Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik elektronik
  • Kwalifikacja: ELM.05 - Eksploatacja urządzeń elektronicznych
  • Data rozpoczęcia: 30 maja 2025 07:58
  • Data zakończenia: 30 maja 2025 08:04

Egzamin zdany!

Wynik: 40/40 punktów (100,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Jakie urządzenie należy zastosować do pomiaru indukcyjności cewki?

A. analizatora
B. mostka RLC
C. watomierza
D. omomierza
Odpowiedź 'mostek RLC' jest prawidłowa, ponieważ mostek RLC jest dedykowanym narzędziem do pomiaru indukcyjności, pojemności oraz rezystancji. Działa na zasadzie porównywania nieznanej wartości z wartościami referencyjnymi, co pozwala na uzyskanie dokładnych wyników. W praktyce, mostki RLC są często wykorzystywane w laboratoriach oraz w przemyśle elektronicznym do testowania komponentów, gdzie precyzyjne pomiary indukcyjności są kluczowe, np. w projektowaniu filtrów, transformatorów czy cewek. Standardy branżowe, takie jak normy IEC, podkreślają znaczenie stosowania odpowiednich narzędzi do pomiarów w celu zapewnienia jakości oraz bezpieczeństwa urządzeń elektronicznych. Dodatkowo, mostek RLC pozwala na przeprowadzenie analizy rezonansowej, co ma istotne znaczenie w zastosowaniach RF (radiofrekwencyjnych), gdzie zachowanie indukcyjności w określonych warunkach częstotliwościowych jest kluczowe dla prawidłowego funkcjonowania obwodów.

Pytanie 2

Aby podwoić zakres pomiarowy woltomierza o rezystancji wewnętrznej Rw = 150 kΩ, konieczne jest dodanie rezystora Rp o wartości rezystancji w układzie szeregowym

A. 300 kΩ
B. 75 kΩ
C. 150 kΩ
D. 450 kΩ
Odpowiedź 150 kΩ jest prawidłowa, ponieważ aby dwukrotnie rozszerzyć zakres pomiarowy woltomierza, konieczne jest dołączenie rezystora w szereg z woltomierzem. Woltomierz o rezystancji wewnętrznej Rw = 150 kΩ ma wartość rezystancji, która jest kluczowa w obliczeniach. Aby uzyskać nowy, pożądany zakres, suma rezystancji wewnętrznej woltomierza i dodatkowego rezystora musi być taka, aby całkowity opór był dwukrotnie większy niż początkowy. Przy dołączeniu rezystora Rp w szereg, całkowity opór wynosi Rw + Rp. Chcąc podwoić wartość Rw, musimy rozwiązać równanie Rw + Rp = 2 * Rw, co prowadzi do Rp = Rw. Zatem, dla Rw = 150 kΩ, Rp również wynosi 150 kΩ. Tego typu połączenia są powszechnie stosowane w praktyce inżynieryjnej, zwłaszcza w pomiarach elektrycznych, gdzie precyzja jest kluczowa. Dlatego w takich zastosowaniach, jak kalibracja przyrządów pomiarowych, istotne jest, aby znać zasady dołączania rezystorów w celu uzyskania dokładnych wyników pomiarów.

Pytanie 3

Dioda LED w zakresie długości fali 940 nm generuje promieniowanie elektromagnetyczne

A. żółte
B. zielone
C. podczerwone
D. ultrafioletowe
Dioda LED emitująca promieniowanie elektromagnetyczne o długości fali 940 nm należy do zakresu promieniowania podczerwonego. Promieniowanie to jest niewidoczne dla ludzkiego oka, ale ma szerokie zastosowanie w technologii, w tym w telekomunikacji, czujnikach ruchu oraz w urządzeniach zdalnego sterowania. Na przykład, diody LED emitujące podczerwień są często wykorzystywane w pilotach do telewizorów oraz w systemach monitoringu, gdzie przesyłają dane bezprzewodowo. Warto zaznaczyć, że zakres podczerwieni rozciąga się od 700 nm do 1 mm, co czyni długość fali 940 nm idealnym kandydatem do zastosowań w technologii IR. Zrozumienie tego rodzaju promieniowania jest istotne dla projektowania systemów optycznych oraz elektronicznych, które wykorzystują detekcję na podczerwień, co ma kluczowe znaczenie w nowoczesnych rozwiązaniach technologicznych.

