Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik informatyk
  • Kwalifikacja: INF.02 - Administracja i eksploatacja systemów komputerowych, urządzeń peryferyjnych i lokalnych sieci komputerowych
  • Data rozpoczęcia: 7 kwietnia 2025 09:14
  • Data zakończenia: 7 kwietnia 2025 09:25

Egzamin niezdany

Wynik: 15/40 punktów (37,5%)

Wymagane minimum: 20 punktów (50%)

Udostępnij swój wynik
Szczegółowe wyniki:
Pytanie 1

Użytkownik o nazwie Gość należy do grupy o nazwie Goście. Grupa Goście jest częścią grupy Wszyscy. Jakie ma uprawnienia użytkownik Gość w folderze test1?

Ilustracja do pytania
A. Użytkownik Gość nie ma uprawnień do folderu test1
B. Użytkownik Gość ma pełne uprawnienia do folderu test1
C. Użytkownik Gość ma uprawnienia tylko do odczytu folderu test1
D. Użytkownik Gość posiada tylko uprawnienia zapisu do folderu test1
W zrozumieniu zarządzania uprawnieniami kluczowe jest pojęcie dziedziczenia i wykluczania uprawnień. Często błędnie zakłada się, że jeśli użytkownik należy do kilku grup, to uprawnienia się sumują. W rzeczywistości, jeżeli jedna z grup ma wyraźnie odmówione uprawnienia, to użytkownik, nawet należąc do innej grupy z odpowiednimi uprawnieniami, będzie miał ograniczony dostęp. W kontekście pytania, odpowiedź sugerująca, że Gość ma pełne uprawnienia jest niepoprawna, ponieważ nawet jeśli grupa Wszyscy ma przypisane uprawnienia odczytu, zapis czy pełną kontrolę, to grupa Goście może mieć te uprawnienia wykluczone, co ma pierwszeństwo przed innymi przypisaniami. Kolejnym błędem jest założenie, że użytkownik Gość ma uprawnienia zapisu czy odczytu, ponieważ brak wyraźnego przyznania tych uprawnień dla grupy Goście, w połączeniu z wykluczeniami, oznacza brak dostępu. Typowym błędem myślowym jest również nieprawidłowe zrozumienie mechanizmu odmowy uprawnień, który w systemach takich jak NTFS jest stosowany jako nadrzędny. Podstawowym założeniem jest, że odmowy mają zawsze pierwszeństwo przed zezwoleniami, co jest fundamentalne dla zrozumienia zarządzania uprawnieniami w sieciowych systemach operacyjnych. To podejście minimalizuje ryzyko przypadkowego przyznania zbyt szerokiego dostępu i umożliwia precyzyjne kontrolowanie uprawnień użytkowników w skomplikowanych środowiskach IT.

Pytanie 2

Jaką liczbę punktów abonenckich (2 x RJ45) zgodnie z wytycznymi normy PN-EN 50167 powinno się zainstalować w biurze o powierzchni 49 m2?

A. 9
B. 5
C. 4
D. 1
Rozważając odpowiedzi, które nie wskazują na pięć punktów abonenckich, często pojawiają się błędne założenia dotyczące potrzeb biurowych oraz norm dotyczących infrastruktury teleinformatycznej. Odpowiedzi, które sugerują zbyt małą liczbę punktów, takie jak 1 czy 4, mogą wynikać z niepełnego zrozumienia wymagań dotyczących nowoczesnych biur. W obecnych realiach, gdzie praca zdalna i biurowa często się przeplatają, kluczowe jest, aby każdy pracownik miał dostęp do odpowiedniej infrastruktury sieciowej. Odpowiedź sugerująca 9 punktów, z kolei, może wynikać z nadmiernej ostrożności lub niewłaściwego oszacowania przestrzeni potrzebnej dla współczesnych zastosowań technologicznych. Typowe błędy myślowe obejmują niedoszacowanie liczby urządzeń, które mogą być używane w biurze, oraz nieprzemyślenie wygody użytkowników, która wymaga odpowiedniego dostępu do sieci. Aby zagwarantować efektywną i wydajną pracę, warto stosować się do norm takich jak PN-EN 50167, które zapewniają nie tylko zgodność ze standardami, ale także optymalizację przestrzeni biurowej, co jest kluczowe dla współczesnych organizacji.

Pytanie 3

Wykorzystując narzędzie diagnostyczne Tracert, można zidentyfikować trasę do określonego celu. Ile routerów pokonał pakiet wysłany do hosta 172.16.0.99?

C:\>tracert 172.16.0.99 -d
Trasa śledzenia od 172.16.0.99 z maksymalną liczbą przeskoków 30
1      2 ms     3 ms     2 ms    10.0.0.1
2     12 ms     8 ms     8 ms    192.168.0.1
3     10 ms    15 ms    10 ms    172.17.0.2
4     11 ms    11 ms    20 ms    172.17.48.14
5     21 ms    18 ms    24 ms    172.16.0.99
Śledzenie zakończone.

A. 2
B. 24
C. 4
D. 5
Podczas analizy wyników narzędzia Tracert należy zrozumieć, że każda linia w wyniku reprezentuje przeskok przez kolejny router, przez który przechodzi pakiet. Błędne zrozumienie, ile przeskoków zostało wykonanych, często wynika z niewłaściwego odczytania liczby linii wynikowych lub z pomylenia adresu końcowego z jednym z routerów na trasie. Niektórzy mogą błędnie zakładać, że liczba przeskoków jest o jeden mniejsza niż rzeczywista liczba linii, ponieważ sieć końcowa jest dołączana jako ostatnia linia, jednak każda linia odzwierciedla rzeczywisty router na trasie do celu. Częstym błędem jest również pominięcie pierwszego przeskoku, który zwykle jest bramą wyjściową z sieci lokalnej, co jest kluczowe dla zrozumienia pełnej trasy. Kolejnym błędem myślowym jest nieuwzględnienie wszystkich routerów pośrednich, które mogą być błędnie interpretowane jako części sieci wewnętrznej, co prowadzi do niedoszacowania liczby przeskoków. Tracert jest użytecznym narzędziem diagnostycznym, które przez analizę każdego przeskoku pozwala rozpoznać wąskie gardła w sieci lub punkty awarii. Ważne jest, aby rozumieć strukturę adresów IP i interpretować je zgodnie z topologią sieci, aby prawidłowo zidentyfikować każdy przeskok. Zrozumienie tego, jak Tracert działa w kontekście sieci rozległych i lokalnych, jest kluczowe dla dokładnego określenia liczby przeskoków oraz rozwiązywania problemów z opóźnieniami w sieci, co znacząco wspomaga diagnostykę i utrzymanie infrastruktury sieciowej w dobrym stanie.

Pytanie 4

W pierwszym oktecie adresów IPv4 klasy B znajdują się liczby mieszczące się w przedziale

A. od 192 do 223
B. od 64 do 127
C. od 128 do 191
D. od 32 do 63
Wybór nieprawidłowych odpowiedzi może wynikać z nieporozumienia dotyczącego klasyfikacji adresów IPv4. Adresy klasy A mają pierwszy oktet w zakresie od 1 do 126, co oznacza, że odpowiedzi dotyczące wartości od 32 do 63 oraz od 64 do 127 są błędne, ponieważ mieszczą się one w zasięgu adresów klasy A. Podobnie, zakres od 192 do 223 dotyczy klasy C, a nie B. Klasa C jest z reguły używana w mniejszych sieciach, gdzie potrzebne są mniejsze pule adresowe, podczas gdy klasa B jest przeznaczona dla średnich do dużych sieci. Typowe błędy myślowe mogą obejmować mylenie różnych klas adresów oraz nieuwzględnienie ich przeznaczenia. Ważne jest, aby zrozumieć, że klasy adresów IP są zdefiniowane na podstawie specyficznych wartości w pierwszym oktetcie, a nie tylko ich liczbowych zakresów. W kontekście nowoczesnych praktyk sieciowych, znajomość i umiejętność rozróżniania klas adresów IP jest kluczowa dla odpowiedniego projektowania i zarządzania infrastrukturą sieciową.

