybór 50 mm, 100 mm lub 20 mm jako minimalnych odległości jest błędny, ponieważ te wartości nie spełniają wymagań dotyczących ochrony przed zakłóceniami elektromagnetycznymi. W praktyce, mniejsze odległości mogą prowadzić do poważnych problemów z jakością sygnału w sieciach komputerowych. Zbyt bliskie umiejscowienie przewodów zasilających i nieekranowanych kabli sieciowych stwarza ryzyko indukcji elektromagnetycznej, co może prowadzić do zakłóceń w przesyłanych danych, zwiększając liczbę błędów transmisji oraz powodując spadki wydajności. Typowym błędem myślowym jest przekonanie, że mniejsze odległości są wystarczające przy odpowiedniej jakości kabli – jednak jakość kabli nie jest jedynym czynnikiem, a wpływ zakłóceń elektromagnetycznych może być znaczny. Warto zaznaczyć, że różne normy branżowe, takie jak ANSI/TIA-568, jasno określają wymagania dotyczące odległości, które należy zachować, aby zapewnić niezawodność instalacji. Dlatego kluczowe jest przestrzeganie tych standardów, aby uniknąć potencjalnych problemów w przyszłości.

Pytanie 16

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 17

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 18

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 19

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 20

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 21

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 22

Który z wymienionych standardów nie opiera się na komunikacji radiowej?

A. IrDA
B. WiFi
C. NFC
D. Bluetooth
WiFi, Bluetooth i NFC to standardy, które bazują na transmisji radiowej, co oznacza, że używają fal radiowych do przesyłania danych. WiFi to technologia, która pozwala na tworzenie sieci lokalnych, umożliwiając dostęp do Internetu i komunikację pomiędzy urządzeniami w zasięgu punktu dostępowego. Działa w różnych pasmach częstotliwości, głównie 2.4 GHz i 5 GHz, co pozwala na osiąganie wysokich prędkości przesyłania danych. Z kolei Bluetooth to technologia, która umożliwia bezprzewodowe połączenie i wymianę informacji pomiędzy urządzeniami na krótkie odległości, typowo do 100 metrów. Jest szeroko stosowana w takich urządzeniach jak słuchawki bezprzewodowe, głośniki oraz różnego rodzaju akcesoria do telefonów. NFC (Near Field Communication) to technologia, która pozwala na wymianę danych na bardzo krótkich odległościach, zwykle do 10 cm, co czyni ją idealną do zastosowań takich jak płatności mobilne czy szybkie parowanie urządzeń. Typowym błędem jest mylenie technologii podczerwieni z radiowymi, co może wynikać z ogólnego pojęcia „bezprzewodowej komunikacji”. Warto rozróżniać te technologie, aby właściwie dobierać je do specyficznych potrzeb użytkowników oraz zrozumieć ich ograniczenia i możliwości. W kontekście praktycznym, zrozumienie różnicy między tymi standardami jest istotne dla projektowania systemów komunikacyjnych i wyrobów elektronicznych, z uwagi na ich charakterystykę, zasięg oraz zastosowanie w różnych scenariuszach użytkowych.

Pytanie 23

Który przewód powinien być użyty do połączenia z siecią elektryczną transformatora znajdującego się w metalowej obudowie systemu alarmowego?

A. YTDY 4 x 0,75 mm2
B. YTDY 2 x 0,75 mm2
C. YDY 2 x 1,5 mm2
D. YDY 3 x 1,5 mm2
Wybór innych przewodów, takich jak YTDY 2 x 0,75 mm2, YDY 2 x 1,5 mm2 lub YTDY 4 x 0,75 mm2, wiąże się z istotnymi problemami technicznymi. Przewód YTDY 2 x 0,75 mm2 jest zbyt cienki i niedostatecznie wydajny do obsługi transformatora, co może prowadzić do przeciążenia i przegrzania, a w konsekwencji do awarii. Przekrój 0,75 mm2 nie spełnia wymagań dotyczących bezpieczeństwa i wydajności w takich instalacjach. Z kolei YDY 2 x 1,5 mm2, mimo że posiada odpowiedni przekrój, ma tylko dwie żyły, co nie jest wystarczające do zasilania transformatora z odpowiednią stabilnością i bezpieczeństwem. Zastosowanie przewodu YTDY 4 x 0,75 mm2, mimo że ma cztery żyły, wciąż pozostaje niewłaściwe ze względu na zbyt mały przekrój żył, co może prowadzić do zbyt wysokiego oporu elektrycznego i strat energii. W przypadku systemów alarmowych, które muszą działać niezawodnie, kluczowe jest stosowanie przewodów, które nie tylko spełniają normy techniczne, ale także zapewniają odpowiednią ochronę i niezawodność w trudnych warunkach operacyjnych. Wszelkie niewłaściwe decyzje dotyczące doboru przewodów mogą prowadzić do awarii systemu, co może zagrażać bezpieczeństwu użytkowników. Dlatego zawsze należy kierować się zasadami dostosowania przekroju przewodu do obciążenia oraz wymaganiami normatywnymi.