Pytanie 4

Aby zweryfikować prawidłowe funkcjonowanie piezoelektrycznego przetwornika tensometrycznego w wadze elektronicznej, należy zastosować

A. amperomierz
B. omomierz
C. galwanometr
D. watomierz
Galwanometr jest przyrządem pomiarowym, który służy do wykrywania i pomiaru prądu elektrycznego, nawet w bardzo małych wartościach. W kontekście piezoelektrycznego przetwornika tensometrycznego, galwanometr jest idealnym narzędziem do oceny jego prawidłowego działania, ponieważ pozwala na dokładne pomiary zmian prądu, które są generowane w wyniku deformacji mechanicznej. Piezoelektryczne przetworniki tensometryczne są wykorzystywane w różnych aplikacjach, w tym w wagach elektronicznych, gdzie precyzyjne pomiary są kluczowe. Dobry przykład zastosowania galwanometru w praktyce to kalibracja wagi elektronicznej, gdzie przy pomocy tego urządzenia można określić, czy przetwornik działa w odpowiednich granicach tolerancji. W standardach branżowych, takich jak ISO 9001, podkreśla się znaczenie dokładności pomiarów, co czyni galwanometr nieocenionym narzędziem w procesie zapewnienia jakości.

Pytanie 5

W tabeli podano parametry katalogowe wybranych diod LED. Uszereguj rosnąco względem napięcia przewodzenia diody LED czterech różnych barw.

Parametry katalogowe wybranych diod LED
  • Soczewka w kolorze żółtym
  • Długość emitowanej fali: 589 nm
  • Jasność: 40 mcd
  • Kąt świecenia: 60°
  • Parametry pracy:
    IF: 25 mA, VF: 2,0 V
  • Soczewka w kolorze zielonym
  • Długość emitowanej fali: 571 nm
  • Jasność: 100÷150 mcd
  • Kąt świecenia: 50°
  • Parametry pracy:
    IF: 20 mA, VF: 2,3÷2,5 V
  • Soczewka w kolorze czerwonym
  • Długość emitowanej fali: 625-645 nm
  • Jasność: 450÷800 mcd
  • Kąt świecenia: 70°
  • Parametry pracy:
    IF: 20 mA, VF: 1,8÷1,9 V
  • Soczewka w kolorze niebieskim
  • Długość emitowanej fali: 470 nm
  • Jasność: 1000 mcd
  • Kąt świecenia: 30°
  • Parametry pracy:
    IF: 25 mA, VF: 3,2 V

A. Niebieska, czerwona, żółta, zielona.
B. Czerwona, zielona, żółta, niebieska.
C. Czerwona, żółta, zielona, niebieska.
D. Niebieska, czerwona, zielona, żółta.
Twoja odpowiedź jest poprawna, ponieważ poprawnie uszeregowałeś diody LED według ich napięcia przewodzenia. Dioda czerwona, z napięciem 1,8-1,9 V, charakteryzuje się najniższym napięciem, co czyni ją pierwszą w kolejności. Następnie znajduje się dioda żółta o napięciu 2,0 V, która jest wyższa od czerwonej, ale niższa od kolejnych kolorów. Dioda zielona, z napięciem 2,3-2,5 V, zajmuje trzecie miejsce, a na końcu jest dioda niebieska z napięciem 3,2 V. Zrozumienie tego porządku jest niezbędne przy projektowaniu obwodów z diodami LED, ponieważ właściwe dobranie diod do zastosowania wymaga znajomości ich parametrów elektrycznych. Przykładowo, w aplikacjach oświetleniowych, gdzie kluczowe są oszczędności energetyczne oraz długowieczność komponentów, dobór diod LED o odpowiednich napięciach przewodzenia jest istotny dla zapewnienia stabilności obwodu. Dlatego warto zwracać uwagę na te parametry podczas projektowania układów elektronicznych.