Pytanie 5

Skrypt o nazwie wykonaj w systemie Linux zawiera: echo -n "To jest pewien parametr " echo $? Wykonanie poleceń znajdujących się w pliku spowoduje wyświetlenie podanego tekstu oraz

A. listy wszystkich parametrów
B. numeru procesu aktualnie działającej powłoki
C. numeru procesu, który był ostatnio uruchomiony w tle
D. stanu ostatniego wykonanego polecenia
Odpowiedź 'stanu ostatnio wykonanego polecenia' jest poprawna, ponieważ polecenie '$?' w systemie Linux zwraca status zakończenia ostatniego polecenia. Wartość ta jest kluczowa w skryptach oraz w codziennej pracy w powłoce, ponieważ pozwala na kontrolowanie i reagowanie na wyniki wcześniejszych operacji. Na przykład, jeśli poprzednie polecenie zakończyło się sukcesem, '$?' zwróci wartość 0, co oznacza, że skrypt może kontynuować dalsze operacje. Natomiast jeśli wystąpił błąd, zwróci inną wartość (np. 1 lub wyższą), co może być podstawą do podjęcia odpowiednich działań, takich jak logowanie błędów lub wykonanie alternatywnych kroków. Tego rodzaju kontrola przepływu jest standardową praktyką w programowaniu skryptów bash, umożliwiającą tworzenie bardziej elastycznych i odpornych na błędy aplikacji. Dobrą praktyką jest zawsze sprawdzenie stanu zakończenia polecenia przed kontynuowaniem dalszych operacji, co pozwala na lepsze zarządzanie potencjalnymi problemami w skryptach.

Pytanie 6

Na ilustracji zaprezentowano końcówkę kabla

Ilustracja do pytania
A. telefonicznego
B. koncentrycznego
C. rodzaju skrętka
D. światłowodowego
Zakończenie kabla przedstawionego na rysunku to typowe złącze światłowodowe SC czyli Subscriber Connector. Złącza te są standardem w instalacjach światłowodowych z uwagi na ich prostotę użycia i niezawodność. Kluczowym aspektem światłowodów jest ich zdolność do przesyłania danych na dużą odległość z minimalnymi stratami co jest nieosiągalne dla kabli miedzianych. Światłowody wykorzystują światło do przesyłania informacji co pozwala na uzyskanie znacznie większej przepustowości niż w przypadku tradycyjnych kabli. Złącza SC charakteryzują się mechanizmem wciskowym co ułatwia ich instalację i zapewnia stabilne połączenie. Są one powszechnie stosowane w telekomunikacji przesyłaniu danych i sieciach internetowych. Zastosowanie światłowodów w praktyce obejmuje zarówno sieci LAN jak i WAN oraz połączenia międzykontynentalne co czyni je kluczowym elementem infrastruktury teleinformatycznej. Dobór odpowiednich komponentów w tym złączy jest kluczowy dla zapewnienia jakości i niezawodności połączeń światłowodowych co jest istotne w kontekście dynamicznie rosnącego zapotrzebowania na szybki transfer danych.

Pytanie 7

Technologia, która umożliwia szerokopasmowy dostęp do Internetu z różnymi prędkościami pobierania i wysyłania danych, to

A. MSK
B. ADSL
C. ISDN
D. QAM
MSK (Minimum Shift Keying) to metoda modulacji, która jest używana w telekomunikacji, ale nie jest technologią dostępu do Internetu. MSK jest stosowana do przesyłania danych w systemach radiowych i nie zapewnia szerokopasmowego dostępu do Internetu. ISDN (Integrated Services Digital Network) to system, który umożliwia przesyłanie telefonii, wideo i danych przez linie telefoniczne, ale jego prędkości są ograniczone i nie osiągają poziomu szerokopasmowego, typowego dla ADSL. ISDN jest wykorzystywany w przypadku, gdy potrzebne są jednoczesne połączenia głosowe i transmisja danych, ale jego zastosowania są coraz mniej popularne w obliczu rosnącej dostępności technologii szerokopasmowych, takich jak ADSL. QAM (Quadrature Amplitude Modulation) to technika modulacji, która może być używana w różnych technologiach komunikacyjnych, ale sama w sobie nie jest sposobem na zapewnienie dostępu do Internetu. Pomimo że QAM zapewnia efektywną transmisję danych, jej zastosowanie w kontekście dostępu do Internetu wymaga innych technologii, które mogą ją wykorzystać. Typowe błędy myślowe prowadzące do niepoprawnych wniosków obejmują mylenie technologii komunikacyjnych z technologiami dostępu do Internetu oraz niedostateczne zrozumienie różnicy między metodami modulacji a standardami szerokopasmowego przesyłania danych.

Pytanie 8

Do serwisu komputerowego przyniesiono laptopa, którego matryca wyświetla obraz w bardzo słabej jakości. Dodatkowo obraz jest znacząco ciemny i widoczny jedynie z niewielkiej odległości. Co może być przyczyną tej usterki?

A. uszkodzony inwerter
B. uszkodzone łącze między procesorem a matrycą
C. uszkodzone gniazdo HDMI
D. rozbita matryca
Uszkodzony inwerter jest najczęstszą przyczyną problemów z wyświetlaniem obrazu w laptopach, szczególnie gdy obraz jest ciemny i widoczny tylko z bliska. Inwerter jest odpowiedzialny za zasilanie podświetlenia matrycy, co w przypadku laptopów LCD odbywa się najczęściej poprzez zasilanie lampy CCFL. Kiedy inwerter ulega uszkodzeniu, nie dostarcza odpowiedniej mocy do podświetlenia, co efektywnie prowadzi do ciemności obrazu. W praktyce, użytkownicy mogą zauważyć, że obraz jest widoczny tylko przy dużym kontraście lub w jasnym otoczeniu, co wskazuje na problemy z oświetleniem. Naprawa lub wymiana uszkodzonego inwertera przywraca właściwe działanie matrycy, co jest zgodne z dobrymi praktykami w serwisie komputerowym. Zrozumienie działania inwertera oraz jego roli w systemie wyświetlania jest kluczowe dla efektywnej diagnostyki i naprawy problemów z wyświetlaniem w laptopach, co jest standardem w branży serwisowej.

Pytanie 9

Co umożliwia zachowanie równomiernego rozkładu ciepła pomiędzy procesorem a radiatorem?

A. Pasta grafitowa
B. Mieszanka termiczna
C. Klej
D. Silikonowy spray
Mieszanka termiczna, często nazywana pastą termoprzewodzącą, jest kluczowym elementem w zapewnianiu efektywnego transferu ciepła między procesorem a radiatorem. Działa na zasadzie wypełniania mikro-nierówności na powierzchniach tych dwóch komponentów, co pozwala na zminimalizowanie oporu termicznego. Dobrej jakości mieszanka termiczna ma wysoką przewodność cieplną oraz odpowiednią konsystencję, umożliwiającą łatwe nałożenie bez ryzyka zanieczyszczenia innych elementów. W praktyce, stosowanie pasty termoprzewodzącej jest niezbędne podczas montażu chłodzenia procesora w komputerach, aby zagwarantować ich stabilne działanie. Standardowe procedury montażowe zalecają nałożenie cienkiej warstwy mieszanki na powierzchnię procesora przed instalacją chłodzenia. Jest to zgodne z rekomendacjami producentów procesorów oraz systemów chłodzenia, co wpływa na wydajność oraz żywotność sprzętu.

Pytanie 10

Które z urządzeń używanych w sieci komputerowej NIE WPŁYWA na liczbę domen kolizyjnych?

A. Switch
B. Router
C. Hub
D. Server
Zrozumienie ról różnych urządzeń w sieci komputerowej jest kluczowe dla prawidłowego zarządzania ruchem danych. Ruter, jako urządzenie sieciowe, działa na poziomie warstwy sieci w modelu OSI i jest odpowiedzialny za przesyłanie pakietów między różnymi sieciami oraz zarządzanie ich trasowaniem. Przełącznik, z kolei, działa na poziomie warstwy łącza danych i może segmentować sieć na różne domeny kolizyjne, co pozwala na równoległe przesyłanie danych bez ryzyka kolizji. Koncentrator, będący urządzeniem działającym na poziomie fizycznym, przekazuje sygnały do wszystkich portów, co skutkuje tym, że wszystkie urządzenia podłączone do koncentratora należą do tej samej domeny kolizyjnej. W związku z tym, zarówno ruter, jak i przełącznik mają wpływ na liczbę domen kolizyjnych w sieci, co powoduje, że ich wybór i zastosowanie są istotne w kontekście projektowania efektywnych architektur sieciowych. Typowym błędem myślowym jest mylenie funkcji serwera z funkcjami urządzeń, które zarządzają ruchem. Serwer nie zmienia liczby domen kolizyjnych, ponieważ jego rola ogranicza się do udostępniania zasobów. Właściwe zrozumienie tych ról i ich zastosowanie w praktyce jest kluczowe dla optymalizacji działania sieci oraz unikania problemów z wydajnością i dostępnością zasobów.