Pytanie 24

Kiedy po zainstalowaniu domofonu i podłączeniu zasilania w słuchawce słychać pisk lub rozmowa jest niewyraźna, powinno się

A. zwiększyć napięcie zasilania elektrozaczepu
B. dostosować poziom głośności w zasilaczu
C. zwiększyć poziom głośności w unifonie
D. dostosować napięcie w kasecie rozmownej
Regulacja głośności w zasilaczu to bardzo ważny krok, jeśli chcesz, żeby domofon działał prawidłowo. Zasilacz nie tylko daje prąd do urządzenia, ale też wpływa na to, jak dźwięk brzmi. Jak w słuchawce słychać pisk albo rozmowa jest niewyraźna, to znaczy, że coś nie tak z ustawieniem głośności. W praktyce, zasilacze domofonowe często mają potencjometr, który pozwala na dostosowanie dźwięku. Jak zasilacz jest dobrze ustawiony, to powinno być wszystko ładnie słychać. Warto też pamiętać, żeby czasami sprawdzić te ustawienia, bo to wpływa na komfort użytkowania. Jeśli głośność jest za niska, to rzeczywiście można mieć problemy z odbiorem, a to psuje całą zabawę z domofonu.

Pytanie 25

Jakie czynności należy wykonać, aby udzielić pierwszej pomocy osobie, która została porażona prądem elektrycznym i jest nieprzytomna?

A. Położenie jej na brzuchu i odchylenie głowy w bok
B. Przeniesienie jej na świeżym powietrzu i częściowe rozebranie
C. Położenie jej na plecach i poluzowanie odzieży na szyi
D. Położenie jej w pozycji na boku przy równoczesnym poluzowaniu ubrania
Ułożenie osoby porażonej prądem elektrycznym na brzuchu jest niebezpieczne, ponieważ może prowadzić do zablokowania dróg oddechowych i uniemożliwić swobodne oddychanie. Pozycja na plecach, choć teoretycznie bezpieczna, może również skutkować aspiracją, jeśli poszkodowany wymiotuje. Wyniesienie na świeże powietrze jest zasadne tylko w sytuacji, gdy istnieje ryzyko dalszego porażenia prądem lub innych zagrożeń, jednak nie powinno się tego robić samodzielnie, jeśli nie ma pewności, że nie zagraża to ratownikowi. Częściowe rozebranie osoby może być konieczne w celu schłodzenia jej, ale tylko w odpowiednich warunkach, a nie w przypadku porażenia prądem, gdzie kluczowe jest zapewnienie stabilności i bezpieczeństwa. Pomoc przedlekarska powinna być zawsze zgodna z wytycznymi, które podkreślają znaczenie odpowiednich pozycji oraz metod zapewnienia bezpieczeństwa. Typowym błędem jest zakładanie, że każda sytuacja wymaga natychmiastowego przenoszenia poszkodowanego, co w wielu przypadkach prowadzi do pogorszenia jego stanu zdrowia. Prawidłowe postępowanie w sytuacjach kryzysowych wymaga nie tylko znajomości procedur, ale także umiejętności ich dostosowania do konkretnej sytuacji, co jest niezbędne dla efektywnego udzielania pomocy.