Pytanie 6

Z uwagi na efektywność połączenia wzmacniacza z głośnikiem, konieczne jest, aby impedancja wyjściowa wzmacniacza była

A. wyższa od impedancji głośnika
B. zgodna z impedancją głośnika
C. niższa od impedancji głośnika
D. jak najniższa
Odpowiedź, którą wskazałeś, jest całkowicie na miejscu. W audio ważne jest, żeby impedancja wyjściowa wzmacniacza była taka sama jak impedancja głośnika. Dzięki temu energia jest przesyłana efektywnie, a dźwięk jest lepszej jakości. Gdy impedancje są zgodne, wzmacniacz i głośnik dobrze ze sobą współpracują, co minimalizuje straty energii. W praktyce, tak zwane dopasowanie impedancyjne ma ogromne znaczenie, zwłaszcza w systemach nagłośnieniowych, jak na koncertach czy w różnych instalacjach audio. Dobrze dobrany sprzęt pozwala uniknąć problemów z przesterowaniem, co może prowadzić do uszkodzeń. Dlatego warto zwracać uwagę na impedancję przy doborze wzmacniaczy i głośników – to podstawowa wiedza dla każdego, kto zajmuje się dźwiękiem.

Pytanie 7

W jaki sposób należy połączyć wyjście układu TTL z wejściem układu CMOS, gdy oba układy są zasilane napięciem +5 V?

A. Zastosować diodę separującą
B. Rozdzielić wejście-wyjście trymerem
C. Zastosować rezystor podciągający
D. Rozdzielić wejście-wyjście kondensatorem
Zastosowanie rezystora podciągającego do połączenia wyjścia układu TTL z wejściem układu CMOS jest właściwym rozwiązaniem, ponieważ pozwala na zapewnienie odpowiedniego poziomu napięcia na wejściu układu CMOS, co jest kluczowe dla jego poprawnej pracy. Układy CMOS charakteryzują się wysoką impedancją wejściową, co oznacza, że są bardzo wrażliwe na poziomy napięcia. Rezystor podciągający, podłączony do zasilania, pozwala na utrzymanie wysokiego poziomu logicznego (1) na wejściu nawet, gdy wyjście układu TTL jest w stanie wysokiej impedancji. Przykładem zastosowania tego rozwiązania może być sytuacja, gdy wyjście TTL jest odłączone lub nieaktywne, co mogłoby prowadzić do stanów nieokreślonych na wejściu CMOS. Właściwe wartości rezystora podciągającego są zazwyczaj w zakresie od 1 kΩ do 10 kΩ, co zapewnia odpowiednią równowagę między szybkością reakcji a poborem prądu. Dobre praktyki w zakresie projektowania układów cyfrowych zalecają stosowanie rezystorów podciągających, aby uniknąć przypadkowych przełączeń i zagwarantować stabilność działania układów współpracujących.

Pytanie 8

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie wspólnego kolektora, który odznacza się

A. wzmocnieniem napięciowym bliskim jedności
B. niską rezystancją wejściową
C. niskim wzmocnieniem prądowym
D. wysokim wzmocnieniem napięciowym
Wtórnik emiterowy, znany również jako wzmacniacz w konfiguracji wspólnego kolektora, ma kluczową cechę, jaką jest wzmocnienie napięciowe bliskie jedności. Oznacza to, że napięcie wyjściowe jest niemal równe napięciu wejściowemu, co sprawia, że jest idealnym rozwiązaniem w sytuacjach, gdy wymagane jest dopasowanie impedancji. Dzięki tej właściwości, wtórnik emiterowy znajduje szerokie zastosowanie w układach, gdzie potrzebne jest przetwarzanie sygnałów o wysokiej impedancji, takich jak czujniki lub mikrofony. W praktyce, wtórnik emiterowy jest często stosowany w interfejsach, które łączą elementy o różnych poziomach impedancji, co minimalizuje straty sygnału i zapewnia stabilną pracę całego układu. W kontekście dobrych praktyk inżynierskich, projektanci często wybierają tę konfigurację, aby ograniczyć wpływ obciążeń na źródło sygnału, co jest kluczowe w systemach audio i komunikacyjnych, gdzie jakość sygnału jest priorytetem.