Pytanie 11

Który typ standardu zakończenia kabla w systemie okablowania strukturalnego ilustruje przedstawiony rysunek?

Ilustracja do pytania
A. T568B
B. EIA/TIA 569
C. EIA/TIA 607
D. T568A
Standard T568B również definiuje sekwencję kolorów przewodów, ale w innej kolejności niż T568A: biało-pomarańczowy, pomarańczowy, biało-zielony, niebieski, biało-niebieski, zielony, biało-brązowy, brązowy. Choć jest równie popularny, jego zastosowanie może prowadzić do niezgodności, jeśli nie jest używany konsekwentnie w całej instalacji sieciowej. Wybór między T568A a T568B zależy często od lokalnych norm lub preferencji instalatora. Standard EIA/TIA 569 odnosi się do projektowania przestrzeni telekomunikacyjnej, a nie do sekwencji przewodów w złączach RJ-45. Definiuje on wymagania dotyczące planowania i instalacji przestrzeni takich jak pomieszczenia telekomunikacyjne i kanały kablowe, co oznacza, że nie jest bezpośrednio związany z zakończeniami przewodów. Z kolei EIA/TIA 607 dotyczy uziemienia i połączeń wyrównawczych w instalacjach telekomunikacyjnych. Jest to krytyczne dla zapewnienia bezpieczeństwa elektrycznego i ochrony przed przepięciami, szczególnie w środowiskach o dużej ilości sprzętu elektronicznego. Mylenie tych standardów z T568A lub T568B wynika często z braku zrozumienia ich zakresu i zastosowania. Kluczową umiejętnością jest rozróżnianie, które standardy dotyczą fizycznych aspektów instalacji, a które operacyjnych, co pomaga w prawidłowej konfiguracji i konserwacji systemów telekomunikacyjnych.

Pytanie 12

Który z rodzajów rekordów DNS w systemach Windows Server określa alias (inną nazwę) dla rekordu A związanej z kanoniczną (rzeczywistą) nazwą hosta?

A. PTR
B. NS
C. CNAME
D. AAAA
Rekord CNAME (Canonical Name) jest kluczowym elementem w systemie DNS, który pozwala na definiowanie aliasów dla innych rekordów. Jego podstawową funkcją jest wskazywanie alternatywnej nazwy dla rekordu A, co oznacza, że zamiast wpisywać bezpośrednio adres IP, możemy użyć bardziej przyjaznej dla użytkownika nazwy. Na przykład, zamiast korzystać z adresu IP serwera aplikacji, możemy ustawić rekord CNAME, który będzie odnosił się do łatwiejszej do zapamiętania nazwy, jak 'aplikacja.example.com'. Takie podejście znacznie ułatwia zarządzanie infrastrukturą sieciową, szczególnie w sytuacjach, gdy adresy IP mogą się zmieniać. Dzięki zastosowaniu rekordu CNAME, administratorzy mogą uniknąć konieczności aktualizacji wielu wpisów DNS w przypadku zmiany adresu IP, co jest zgodne z najlepszymi praktykami w zakresie zarządzania DNS oraz pozwala na szybsze i bardziej elastyczne zarządzanie zasobami sieciowymi. Dodatkowo, rekordy CNAME mogą być wykorzystywane do kierowania ruchu do różnych usług, takich jak serwery pocztowe czy serwery FTP, co daje dużą elastyczność w konfiguracji usług sieciowych.

Pytanie 13

Co umożliwia połączenie trunk dwóch przełączników?

A. zablokowanie wszystkich zbędnych połączeń na danym porcie
B. ustawienie agregacji portów, co zwiększa przepustowość między przełącznikami
C. przesyłanie ramek z różnych wirtualnych sieci lokalnych w jednym łączu
D. zwiększenie przepustowości połączenia poprzez użycie dodatkowego portu
Połączenie typu trunk między przełącznikami pozwala na przesyłanie ramek z wielu wirtualnych sieci lokalnych (VLAN) przez jedno łącze. Standard IEEE 802.1Q definiuje sposób oznaczania ramek Ethernetowych, które muszą być przesyłane do różnych VLAN-ów. Dzięki temu rozwiązaniu można zredukować liczbę potrzebnych fizycznych połączeń między przełącznikami, co zwiększa efektywność wykorzystania infrastruktury sieciowej. Przykładowo, w dużych środowiskach, takich jak biura korporacyjne, trunking jest niezbędny do zapewnienia komunikacji pomiędzy różnymi działami, które korzystają z różnych VLAN-ów. W praktyce, trunking umożliwia także lepsze zarządzanie ruchem sieciowym i segregację danych, co jest zgodne z najlepszymi praktykami w zakresie bezpieczeństwa i wydajności sieci. Zastosowanie trunkingów jest kluczowe w architekturze sieciowej, zwłaszcza w kontekście rozwiązań opartych na wirtualizacji, gdzie wiele VLAN-ów może współistnieć w tym samym środowisku fizycznym.

Pytanie 14

Aby zweryfikować indeks stabilności systemu Windows Server, należy zastosować narzędzie

A. Monitor niezawodności
B. Zasady grupy
C. Menedżer zadań
D. Dziennik zdarzeń
Dziennik zdarzeń to narzędzie, które rejestruje różne rzeczy, które dzieją się w systemie Windows. Choć daje informacje o błędach i ostrzeżeniach, to nie jest najlepsze do analizy stabilności systemu. Czasem można pomyśleć, że sama analiza dziennika wystarczy, ale to nie wystarcza, bo nie odnosi się do szerszego obrazu wydajności czy trendów czasowych. Menedżer zadań pozwala monitorować aktualne procesy, ale raczej nie dostarcza danych z przeszłości, które są ważne do oceny wydajności w dłuższym okresie. Zasady grupy są o bezpieczeństwie i konfiguracji systemów, ale nie mówią dużo na temat monitorowania. Często użytkownicy mylą te narzędzia, myśląc, że są wystarczające, ale w sumie ignorują Monitor niezawodności, który naprawdę jest stworzony do lepszego zarządzania stabilnością. Trafna diagnoza wymaga pełnego podejścia, które łączy monitorowanie z analizą historyczną i wykrywaniem problemów na wczesnym etapie.

Pytanie 15

Na schemacie przedstawiono konfigurację protokołu TCP/IP pomiędzy serwerem a stacją roboczą. Na serwerze zainstalowano rolę DNS. Wykonanie polecenia ping www.cke.edu.pl na serwerze zwraca pozytywny wynik, natomiast na stacji roboczej jest on negatywny. Jakie zmiany należy wprowadzić w konfiguracji, aby usługa DNS na stacji funkcjonowała poprawnie?

Ilustracja do pytania
A. adres bramy na stacji roboczej na 192.168.1.10
B. adres bramy na serwerze na 192.168.1.11
C. adres serwera DNS na stacji roboczej na 192.168.1.11
D. adres serwera DNS na stacji roboczej na 192.168.1.10
Odpowiedź jest prawidłowa, ponieważ konfiguracja DNS na stacji roboczej powinna wskazywać na serwer DNS w sieci lokalnej, który jest poprawnie skonfigurowany na adresie 192.168.1.10. W sieci komputerowej serwer DNS odpowiada za tłumaczenie nazw domenowych na adresy IP, co umożliwia komunikację z odpowiednimi serwerami w sieci. Jeśli serwer DNS jest błędnie skonfigurowany na stacji roboczej lub wskazuje na adres, który nie jest serwerem DNS, użytkownik nie będzie w stanie rozwiązać nazw domenowych, co skutkuje niepowodzeniem polecenia ping. W tym przypadku serwer ma przypisany adres IP 192.168.1.10 i pełni rolę serwera DNS, dlatego stacja robocza powinna być skonfigurowana, aby korzystać z tego adresu jako swojego DNS. Dobrą praktyką jest zawsze zapewnienie, że konfiguracja DNS wskazuje na dostępne i poprawnie skonfigurowane serwery DNS w ramach tej samej sieci, co minimalizuje opóźnienia i problemy z rozwiązywaniem nazw w sieci lokalnej. Serwery DNS często działają na statycznych adresach IP, aby zapewnić stabilność i przewidywalność w sieci, co jest szczególnie ważne w środowiskach produkcyjnych, gdzie dostępność usług jest kluczowa.