Pytanie 26

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 27

Elementy urządzeń elektronicznych przeznaczone do recyklingu nie powinny być

A. oddzielane od obudowy z materiałów sztucznych
B. składowane w pomieszczeniach bezpośrednio na podłożu
C. demontowane ręcznie, jeśli są wykonane z stali lub aluminium
D. demontowane ręcznie, w przypadku gdy zawierają wysoką ilość metali szlachetnych
Ręczne demontowanie elementów urządzeń elektronicznych w przypadku metali szlachetnych oraz oddzielanie ich od obudowy z tworzyw sztucznych mogą wydawać się praktycznymi rozwiązaniami, jednak wymagają one dużej ostrożności oraz odpowiednich umiejętności. Stal i aluminium, będące popularnymi materiałami w elektronice, są zazwyczaj łatwe do demontażu, ale nie powinny być poddawane tej procedurze bez przestrzegania odpowiednich norm. Demontaż elementów zawierających dużą koncentrację metali szlachetnych wymaga szczególnej uwagi ze względu na ich wartość i potencjalne zagrożenia, które mogą wynikać z niewłaściwej obróbki tych materiałów. Ponadto, oddzielanie części z tworzyw sztucznych od innych materiałów jest kluczowe dla procesu recyklingu, ponieważ różne materiały muszą być przetwarzane w odmienny sposób. Jednakże, niewłaściwe podejście do demontażu, takie jak wykonywanie go w nieprzystosowanych warunkach czy bez środków ochrony osobistej, może prowadzić do wypadków oraz nieefektywnego wykorzystania surowców. Kluczowe jest zrozumienie, że wszystkie te czynności muszą być wykonywane zgodnie z regulacjami prawnymi oraz standardami branżowymi, aby zminimalizować ryzyko i stworzyć efektywny proces recyklingu. Dlatego przed podjęciem jakichkolwiek działań związanych z demontażem urządzeń elektronicznych, warto skonsultować się z odpowiednimi specjalistami lub korzystać z usług certyfikowanych firm zajmujących się recyklingiem.

Pytanie 28

Jaką maksymalną liczbę urządzeń sieciowych da się podłączyć do komputerowej sieci, której maska podsieci wynosi 255.255.255.248?

A. 4 urządzenia
B. 8 urządzeń
C. 6 urządzeń
D. 2 urządzenia
W przypadku adresu maski podsieci 255.255.255.248, pojawiają się powszechne nieporozumienia dotyczące liczby urządzeń, które można podłączyć do danej sieci. Wiele osób może błędnie zakładać, że maska 255.255.255.248, co oznacza 29 bitów, pozwala na podłączenie 8 urządzeń. Takie podejście opiera się na myśleniu, że wszystkie adresy w podsieci są dostępne dla hostów, co jest nieprawidłowe. Ważne jest zrozumienie, że adresy IP w każdej podsieci są zorganizowane w taki sposób, że jeden adres jest zarezerwowany jako adres sieci (identyfikujący samą sieć), a jeden jako adres rozgłoszeniowy (służący do komunikacji z wszystkimi urządzeniami w sieci). Dlatego z 8 potencjalnych adresów IP, tylko 6 może być przypisanych do urządzeń. Takie błędne myślenie może prowadzić do niewłaściwego projektowania sieci, co w praktyce może skutkować problemami z konfiguracją i skalowalnością. Ponadto, zrozumienie efektywnego zarządzania podziałem na podsieci jest kluczowe w infrastrukturze sieciowej, zwłaszcza w większych organizacjach, gdzie optymalne wykorzystanie adresów IP jest kluczowe dla prawidłowego funkcjonowania sieci.

Pytanie 29

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 30

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 31

Zadaniem systemu jest ochrona przed dostępem osób nieupoważnionych do wyznaczonych stref w obiekcie oraz identyfikacja osób wchodzących i przebywających na terenie tych stref?