Pytanie 9

Wykonano pomiary rezystancji Rab czujki ruchu typu NC połączonej w konfiguracji 2EOL/NC z rezystorami R1 = R2 = 1,1 kΩ zgodnie ze schematem. Na podstawie zamieszczonych w tabeli wyników pomiarów oraz schematu połączeń można stwierdzić, że

Stan
styków
naruszeniesabotażnaruszenie
i sabotaż
brak naruszenia
i sabotażu
Rab [kΩ]2,21,1

Ilustracja do pytania
A. czujka ruchu działa poprawnie.
B. uszkodzony jest wyłącznie styk NC.
C. uszkodzone są styki NC i TMP.
D. uszkodzony jest wyłącznie styk TMP.
Czujka ruchu działa poprawnie, co zostało potwierdzone pomiarami rezystancji R_ab wynoszącymi 1,1 kΩ w stanie braku naruszenia i sabotażu. Taka wartość odpowiada oczekiwanym wartościom dla sprawnych czujek tego typu, które powinny wykazywać stabilną rezystancję w czasie normalnej pracy. Dobrą praktyką w systemach zabezpieczeń jest regularne sprawdzanie rezystancji obwodów czujników, co pozwala na wczesne wykrywanie ewentualnych usterek. Na przykład, w instalacjach alarmowych, regularna konserwacja i testowanie czujników pozwala na zapewnienie ich niezawodności. Oprócz pomiarów rezystancji, warto również zwracać uwagę na inne parametry, takie jak czas reakcji czujnika czy jego zasięg działania. W przypadku czujek ruchu, zgodność z wartościami określonymi przez producenta jest kluczowa, ponieważ niewielkie odchylenia mogą wskazywać na problemy, które mogą zagrażać bezpieczeństwu. Dlatego też, w kontekście wymagań branżowych, zaleca się stosowanie odpowiednich protokołów testowania oraz dokumentowanie wyników, co przyczynia się do ogólnej poprawy efektywności systemów zabezpieczeń.

Pytanie 10

Sprzęt DVR w technologii 960H pozwala na rejestrację obrazu o maksymalnej rozdzielczości

A. 1280 x 720 px
B. 360 x 240 px
C. 960 x 582 px
D. 720 x 480 px
To prawda, że DVR w technologii 960H pozwala na zapis obrazu w rozdzielczości 960 x 582 px. Jak wiesz, to dzięki szerszemu formatowi obrazu, który jest uznawany za standard w monitoringu. Technologia 960H to coś więcej niż klasyczny D1, co oznacza lepszą jakość obrazu, bo zwiększa liczbę pikseli. Wyobraź sobie, że gdy używasz kamer o wyższej rozdzielczości, jak 960H, to możesz zobaczyć więcej szczegółów, a to jest naprawdę ważne, gdy musisz rozpoznać kogoś lub zobaczyć detale. W praktyce, te urządzenia są słynne w systemach zabezpieczeń, bo jakość nagrania ma ogromne znaczenie, prawda? Dodatkowo, branżowe organizacje, które zajmują się bezpieczeństwem, polecają stosowanie 960H, co świadczy o jego skuteczności.

Pytanie 11

Która z czynności związanych z konserwacją systemu alarmowego nie wymaga przestawienia centrali na tryb serwisowy?

A. Zamiana akumulatora
B. Wymiana czujnika PIR
C. Modyfikacja czasu na wejście
D. Korekta bieżącego czasu
Korekta bieżącego czasu w systemie alarmowym to ważna czynność, która nie wpływa na jego funkcjonalność ani bezpieczeństwo. Wprowadzenie centrali w tryb serwisowy jest wymagane w sytuacjach, które mogą wpływać na działanie systemu oraz jego zdolność do skutecznego reagowania na zagrożenia. Takie operacje jak wymiana akumulatora czy czujki PIR wiążą się z ryzykiem zakłócenia działania systemu, co może prowadzić do błędów w monitorowaniu i powiadamianiu o alarmach. Zmiana czasu na wejście, podobnie jak korekta bieżącego czasu, jest operacją czysto administracyjną, jednak istnieją różnice w ich wpływie na system. Korekta bieżącego czasu jest zazwyczaj realizowana podczas rutynowych przeglądów, co podkreśla znaczenie regularnej konserwacji. W dobrych praktykach branżowych wskazuje się, że administratorzy systemów alarmowych powinni regularnie monitorować i aktualizować czas w systemach, aby zapewnić ich adekwatne działanie. Ponadto, właściwe zarządzanie czasem jest kluczowe dla precyzyjnego rejestrowania zdarzeń, co jest istotne z perspektywy audytów bezpieczeństwa.