Pytanie 16

Komputer zarejestrowany w domenie Active Directory nie ma możliwości połączenia się z kontrolerem domeny, na którym znajduje się profil użytkownika. Jaki rodzaj profilu użytkownika zostanie utworzony na tym urządzeniu?

A. mobilny
B. obowiązkowy
C. lokalny
D. tymczasowy
Wybór odpowiedzi, że profil lokalny zostanie utworzony, jest błędny, ponieważ lokalny profil użytkownika jest tworzony tylko wtedy, gdy użytkownik loguje się po raz pierwszy na danym komputerze, a dane te są zachowywane na tym samym urządzeniu. W kontekście problemów z połączeniem z kontrolerem domeny, profil lokalny nie jest alternatywą, gdyż nie pozwala na synchronizację z danymi przechowywanymi na serwerze. Z kolei mobilny profil użytkownika wymaga działania w sieci i synchronizacji z kontrolerem domeny, co w przypadku braku połączenia nie może mieć miejsca. Mobilne profile są zaprojektowane tak, aby były dostępne na różnych komputerach w sieci, jednak również opierają się na dostępności serwera. Profile obowiązkowe to z kolei zdefiniowane szablony, które użytkownik nie może modyfikować, co nie odpowiada sytuacji, w której użytkownik loguje się do systemu po raz pierwszy, nie mając aktywnego połączenia z serwerem. Podejście do tworzenia i zarządzania profilami użytkowników w Active Directory powinno opierać się na zrozumieniu, jak te różne typy profilów działają oraz jak wpływają na dostęp do danych i aplikacji, co jest kluczowe dla administracji systemami oraz zarządzania zasobami IT.

Pytanie 17

Ramka danych przesyłanych z komputera PC1 do serwera www znajduje się pomiędzy ruterem R1 a ruterem R2 (punkt A). Jakie adresy są w niej zawarte?

Ilustracja do pytania
A. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC rutera R1, adres docelowy MAC rutera R2
B. Źródłowy adres IP komputera PC1, docelowy adres rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
C. Źródłowy adres IP komputera PC1, docelowy adres IP serwera, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
D. Źródłowy adres IP rutera R1, docelowy adres IP rutera R2, adres źródłowy MAC komputera PC1, adres docelowy MAC serwera
W przypadku wysyłania danych z komputera PC1 do serwera WWW, ramka, która przemieszcza się między ruterami R1 i R2, zawiera specyficzne informacje. Adres IP źródłowy to adres komputera PC1, ponieważ to on inicjuje połączenie. Adres IP docelowy to adres serwera WWW, gdyż dane mają ostatecznie dotrzeć do tego urządzenia. Na poziomie warstwy łącza danych protokołu Ethernet adresy MAC ulegają zmianie przy każdym przejściu przez ruter. Dlatego adres źródłowy MAC pochodzi od rutera R1, przez który ramka właśnie przeszła, a adres docelowy MAC to adres rutera R2, do którego ramka zmierza przed dalszym przekazywaniem. Takie zachowanie jest zgodne ze standardem IEEE 802.3 i zasadą trasowania w sieciach IP, gdzie adresy MAC są wykorzystywane do komunikacji w sieciach lokalnych, a adresy IP do komunikacji między sieciami. W praktyce, znajomość tego mechanizmu jest kluczowa dla zrozumienia, jak dane są przekazywane w sieciach złożonych z wielu segmentów i urządzeń sieciowych.

Pytanie 18

Rodzina adapterów stworzonych w technologii Powerline, pozwalająca na wykorzystanie przewodów elektrycznych w obrębie jednego domu lub mieszkania do przesyłania sygnałów sieciowych, nosi nazwę:

A. HomePlug
B. InternetPlug
C. InternetOutlet
D. HomeOutlet
Odpowiedź HomePlug jest poprawna, ponieważ odnosi się do standardu technologii Powerline, który umożliwia przesyłanie sygnału sieciowego przez istniejącą instalację elektryczną w budynkach. HomePlug jest technologią, która pozwala na łatwe rozszerzenie sieci komputerowej w miejscach, gdzie sygnał Wi-Fi jest słaby lub nieosiągalny. Przykłady użycia obejmują podłączenie telewizora smart, konsoli do gier czy komputerów w różnych pomieszczeniach za pomocą adapterów HomePlug, eliminując potrzebę długich kabli Ethernet. Standard ten zapewnia prędkości przesyłu danych sięgające do 2000 Mbps w najnowszych wersjach, co czyni go odpowiednim rozwiązaniem dla aplikacji wymagających wysokiej przepustowości, takich jak strumieniowanie wideo w jakości 4K czy gry online. Dzięki zastosowaniu technologii HomePlug, użytkownicy mogą uzyskać stabilne i szybkie połączenie internetowe w każdym pomieszczeniu, co jest szczególnie cenne w dobie rosnącej liczby urządzeń podłączonych do sieci.

Pytanie 19

Napięcie, które jest przekazywane do różnych komponentów komputera w zasilaczu komputerowym według standardu ATX, jest obniżane z poziomu 230V, między innymi do wartości

A. 12V
B. 130V
C. 4V
D. 20V
Wysokie napięcie 130V nie jest stosowane w zasilaczach komputerowych w standardzie ATX, ponieważ znacznie przekracza bezpieczne wartości dla komponentów komputerowych. Prawidłowe napięcia, takie jak 12V, są projektowane z myślą o współpracy z podzespołami, a wartości bliskie 130V mogłyby spowodować poważne uszkodzenia. Podobnie, napięcie 20V, choć teoretycznie możliwe do wytworzenia, nie jest standardowo wykorzystywane w architekturze zasilaczy ATX. Zasadniczo, napięcia w komputerach są ściśle regulowane i standaryzowane, aby zapewnić bezpieczeństwo i efektywność energetyczną. Napięcie 4V również nie odpowiada typowym wymaganiom zasilania komputerów; większość komponentów wymaga wyższych wartości do prawidłowej pracy. Takie nieporozumienia mogą wynikać z zamieszania z napięciami w innych zastosowaniach elektrycznych, gdzie niższe napięcia są stosowane, jednak w kontekście komputerów wartości te muszą być zgodne z normami ATX, co gwarantuje ich kompatybilność oraz bezpieczeństwo użytkowania. Ignorowanie tych standardów może prowadzić do wprowadzenia w błąd i potencjalnych problemów z niezawodnością systemu.

Pytanie 20

Aby zmienić port drukarki zainstalowanej w systemie Windows, która funkcja powinna zostać użyta?

A. Ostatnia znana dobra konfiguracja
B. Menedżer zadań
C. Preferencje drukowania
D. Właściwości drukarki
Jak widzisz, odpowiedź "Właściwości drukarki" to strzał w dziesiątkę! W tym miejscu można zmieniać ustawienia drukarki, łącznie z portem, który służy do komunikacji. W systemie Windows zmiana portu jest dość prosta. Trzeba po prostu otworzyć Panel sterowania, iść do "Urządzenia i drukarki", kliknąć prawym przyciskiem myszy na drukarkę i wybrać "Właściwości drukarki". Potem w zakładce "Porty" zobaczysz wszystkie dostępne porty i możesz zmienić ten, na którym masz drukarkę. Na przykład, jeśli drukarka działa teraz na USB, a chcesz, żeby działała na sieci, to zrobisz to bez problemu. W biurach to dosyć istotne, bo jak jest dużo urządzeń w sieci, to dobrze skonfigurowane porty pomagają w utrzymaniu sprawnej komunikacji, no i ogólnej wydajności. Warto też zapisywać, jakie zmiany się robi, żeby potem łatwiej było rozwiązywać problemy, które mogą się pojawić.