A. przeciwpożarowego
B. kontroli dostępu
C. monitoringu wizyjnego
D. systemu alarmowego w razie włamania i napadu
System kontroli dostępu to rozwiązanie, które ma na celu ograniczenie dostępu osób niepowołanych do określonych obszarów obiektu. Jego główną funkcją jest identyfikacja osób wchodzących oraz monitorowanie ich obecności w strefach o podwyższonej ochronie. Przykładami zastosowania systemów kontroli dostępu są karty magnetyczne, identyfikatory biometryczne oraz kodowe zamki elektroniczne. Te technologie są zgodne z międzynarodowymi standardami, takimi jak ISO/IEC 27001, które skupiają się na zarządzaniu bezpieczeństwem informacji. Implementacja systemu kontroli dostępu zwiększa bezpieczeństwo obiektu, ograniczając ryzyko kradzieży, sabotażu czy nieautoryzowanego dostępu. W praktyce, systemy te często są zintegrowane z innymi systemami zabezpieczeń, tworząc kompleksowe rozwiązania do zarządzania bezpieczeństwem.

Pytanie 32

Co należy zrobić, gdy pracownik omdleje w źle wentylowanej pracowni elektronicznej?

A. położyć poszkodowanego na plecach, umieścić zimny kompres na czole i monitorować tętno
B. wynieść poszkodowanego na świeże powietrze, położyć na plecach i unieść kończyny w górę
C. ustawić poszkodowanego w pozycji siedzącej i dać mu wodę do picia
D. wynieść poszkodowanego na świeże powietrze i ułożyć go na brzuchu
Odpowiedź sugerująca wyniesienie poszkodowanego na świeże powietrze, ułożenie go na plecach oraz uniesienie kończyn jest poprawna z kilku powodów. Omdlenie często jest wynikiem obniżonego ciśnienia krwi, co prowadzi do niedotlenienia mózgu. Dlatego kluczowe jest jak najszybsze zapewnienie dostępu świeżego powietrza, co zwiększa ilość tlenu dostarczanego do organizmu. Ułożenie poszkodowanego na plecach z uniesionymi nogami wspomaga krążenie krwi i przywraca prawidłowe ciśnienie w organizmie. W praktyce, tak postępowanie jest zgodne z wytycznymi Europejskiej Rady Resuscytacji, które podkreślają znaczenie pozycji leżącej w przypadku omdlenia. Ważne jest również monitorowanie stanu poszkodowanego, aby w razie potrzeby móc szybko zareagować. Przykładem może być sytuacja, w której pracownik w warsztacie elektronicznym doświadcza omdlenia z powodu wysokiej temperatury oraz braku wentylacji. W takich okolicznościach szybkie działanie może uratować życie.

Pytanie 33

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 34

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 35

Kiedy urządzenie elektroniczne nie wykazuje żadnych oznak funkcjonowania, od czego powinno się zacząć diagnostykę uszkodzenia?

A. systemu masy
B. obwodów wejściowych
C. układu zasilania
D. obwodów wyjściowych
Układ zasilania jest kluczowym elementem w każdym urządzeniu elektronicznym. To właśnie ten układ dostarcza energię niezbędną do działania pozostałych komponentów. W przypadku braku oznak funkcjonowania urządzenia, pierwszym krokiem w diagnostyce powinno być sprawdzenie źródła zasilania. Może to obejmować weryfikację, czy urządzenie jest podłączone do sieci, czy nie ma uszkodzeń w kablu zasilającym oraz czy wtyczka i gniazdo są sprawne. Wykorzystując multimetr, można zmierzyć napięcie na wyjściu zasilacza, aby upewnić się, że dostarczane napięcie jest zgodne z wymaganiami urządzenia. Dobrym standardem jest również ocena, czy w przypadku urządzeń zasilanych bateryjnie nie doszło do rozładowania ogniw. Przykładowo, w przypadku laptopów, często pierwszy objaw problemu z zasilaniem to brak reakcji po naciśnięciu przycisku zasilania, co wymaga sprawdzenia zarówno zasilacza, jak i stanu baterii. Powinno to być zgodne z najlepszymi praktykami diagnostyki, które zalecają systematyczne podejście do analizy problemów zasilania.

Pytanie 36

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 37

To pytanie jest dostępne tylko dla zalogowanych użytkowników. Zaloguj się lub utwórz konto aby zobaczyć pełną treść pytania.

Odpowiedzi dostępne po zalogowaniu.

Wyjaśnienie dostępne po zalogowaniu.