Pytanie 12

Aby zweryfikować prawidłowość działania generatora funkcyjnego, należy wykorzystać

A. omomierza
B. watomierza
C. amperomierza
D. oscyloskopu
Oscyloskop jest narzędziem niezbędnym do analizy sygnałów elektrycznych, w tym tych generowanych przez generator funkcyjny. Umożliwia wizualizację przebiegów napięcia w funkcji czasu, co pozwala na ocenę kształtu, częstotliwości oraz amplitudy sygnału. W praktyce, podczas testowania generatora funkcyjnego, oscyloskop pozwala na identyfikację zniekształceń sygnału, które mogą wpływać na jego poprawność działania. Na przykład, jeśli sygnał powinien mieć kształt fali sinusoidalnej, oscyloskop pozwala na natychmiastowe zidentyfikowanie ewentualnych zniekształceń, co jest kluczowe w aplikacjach audio oraz telekomunikacyjnych. Stosowanie oscyloskopów zgodnie z normami branżowymi, takimi jak IEC 61010, zapewnia bezpieczeństwo i dokładność pomiarów. Warto również zaznaczyć, że w zaawansowanych zastosowaniach oscyloskop umożliwia analizę sygnałów wielokanałowych, co jest istotne przy testowaniu układów cyfrowych i analogowych w nowoczesnych systemach elektronicznych.

Pytanie 13

Urządzenie, które automatycznie przerywa zasilanie, gdy prąd elektryczny wypływający z obwodu różni się od prądu wpływającego, to

A. bezpiecznik wymienny
B. ochronnik przeciwprzepięciowy
C. wyłącznik różnicowoprądowy
D. wyłącznik nadmiarowoprądowy
Wyłącznik różnicowoprądowy (RCD) to urządzenie, które monitoruje różnice między prądem wpływającym a wypływającym z obwodu elektrycznego. Gdy ta różnica przekracza ustalony próg, wyłącznik automatycznie odcina zasilanie, co ma na celu ochronę przed porażeniem prądem oraz pożarami spowodowanymi uszkodzeniem izolacji. Przykłady zastosowania obejmują instalacje w łazienkach, kuchniach oraz w miejscach, gdzie występuje zwiększone ryzyko kontaktu z wodą. Zgodnie z normami IEC 61008, RCD powinny być stosowane w obwodach o napięciu do 400 V, szczególnie w miejscach publicznych i mieszkalnych. Stosowanie wyłączników różnicowoprądowych jest standardem w nowoczesnych instalacjach elektrycznych, a ich regularne testowanie jest zalecane przez przepisy budowlane oraz normy bezpieczeństwa.

Pytanie 14

Serwisant otrzymał zgłoszenie od użytkownika tunera satelitarnego, który nie odbiera sygnału tylko na programach z polaryzacją V. Sygnał z anteny jest dostarczany do gniazda poprzez multiswitch. Jaką usterkę można podejrzewać?

A. Uszkodzony multiswitch
B. Usterka w głowicy tunera
C. Zniszczone gniazdo antenowe
D. Brak zasilania multiswitcha
Uszkodzony multiswitch to prawdopodobna przyczyna braku sygnału wyłącznie na programach z polaryzacją V. Multiswitch jest urządzeniem, które rozdziela sygnały z anteny satelitarnej na wiele wyjść, umożliwiając odbiór na różnych dekoderach. Każda polaryzacja (H i V) wymaga poprawnego działania multiswitcha, a jego uszkodzenie może prowadzić do sytuacji, w której jedna z polaryzacji nie jest właściwie przesyłana. W praktyce, przy uszkodzeniu multiswitcha, dekoder może odbierać sygnał z polaryzacji H, ale całkowicie tracić sygnał z polaryzacji V. Warto również sprawdzić, czy zasilanie multiswitcha jest prawidłowe i czy nie występują fizyczne uszkodzenia. Zgodnie z dobrymi praktykami serwisowymi, zaleca się regularne testowanie i konserwację sprzętu, aby uniknąć takich problemów. Ponadto, na etapie diagnostyki dobrze jest używać odpowiednich narzędzi, takich jak mierniki sygnału, aby dokładnie określić, gdzie leży problem z sygnałem.