Pytanie 21

Jaki protokół służy do przesyłania plików bez konieczności tworzenia połączenia?

A. TFTP (Trivial File Transfer Protocol)
B. HTTP (Hyper Text Transfer Protocol)
C. FTP (File Transfer Protocol)
D. DNS (Domain Name System)
TFTP, czyli Trivial File Transfer Protocol, to protokół, który umożliwia przesyłanie plików w sieciach komputerowych bez konieczności nawiązywania połączenia, co czyni go bardzo prostym i efektywnym narzędziem w wielu sytuacjach. W przeciwieństwie do FTP (File Transfer Protocol), TFTP nie wymaga autoryzacji, co sprawia, że jest idealnym rozwiązaniem do transferu plików w środowiskach, gdzie prostota i szybkość są kluczowe. TFTP jest często wykorzystywany w przypadku urządzeń sieciowych, takich jak routery czy przełączniki, do aktualizacji oprogramowania lub przesyłania konfiguracji. Protokół ten działa na porcie UDP 69, co oznacza, że każdy transfer danych odbywa się w postaci pojedynczych pakietów, a nie jako ciągłe połączenie, co zmniejsza narzut na zarządzanie połączeniami. W praktyce, TFTP jest szczególnie użyteczny w sieciach lokalnych, gdzie nie występują duże opóźnienia, a priorytetem jest szybkość i efektywność przesyłania plików.

Pytanie 22

Wartość wyrażana w decybelach, będąca różnicą pomiędzy mocą sygnału przekazywanego w parze zakłócającej a mocą sygnału generowanego w parze zakłócanej to

A. przesłuch zdalny
B. poziom mocy wyjściowej
C. przesłuch zbliżny
D. rezystancja pętli
Zrozumienie pojęć związanych z zakłóceniami sygnału jest kluczowe w dziedzinie telekomunikacji. Odpowiedzi takie jak rezystancja pętli, przesłuch zdalny czy poziom mocy wyjściowej, choć mają swoje miejsce w tej dyscyplinie, nie odnoszą się bezpośrednio do zagadnienia przesłuchu zbliżnego, który opisuje różnice w mocy sygnałów w bliskim sąsiedztwie. Rezystancja pętli odnosi się do oporu w obwodzie elektrycznym, co może mieć wpływ na jakość sygnału, ale nie jest miarą przesłuchu. Przesłuch zdalny natomiast dotyczy wpływu sygnałów z innych par przewodów, co również różni się od przesłuchu zbliżnego, który koncentruje się na oddziaływaniu sygnałów w tym samym medium. Poziom mocy wyjściowej jest istotny dla oceny wydajności urządzenia, jednak nie dostarcza informacji o interakcjach między sygnałami. Często pojawiające się nieporozumienia dotyczące definicji tych terminów mogą prowadzić do błędnych wniosków, dlatego ważne jest, aby jasno rozróżniać między różnymi rodzajami zakłóceń i ich skutkami dla jakości sygnału. W kontekście projektowania systemów, umiejętność identyfikacji i analizy przesłuchów jest kluczowa dla osiągnięcia pożądanych parametrów pracy, a nieprawidłowe interpretacje mogą prowadzić do nieefektywnych rozwiązań.

Pytanie 23

W metodzie archiwizacji danych nazwanej Dziadek – Ojciec – Syn na poziomie Dziadek przeprowadza się kopię danych na koniec

A. miesiąca
B. roku
C. tygodnia
D. dnia
Wybór opcji związanych z innymi okresami, takimi jak dzień, rok czy tydzień, nie jest zgodny z prawidłowym podejściem do strategii archiwizacji Dziadek – Ojciec – Syn. Archiwizacja danych na poziomie Dziadek, polegająca na wykonywaniu kopii zapasowych, jest zaprojektowana tak, aby zapewnić długoterminowe przechowywanie i dostępność danych. Wykonywanie kopii zapasowych codziennie (na poziomie dnia) może prowadzić do nadmiernego zużycia zasobów i zajmowania cennej przestrzeni dyskowej, ponieważ codzienne zmiany w danych mogą być nieznaczne i nie zawsze uzasadniają tworzenie nowych kopii. Z kolei wybór archiwizacji na poziomie roku może być zbyt rzadki, co zwiększa ryzyko utraty danych w przypadku awarii, gdy pomiędzy kopiami zapasowymi upływa znaczny czas. Natomiast archiwizacja co tydzień może nie zapewniać odpowiedniego poziomu ochrony, szczególnie w kontekście dynamicznych zmian danych, które mogą wystąpić w krótkim czasie. W związku z tym strategia archiwizacji co miesiąc jest bardziej adekwatna, gdyż łączy regularność z efektywnością, co jest kluczowe dla zachowania integralności i dostępności danych w dłuższej perspektywie. Dobrą praktyką jest także przeprowadzanie analizy ryzyk i określenie optymalnej częstotliwości archiwizacji w zależności od specyfiki organizacji i rodzaju przetwarzanych danych.

Pytanie 24

Do zainstalowania serwera proxy w systemie Linux, konieczne jest zainstalowanie aplikacji

A. Samba
B. Postfix
C. Squid
D. Webmin
Samba to oprogramowanie, które umożliwia interakcję między systemami Windows a Linux, głównie w kontekście udostępniania plików i drukarek. Nie jest to jednak serwer proxy, więc nie może spełniać funkcji związanych z zarządzaniem ruchem internetowym. Webmin to narzędzie administracyjne, które pozwala na zarządzanie systemem Linux poprzez interfejs webowy. Chociaż ułatwia wiele zadań administracyjnych, nie jest projektowane jako serwer proxy i nie służy do kierowania ruchu internetowego. Postfix to serwer pocztowy, który obsługuje wysyłanie i odbieranie wiadomości e-mail, co również nie odnosi się do funkcji proxy. Użytkownicy mogą pomylić te programy z serwerem proxy, ponieważ każdy z nich ma specyficzne zastosowanie w zarządzaniu systemem lub ruchem, ale kluczowe różnice w ich funkcjonalności są istotne. Wybór niewłaściwego oprogramowania może prowadzić do nieefektywnego zarządzania ruchem sieciowym, co z kolei może skutkować wydłużonym czasem ładowania stron oraz zwiększonym zużyciem pasma. Dlatego istotne jest, aby dobrać odpowiednie narzędzia do konkretnych zadań, co w przypadku zarządzania ruchem proxy powinno koncentrować się na rozwiązaniach takich jak Squid.

Pytanie 25

Jakie są zasadnicze różnice pomiędzy poleceniem ps a poleceniem top w systemie Linux?

A. Polecenie top umożliwia pokazanie PID procesu, podczas gdy ps tego nie robi
B. Polecenie ps pozwala na zobaczenie uprawnień, z jakimi działa proces, natomiast top tego nie umożliwia
C. Polecenie ps nie przedstawia stopnia obciążenia CPU, natomiast polecenie top oferuje tę funkcjonalność
D. Polecenie top przedstawia aktualnie działające procesy w systemie, odświeżając informacje na bieżąco, co nie jest możliwe w przypadku ps
Wiele osób może mieć trudności z poprawnym zrozumieniem różnic pomiędzy poleceniami 'ps' i 'top', co może prowadzić do nieprecyzyjnych wniosków. Na przykład, stwierdzenie, że polecenie 'top' wyświetla PID procesu, podczas gdy 'ps' nie, jest nieprawdziwe. Zarówno 'top', jak i 'ps' wyświetlają PID (identyfikator procesu), co jest podstawową informacją dla zarządzania procesami w systemie. Drugim błędem jest twierdzenie, że 'ps' nie pokazuje uprawnień, z jakimi działa proces. W rzeczywistości, 'ps' ma możliwość wyświetlania informacji dotyczących uprawnień, jeśli zostanie odpowiednio skonfigurowane. Istnieją różne opcje, takie jak 'ps aux', które dostarczają szczegółowych informacji na temat procesów, w tym ich uprawnień. Ponadto, polecenie 'top' rzeczywiście pokazuje stopień wykorzystania CPU, co jest jedną z jego kluczowych funkcji, ale twierdzenie, że 'ps' nie pokazuje stopnia wykorzystania CPU, jest mylące. Rzeczywiście, podstawowe użycie 'ps' nie pokazuje tego bezpośrednio, ale można użyć dodatkowych narzędzi i opcji, aby uzyskać te informacje. Finalnie, niektóre z tych nieporozumień mogą wynikać z braku zrozumienia, w jaki sposób te narzędzia działają i jakie mają zastosowanie w rzeczywistych scenariuszach administracji systemem, co może prowadzić do niewłaściwego użycia i interpretacji wyników.