Pytanie 38

W dokumentach związanych z legalizacją urządzeń pomiarowych skrót GUM oznacza

A. metodę wykonania układów cyfrowych
B. Główny Układ Mikroprocesorowy
C. technologię realizacji układów scalonych
D. Główny Urząd Miar
Wybór błędnych odpowiedzi na to pytanie wskazuje na nieporozumienia dotyczące terminologii używanej w dziedzinie metrologii. Na przykład, odpowiedź dotycząca technologii wykonywania układów scalonych sugeruje, że GUM zajmuje się inżynierią mikroelektroniki, co jest zupełnie innym obszarem. Układy scalone to elementy, które mogą być wykorzystywane w różnych urządzeniach pomiarowych, ale sam GUM nie zajmuje się ich produkcją ani projektowaniem. Z kolei technika realizacji układów cyfrowych odnosi się do praktycznych aspektów konstruowania systemów elektronicznych, co również nie jest w kompetencji Głównego Urzędu Miar. W metrologii kluczowe jest zrozumienie, że pomiary muszą być zgodne z przyjętymi normami, a niekoniecznie ze sposobem, w jaki technologia jest wykorzystywana do ich realizacji. Mylne jest również utożsamienie GUM z terminem Główny Układ Mikroprocesorowy – nie istnieje taki urząd lub termin w kontekście metrologii. Te błędne odpowiedzi pochodzą z niejasności w rozumieniu roli GUM jako instytucji, która nie tylko zapewnia jakość pomiarów, ale także chroni interesy społeczeństwa poprzez regulacje i standardy oraz zapewnia zgodność z normami krajowymi i międzynarodowymi.

Pytanie 39

Jaki klucz jest używany do luzowania śrub z walcowym łbem oraz sześciokątnym gniazdem?

A. Oczkowy
B. Nasadowy
C. Imbusowy
D. Płaski
Klucz imbusowy, znany również jako klucz sześciokątny, jest idealnym narzędziem do odkręcania śrub z łbem walcowym z gniazdem sześciokątnym. Jego konstrukcja pozwala na efektywne przenoszenie momentu obrotowego, co jest kluczowe w pracy z elementami mocującymi, które mogą być narażone na wysokie obciążenia. Dzięki precyzyjnie wymiarowanym końcówkom, klucz imbusowy minimalizuje ryzyko uszkodzenia łba śruby, co jest częstym problemem przy używaniu innych rodzajów kluczy. Użycie klucza imbusowego jest zgodne z najlepszymi praktykami w inżynierii i mechanice, gdzie precyzyjne dopasowanie narzędzi do rodzajów śrub ma kluczowe znaczenie dla zapewnienia trwałości połączeń. Często stosuje się go w mechanice rowerowej, motocykli i w wielu konstrukcjach metalowych, co czyni go wszechstronnym narzędziem w arsenale każdego majsterkowicza.

Pytanie 40

Jaką zaciskarkę oznaczoną należy zastosować do zaciśnięcia końcówek RJ-11 na przewodzie telefonicznym?

A. 6P2C
B. 4P4C
C. 8P8C
D. 10P10C
Odpowiedź 6P2C jest prawidłowa, ponieważ oznaczenie to odnosi się do specyfikacji końcówek stosowanych w telefonii, a konkretnie do złącza RJ-11. W terminologii 6P2C oznacza to, że złącze posiada 6 pinów, z czego 2 są aktywne w przypadku transmisji. W praktyce RJ-11 jest szeroko stosowane do podłączania telefonów do linii telefonicznych w domach oraz biurach. Użycie zaciskarki 6P2C zapewnia prawidłowe i niezawodne połączenie, co jest kluczowe dla jakości przesyłanego sygnału. Standardy, takie jak TIA/EIA-568, określają właściwe procedury instalacji i zaciśnięcia, co przekłada się na lepszą funkcjonalność urządzeń. Właściwe podejście do zaciśnięcia końcówek gwarantuje, że sygnał będzie przesyłany bez zakłóceń, co ma kluczowe znaczenie w przypadku komunikacji głosowej oraz transmisji danych.
Strona wykorzystuje pliki cookies do poprawy doświadczenia użytkownika oraz analizy ruchu. Szczegóły