Pytanie 15

Jakie urządzenie pozwala na podłączenie wielu urządzeń sieciowych do jednej sieci LAN?

A. Serwer.
B. Przełącznik.
C. Wzmacniak.
D. Modulator.
Przełącznik, znany również jako switch, to urządzenie sieciowe, które umożliwia połączenie wielu urządzeń w jednej sieci LAN (Local Area Network). Jego główną funkcją jest inteligentne zarządzanie ruchem danych, co pozwala na przesyłanie informacji tylko między urządzeniami, które tego potrzebują, co zwiększa efektywność sieci. Przełączniki operują na warstwie drugiej modelu OSI, co oznacza, że wykorzystują adresy MAC do zidentyfikowania urządzeń w sieci. W praktyce, przełączniki pozwalają na połączenie komputerów, drukarek, serwerów oraz innych urządzeń w biurach czy domach. Dzięki technologii VLAN (Virtual Local Area Network), przełączniki umożliwiają także segmentację sieci, co poprawia bezpieczeństwo i wydajność. Współczesne przełączniki często oferują dodatkowe funkcje, takie jak PoE (Power over Ethernet), co pozwala na zasilanie urządzeń, takich jak kamery IP lub punkty dostępu, za pomocą tego samego kabla, który przesyła dane. W kontekście najlepszych praktyk, korzystanie z przełączników zamiast hubów jest standardem, ponieważ przełączniki znacznie redukują kolizje sieciowe i zwiększają przepustowość.

Pytanie 16

W regulatorze PID wystąpiła awaria, która powoduje, że uchyb ustalony nie zmierza do 0. Przyczyną problemu może być uszkodzenie w elemencie

A. inercyjnym
B. całkującym
C. proporcjonalnym
D. różniczkującym
Odpowiedź, że uszkodzenie członu całkującego jest przyczyną uchybu ustalonego, który nie dąży do zera, jest prawidłowa. W regulatorze PID człon całkujący pełni kluczową rolę w eliminacji uchybu ustalonego poprzez akumulację błędów w czasie. Działa na zasadzie sumowania błędów, co powoduje, że jeśli uchyb nie jest zerowy, wartość sygnału wyjściowego reguluje się w kierunku eliminacji tego uchybu. Uszkodzenie tego członu sprawia, że nie dochodzi do akumulacji, co skutkuje stałym uchybem. W praktycznych zastosowaniach, takich jak kontrola temperatury czy ciśnienia, skuteczność regulacji oparta na członie całkującym jest niezbędna dla osiągnięcia stabilności i precyzyjnego utrzymania zadanej wartości. Stosując regulację PID w przemyśle, kluczowe jest regularne monitorowanie pracy członu całkującego oraz diagnostyka systemu, aby zapobiegać sytuacjom, w których uchyb ustalony nie zbiega do zera, co może prowadzić do poważnych problemów w procesach technologicznych.

Pytanie 17

Tranzystor pracuje w układzie wspólnego emitera. Podstawowym zadaniem zaznaczonego na rysunku kondensatora C w tym układzie jest

Ilustracja do pytania
A. ograniczenie od góry pasma przenoszenia układu.
B. odseparowanie składowej stałej napięcia wyjściowego.
C. realizacja pętli ujemnego sprzężenia zwrotnego.
D. minimalizacja wpływu tętnień napięcia zasilającego.
Wiesz, kondensator C w układzie wspólnego emitera to naprawdę ważny element. Jego rola polega na tym, żeby oddzielić składową stałą od zmiennej. Dzięki niemu sygnały zmienne mogą swobodnie przechodzić, a składowa stała zostaje zablokowana. To jest super istotne, zwłaszcza w wzmacniaczach. Jak masz różne stopnie wzmacniacza, to każdy z nich może działać na swoim punkcie pracy, co w praktyce przekłada się na lepszą jakość sygnału wyjściowego. A to ma znaczenie, zwłaszcza w audio, bo każdy chce mieć czystszy dźwięk. W projektach wzmacniaczy fajnie jest mieć takie kondensatory, bo pomagają w stabilizacji całego układu i zmniejszają zakłócenia. To jest zgodne z tym, co się robi w inżynierii elektronicznej. I wiesz, nowoczesne wzmacniacze operacyjne też często z tego korzystają, żeby wszystko działało jak najlepiej.