Pytanie 26

Jakim symbolem jest oznaczona skrętka bez ekranowania?

A. U/FTP
B. S/FTP
C. F/UTP
D. U/UTP
Odpowiedzi U/FTP, S/FTP oraz F/UTP odnoszą się do różnych typów okablowania, które jednak nie są właściwe w kontekście pytania o skrętkę nieekranowaną. U/FTP oznacza pary skręcone z ekranem na każdą parę, co zmniejsza zakłócenia, ale nie jest to typowy wybór dla zastosowań, gdzie nie ma znacznych zakłóceń elektromagnetycznych. S/FTP to skrętki, w których zarówno pary, jak i całe okablowanie są ekranowane. To rozwiązanie zapewnia najwyższy poziom ochrony przed zakłóceniami, ale wiąże się z wyższymi kosztami oraz większą sztywnością kabli, co może być niepraktyczne w niektórych instalacjach. F/UTP, z kolei, oferuje ekran dla całego kabla, ale wewnętrzne pary są nieekranowane, co również nie pasuje do definicji skrętki nieekranowanej. Przy wyborze odpowiedniego typu okablowania kluczowe jest zrozumienie warunków, w jakich będą one używane. Wiele osób może błędnie zakładać, że wszystkie kable muszą być ekranowane, co nie jest konieczne w środowiskach o niskim poziomie zakłóceń. Kluczowe znaczenie ma też znajomość standardów takich jak TIA/EIA-568, które określają wymagania dotyczące instalacji i użycia przewodów. Wiedza na temat różnic pomiędzy tymi standardami jest niezbędna do podejmowania świadomych decyzji w zakresie infrastruktury sieciowej.

Pytanie 27

Element na karcie graficznej, który ma za zadanie przekształcenie cyfrowego sygnału wytwarzanego przez kartę na analogowy sygnał, zdolny do wyświetlenia na monitorze to

A. RAMBUS
B. głowica FM
C. RAMDAC
D. multiplekser
Odpowiedź RAMDAC (RAM Digital-to-Analog Converter) jest poprawna, ponieważ ten układ jest odpowiedzialny za konwersję cyfrowego sygnału graficznego generowanego przez kartę graficzną na analogowy sygnał wideo, który może być wyświetlany przez monitor. RAMDAC odgrywa kluczową rolę w procesie renderowania obrazu, umożliwiając wyświetlanie grafiki w wysokiej jakości na monitorach analogowych, takich jak CRT. Dzięki RAMDAC, informacje o kolorach i pikselach są przetwarzane i przekształcane w sygnały analogowe, co pozwala na prawidłowe wyświetlenie obrazu. W praktyce zastosowanie RAMDAC jest szczególnie istotne w starszych systemach komputerowych, gdzie monitory analogowe były standardem. Chociaż dzisiejsze technologie przechodzą na cyfrowe interfejsy, takich jak HDMI czy DisplayPort, zrozumienie funkcji RAMDAC jest ważne dla osób interesujących się historią rozwoju technologii graficznych oraz dla tych, którzy pracują z różnorodnymi rozwiązaniami wyświetlania obrazu. Warto również zauważyć, że zrozumienie procesów konwersji sygnału jest fundamentem dla wielu zastosowań w branży technologicznej, w tym w inżynierii oprogramowania oraz projektowaniu systemów wideo.

Pytanie 28

Wskaż złącze, które nie jest stosowane w zasilaczach ATX?

A. DE-15/HD-15
B. MPC
C. SATA Connector
D. PCI-E
Złącza, takie jak MPC, SATA Connector oraz PCI-E są nieodłącznymi elementami zasilaczy ATX, które mają specyficzne funkcje w kontekście zasilania komponentów komputerowych. Złącze SATA służy do dostarczania energii do nowoczesnych dysków twardych i SSD, odgrywając kluczową rolę w zapewnieniu stabilności oraz wydajności systemu. Złącze PCI-E, z kolei, jest używane do zasilania kart graficznych oraz kart rozszerzeń, co jest istotne w kontekście rozbudowy wydajnych stacji roboczych oraz komputerów do gier. Zrozumienie, w jakim celu każde z tych złączy zostało zaprojektowane, jest fundamentalne dla efektywnego wykorzystania zasilacza ATX. Typowe błędy myślowe, które prowadzą do mylnego utożsamienia złącza DE-15/HD-15 z zasilaczami ATX, wynikają z nieznajomości różnic między typami złączy oraz ich funkcjonalnością. Złącze DE-15/HD-15 jest przeznaczone do transmisji sygnałów wideo, co jest zupełnie inną funkcją niż zasilanie komponentów. Różnice te podkreślają znaczenie wiedzy na temat standardów branżowych w kontekście budowy komputerów oraz ich komponentów.

Pytanie 29

Jak wygląda liczba 257 w systemie dziesiętnym?

A. 1 0000 0001 w systemie binarnym
B. FF w systemie szesnastkowym
C. 1000 0000 w systemie binarnym
D. F0 w systemie szesnastkowym
Odpowiedź 1 0000 0001 dwójkowo jest poprawna, ponieważ liczba 257 w systemie dziesiętnym jest równa liczbie 1 0000 0001 w systemie dwójkowym. Przekształcenie liczby dziesiętnej na system dwójkowy polega na wyznaczeniu wartości poszczególnych bitów. W przypadku liczby 257, zaczynamy od największej potęgi dwójki, która mieści się w tej liczbie, czyli 2^8 = 256, a następnie dodajemy 1 (2^0 = 1). W rezultacie otrzymujemy zapis: 1 (256) + 0 (128) + 0 (64) + 0 (32) + 0 (16) + 0 (8) + 0 (4) + 1 (2) + 1 (1), co daje nam ostatecznie 1 0000 0001. Praktyczne zastosowanie tej wiedzy można zauważyć w programowaniu oraz inżynierii komputerowej, gdzie konwersja między systemami liczbowymi jest często wymagana do efektywnego przetwarzania danych. Wiedza ta jest zgodna z ogólnymi standardami reprezentacji danych w systemach komputerowych, co czyni ją istotnym elementem w pracy programisty czy specjalisty IT.

Pytanie 30

W hierarchicznym modelu sieci, komputery należące do użytkowników są składnikami warstwy

A. dystrybucji
B. rdzenia
C. szkieletowej
D. dostępu
Odpowiedzi wskazujące na warstwy szkieletową, dystrybucji oraz rdzenia są niepoprawne, ponieważ każda z nich ma inną rolę w hierarchicznej architekturze sieci. Warstwa szkieletowa, będąca najwyższym poziomem, odpowiada za szybkie przesyłanie dużych ilości danych między różnymi lokalizacjami, ale nie zajmuje się bezpośrednią interakcją z użytkownikami. Jest to warstwa, która łączy różne segmenty sieci, zapewniając przepustowość i niezawodność komunikacji, lecz nie angażuje się w końcowe łączenie użytkowników. Warstwa dystrybucji ma na celu agregację ruchu z warstwy dostępu oraz realizację polityk routingu i kontroli dostępu. W praktyce ta warstwa decyduje o kierowaniu ruchu w sieci oraz może implementować funkcje takie jak QoS (Quality of Service), jednak również nie jest to poziom, gdzie użytkownicy mają bezpośredni dostęp do zasobów sieciowych. Z kolei warstwa rdzenia to odpowiedzialna za główne połączenia w sieci, zapewniając wysoką wydajność i szybkość, ale nie angażując się w interakcję z końcowymi urządzeniami. Typowe błędy myślowe prowadzące do nieprawidłowych odpowiedzi na to pytanie często wynikają z mylenia roli warstw w architekturze sieciowej oraz braku zrozumienia, jak poszczególne warstwy współdziałają, aby zapewnić użytkownikom dostęp do zasobów sieciowych. Zrozumienie tych różnic jest kluczowe dla skutecznego projektowania oraz zarządzania infrastrukturą sieciową.

Pytanie 31

Jakie zastosowanie ma narzędzie tracert w systemach operacyjnych rodziny Windows?

A. uzyskiwania szczegółowych danych dotyczących serwerów DNS
B. tworzenia połączenia ze zdalnym serwerem na wyznaczonym porcie
C. analizowania trasy przesyłania pakietów w sieci
D. pokazywania oraz modyfikacji tablicy trasowania pakietów w sieciach
Narzędzie tracert, będące częścią systemów operacyjnych rodziny Windows, służy do śledzenia trasy, jaką pokonują pakiety danych w sieci. Działa na zasadzie wysyłania pakietów ICMP (Internet Control Message Protocol) typu Echo Request do docelowego adresu IP, a następnie rejestruje odpowiedzi od urządzeń pośredniczących, zwanych routerami. Dzięki temu użytkownik może zidentyfikować każdy przeskok, czyli 'hop', przez który przechodzą pakiety, oraz zmierzyć opóźnienia czasowe dla każdego z tych przeskoków. Praktyczne zastosowanie narzędzia tracert jest niezwykle istotne w diagnostyce sieci, pomagając administratorom w lokalizowaniu problemów z połączeniami, takich jak zbyt długie czasy odpowiedzi lub utraty pakietów. Dzięki temu można efektywnie analizować wydajność sieci oraz identyfikować wąskie gardła. Zgodnie z najlepszymi praktykami branżowymi, narzędzie to powinno być częścią regularnych audytów sieciowych, pozwalając na utrzymanie wysokiej jakości usług i optymalizację infrastruktury sieciowej.

Pytanie 32

Funkcja diff w systemie Linux pozwala na

A. porównanie danych z dwóch plików
B. archiwizację danych
C. wyszukiwanie danych w pliku
D. kompresję danych
Pomysł, że polecenie 'diff' służy do kompresji danych, archiwizacji czy wyszukiwania informacji w plikach, jest błędny i oparty na nieporozumieniach dotyczących funkcjonalności narzędzi dostępnych w systemie Linux. Kompresja danych odnosi się do procesu, w którym dane są zmniejszane pod względem objętości, co jest realizowane przez inne narzędzia, takie jak 'gzip' czy 'bzip2', które implementują różne algorytmy kompresji. Z kolei archiwizacja danych wiąże się z gromadzeniem wielu plików w pojedynczym pliku archiwum, co również nie jest funkcją 'diff'. Narzędzia takie jak 'tar' są w tym przypadku bardziej odpowiednie. W odniesieniu do wyszukiwania danych, systemy operacyjne Linux oferują komendy jak 'grep', które umożliwiają przeszukiwanie plików pod kątem określonych wzorców, co nie ma związku z funkcją 'diff'. Najczęstszym błędem myślowym jest utożsamianie różnych narzędzi z ich ogólną funkcjonalnością, co prowadzi do mylnych wniosków. Kluczowe jest zrozumienie, że każde narzędzie w systemie Linux ma swoje specyficzne zastosowanie, a ich wybór powinien być dostosowany do potrzeb konkretnego zadania.

Pytanie 33

W projekcie sieci komputerowej przewiduje się użycie fizycznych adresów kart sieciowych. Która warstwa modelu ISO/OSI odnosi się do tych adresów w komunikacji?

A. Prezentacji
B. Łącza danych
C. Sesji
D. Transportowa
Odpowiedzi 'Prezentacji', 'Sesji' oraz 'Transportowa' są nieprawidłowe, ponieważ każda z tych warstw w modelu OSI ma inne funkcje i odpowiedzialności, które nie obejmują bezpośredniego użycia adresów sprzętowych. Warstwa prezentacji zajmuje się formatowaniem i kodowaniem danych, co oznacza, że przekształca dane w formy, które są zrozumiałe dla aplikacji, ale nie ma bezpośredniego wpływu na adresację sprzętową urządzeń. Warstwa sesji natomiast zarządza sesjami komunikacyjnymi, co oznacza, że zajmuje się utrzymywaniem, kontrolowaniem i kończeniem połączeń, ale również nie korzysta z adresów MAC. Z kolei warstwa transportowa jest odpowiedzialna za transport danych między hostami oraz zapewnia funkcje takie jak kontrola przepływu i niezawodność, lecz nie zajmuje się adresowaniem na poziomie sprzętu. Typowym błędem myślowym jest mylenie ról, jakie poszczególne warstwy modelu OSI odgrywają w komunikacji. Warto zrozumieć, że adresy sprzętowe są fundamentalne tylko dla warstwy łącza danych, a nie dla pozostałych warstw, które koncentrują się na innych aspektach wymiany informacji.

Pytanie 34

W systemach Windows profil użytkownika tymczasowego jest

A. ładowany do systemu w przypadku, gdy wystąpi błąd uniemożliwiający załadowanie profilu mobilnego użytkownika
B. ustawiany przez administratora systemu i przechowywany na serwerze
C. generowany w momencie pierwszego logowania do komputera i przechowywany na lokalnym dysku twardym urządzenia
D. ładowany do systemu z serwera, definiuje konkretne ustawienia dla poszczególnych użytkowników oraz całych grup
Wszystkie błędne odpowiedzi opierają się na nieporozumieniach dotyczących funkcji i przeznaczenia profili użytkowników w systemach Windows. Stwierdzenie, że profil tymczasowy użytkownika jest tworzony przez administratora systemu i przechowywany na serwerze, jest mylące, ponieważ profile tymczasowe są generowane automatycznie przez system w momencie, gdy występuje błąd z profilem użytkownika. Profile mobilne, które są przechowywane na serwerze, mają zupełnie inny cel - umożliwiają użytkownikom dostęp do ich danych z różnych urządzeń, a nie są związane z profilami tymczasowymi. Podobnie, przekonanie, że profil tymczasowy jest stworzony podczas pierwszego logowania do komputera, jest błędne; system Windows tworzy standardowy profil użytkownika w momencie pierwszego logowania, a profil tymczasowy pojawia się tylko w przypadku wystąpienia problemów. Wreszcie, twierdzenie, że profil tymczasowy jest wczytywany z serwera i określa konkretne ustawienia dla użytkowników, jest niezgodne z praktykami zarządzania profilami. Profile tymczasowe są lokalne i nie mają dostępu do zdalnych ustawień ani plików. Typowe błędy myślowe, które prowadzą do tych niepoprawnych wniosków, dotyczą braku zrozumienia różnicy między profilami mobilnymi, standardowymi a tymczasowymi oraz ich rolą w kontekście zarządzania użytkownikami w systemach operacyjnych.

Pytanie 35

Która z poniższych wskazówek nie jest właściwa w kontekście konserwacji skanera płaskiego?

A. Dbać, aby podczas prac nie uszkodzić szklanej powierzchni tacy dokumentów
B. Zachować ostrożność, aby podczas prac nie wylać płynu na mechanizm skanera oraz na elementy elektroniczne
C. Używać do czyszczenia szyby acetonu lub alkoholu etylowego wylewając bezpośrednio na szybę
D. Sprawdzać, czy kurz nie zgromadził się na powierzchni tacy dokumentów
Jakby się przyjrzeć, to większość sposobów na konserwację skanera jest ok, z wyjątkiem mycia szyby acetonu czy alkoholem etylowym. Problem w tym, że czyszczenie może wydawać się prostą sprawą, ale łatwo się pomylić. Na przykład, ważne jest, by sprawdzić, czy na tacy dokumentów nie ma kurzu, bo zanieczyszczenia mogą pogorszyć jakość skanowania. No i trzeba uważać, żeby nie zarysować szklanej powierzchni – zarysowania potrafią popsuć jakość skanów. Używanie płynów czyszczących z alkoholem w niewłaściwy sposób, jak w tym przypadku, może zniszczyć urządzenie. Lepiej unikać nadmiaru płynów, bo mogą wniknąć do wnętrza skanera i uszkodzić go. Dlatego trzeba korzystać tylko z dedykowanych środków, które są bezpieczne dla delikatnych powierzchni skanera. Zrozumienie takich zasad to klucz do uniknięcia błędów, które mogą nas kosztować drogie naprawy lub wymianę sprzętu.

Pytanie 36

Atak DDoS (ang. Disributed Denial of Service) na serwer doprowadzi do

A. przeciążenia aplikacji serwującej określone dane
B. przechwytywania pakietów sieciowych
C. zmiany pakietów przesyłanych przez sieć
D. zbierania danych o atakowanej sieci
Zrozumienie ataków typu DDoS wymaga znajomości ich charakterystyki oraz celów. Atak DDoS nie polega na podmianie pakietów przesyłanych przez sieć, co sugeruje pierwsza niepoprawna odpowiedź. Podmiana pakietów, znana jako atak typu Man-in-the-Middle, wymaga dostępu do transmisji danych i jest zupełnie innym rodzajem zagrożenia, które nie ma nic wspólnego z DDoS. Podobnie, przechwytywanie pakietów, co sugeruje kolejna odpowiedź, również nie jest związane z DDoS. Ataki te koncentrują się na przytłoczeniu zasobów serwera, a nie na manipulacji danymi w transmisji. Stosowanie technik przechwytywania danych w kontekście DDoS jest mylne, ponieważ kluczowym celem DDoS jest spowodowanie niedostępności usługi, a nie analizowanie jej ruchu. Zbieranie informacji na temat atakowanej sieci, co sugeruje jeszcze jedna odpowiedź, jest bardziej związane z atakami typu reconnaissance, które mają na celu zrozumienie struktury sieci i potencjalnych słabości, aby później przeprowadzić skuteczniejszy atak. W rzeczywistości, ataki DDoS skupiają się na zasypywaniu serwera żądaniami, a nie na analizie czy manipulacji danymi. Te błędne koncepcje mogą prowadzić do niewłaściwego planowania obrony przed zagrożeniami, co podkreśla znaczenie edukacji w zakresie bezpieczeństwa IT.

Pytanie 37

Jaka liczba hostów może być zaadresowana w podsieci z adresem 192.168.10.0/25?

A. 64
B. 126
C. 62
D. 128
Prawidłowe zrozumienie adresacji IP wymaga rozważenia, jak w rzeczywistości działają maski podsieci. Osoby, które wskazały 64 jako odpowiedź, mogą myśleć, że maska /25 oznacza po prostu podział na 64 adresy. Jednak jest to mylne, ponieważ w rzeczywistości 64 to liczba adresów, która obejmuje zarówno adres sieci, jak i adres rozgłoszeniowy, co oznacza, że nie są to adresy, które mogą być przypisane do urządzeń. Z kolei odpowiedź 128 sugeruje, że wszystkie adresy w podsieci mogą być przypisane do hostów, co również jest nieprawidłowe, gdyż pomija się dwa zarezerwowane adresy. Odpowiedź 62 wynika z błędnego obliczenia ilości dostępnych adresów — możliwe, że ktoś zrealizował odjęcie dodatkowego adresu, co nie jest potrzebne w przypadku standardowego obliczenia. Zrozumienie, że każdy system adresacji IP ma zarezerwowane adresy, jest kluczowe dla prawidłowej konfiguracji i działania sieci komputerowej. Dobre praktyki w zakresie projektowania sieci powinny opierać się na dokładnych obliczeniach oraz znajomości zasad, jakie rządzą przydzielaniem adresów IP, aby unikać typowych pułapek i utrudnień w zarządzaniu siecią.

Pytanie 38

Na diagramie element odpowiedzialny za dekodowanie poleceń jest oznaczony liczbą

Ilustracja do pytania
A. 2
B. 3
C. 1
D. 6
ALU czyli jednostka arytmetyczno-logiczna jest odpowiedzialna za wykonywanie operacji matematycznych i logicznych w procesorze To nie ona bezpośrednio dekoduje instrukcje chociaż może wykonywać działania na danych już po ich dekodowaniu przez CU Rejestry natomiast są miejscem tymczasowego przechowywania danych i wyników operacji ale same w sobie nie pełnią roli dekodowania instrukcji Mogą zawierać dane które zostały zdekodowane ale nie biorą udziału w samym procesie dekodowania Odpowiednie zrozumienie tych elementów architektury procesora jest kluczowe dla inżynierów zajmujących się projektowaniem i optymalizacją systemów komputerowych Niezrozumienie roli różnych komponentów procesora może prowadzić do nieefektywnego projektowania systemów komputerowych a także problemów z wydajnością Zapewnienie prawidłowego zrozumienia tych pojęć jest kluczowe dla efektywnego wykorzystania zasobów sprzętowych i osiągnięcia optymalnej wydajności w praktycznych zastosowaniach technologicznych W przypadku szyn takich jak szyna sterowania szyna danych i szyna adresowa ich rolą jest komunikacja między procesorem a innymi komponentami systemu komputerowego nie zaś dekodowanie instrukcji Ich głównym zadaniem jest przesyłanie sygnałów danych i adresów pomiędzy różnymi częściami systemu

Pytanie 39

W systemie Windows, który wspiera przydziały dyskowe, użytkownik o nazwie Gość

A. może być częścią jedynie grupy globalnej
B. może należeć do grup lokalnych i globalnych
C. może być członkiem tylko grupy o nazwie Goście
D. nie może być częścią żadnej grupy
Użytkownik Gość, pracujący w systemie Windows, może być przypisany do różnych grup lokalnych i globalnych. To znaczy, że ma możliwość korzystania z przydzielonych mu uprawnień w ramach tych grup, co jest zgodne z zasadami zarządzania dostępem. Grupy lokalne dają uprawnienia specyficzne dla konkretnego komputera, a grupy globalne pozwalają na dostęp do zasobów z różnych komputerów w sieci. Na przykład, Gość może być częścią lokalnej grupy 'Użytkownicy', co pozwala mu na korzystanie z podstawowych zasobów systemowych. Ale równie dobrze może być członkiem grupy globalnej, co daje mu dostęp do innych komputerów w sieci. Uważam, że takie podejście jest naprawdę praktyczne, bo daje dużą elastyczność w zarządzaniu dostępem i minimalizuje ryzyko, że ktoś niepowołany wejdzie tam, gdzie nie powinien. Generalnie, umiejętność zarządzania grupami i ich uprawnieniami jest kluczowa dla administratorów, bo wpływa na bezpieczeństwo i efektywność całego środowiska IT.

Pytanie 40

Aby zasilić najbardziej wydajne karty graficzne, konieczne jest dodatkowe 6-pinowe gniazdo zasilacza PCI-E, które dostarcza napięcia

A. +5 V na 3 liniach
B. +3,3 V oraz +5 V
C. +3,3 V, +5 V, +12 V
D. +12 V na 3 liniach
Wszystkie błędne odpowiedzi zawierają nieprawidłowe informacje dotyczące napięć oraz ich zastosowania w kontekście zasilania kart graficznych. Na przykład opcje dotyczące +3,3 V oraz +5 V są mylące, ponieważ te napięcia są typowe dla komponentów takich jak płyty główne, dyski twarde czy inne urządzenia peryferyjne, ale nie są wykorzystywane w kontekście zasilania kart graficznych. Karty graficzne, w szczególności te o wysokiej wydajności, wymagają wyższego napięcia, aby efektywnie zarządzać energią potrzebną do przetwarzania grafiki 3D oraz renderowania obrazów. Typowym błędem myślowym jest zakładanie, że wszystkie komponenty komputerowe mogą być zasilane tymi samymi napięciami, co prowadzi do nieporozumień w zakresie zasilania. W kontekście standardów, złącza PCI-E zaprojektowane są z myślą o dostarczaniu napięcia +12 V, co można znaleźć w dokumentacji technicznej, a ich ignorowanie może prowadzić do niewłaściwego doboru zasilaczy, co w efekcie może skutkować niestabilnością systemu czy nawet uszkodzeniem sprzętu. To kluczowe, aby użytkownicy mieli świadomość różnorodnych napięć i ich zastosowania, aby móc prawidłowo dobierać komponenty do swoich systemów komputerowych.