Pytanie 18

Jaką funkcję pełni soczewka Fresnela w czujkach ruchu typu PIR?

A. jest komponentem wyłącznie dekoracyjnym
B. ma za zadanie skupiać wiązki detekcji na pyroelemencie
C. emituje promieniowanie podczerwone w stronę intruza
D. gwarantuje efektywne działanie systemu przeciwsabotażowego
Soczewka Fresnela w czujkach ruchu typu PIR (Passive Infrared) pełni kluczową rolę jako element skupiający wiązki detekcji na pyroelemencie. Jej konstrukcja, składająca się z wielu segmentów, pozwala na efektywne zbieranie promieniowania podczerwonego emitowanego przez obiekty w ruchu. Dzięki zastosowaniu soczewek Fresnela, czujniki PIR mogą wykrywać ruch w szerszym zakresie i z większą precyzją, co jest szczególnie istotne w systemach zabezpieczeń. Przykładowo, w zastosowaniach domowych lub komercyjnych, soczewki te mogą być używane w alarmach antywłamaniowych, a także w automatycznych systemach oświetleniowych, które włączają się tylko wtedy, gdy wykryją obecność osoby. W praktyce oznacza to, że czujniki z soczewkami Fresnela są bardziej niezawodne i efektywne w wykrywaniu intruzów, co zwiększa bezpieczeństwo obiektów. Standardy branżowe, takie jak EN 50131, podkreślają znaczenie efektywności detekcji w systemach alarmowych, co czyni soczewki Fresnela niezbędnym elementem nowoczesnych rozwiązań zabezpieczających.

Pytanie 19

Dodatnie sprzężenie zwrotne polega na tym, że część sygnału

A. wyjściowego zostaje przekazywana na wejście w fazie z sygnałem wejściowym
B. wejściowego jest przekazywana na wyjście w fazie z sygnałem wyjściowym
C. wyjściowego trafia na wejście w przeciwfazie do sygnału wyjściowego
D. wejściowego kierowana jest na wyjście w przeciwfazie z sygnałem wyjściowym
Odpowiedź, że dodatnie sprzężenie zwrotne polega na przekazywaniu sygnału wyjściowego na wejście w fazie z sygnałem wejściowym, jest poprawna, ponieważ dodatnie sprzężenie zwrotne rzeczywiście polega na wzmocnieniu sygnału. W praktyce oznacza to, że sygnał wyjściowy jest dodawany do sygnału wejściowego, co prowadzi do zwiększenia wartości sygnału w systemie. Takie podejście jest powszechnie stosowane w różnych systemach, takich jak wzmacniacze audio, gdzie dążymy do uzyskania intensyfikacji dźwięku. Dodatnie sprzężenie zwrotne znajduje zastosowanie także w systemach stabilizacji, takich jak kontrola temperatury, gdzie zwiększenie sygnału może prowadzić do szybszego osiągnięcia pożądanej wartości. Standardowe praktyki inżynieryjne zalecają ostrożne stosowanie dodatniego sprzężenia zwrotnego, ponieważ może ono prowadzić do niestabilności systemu i oscylacji, jeśli nie jest odpowiednio zaprojektowane. Kluczowe jest zrozumienie, że dodatnie sprzężenie zwrotne wzmacnia sygnał, co może przynieść zarówno korzyści, jak i ryzyko, dlatego wymaga odpowiedniej analizy i projektowania.

Pytanie 20

Sieć komputerowa, która rozciąga się poza granice miast, krajów lub kontynentów, jest siecią

A. PAN
B. MAN
C. WAN
D. LAN
Sieć WAN (Wide Area Network) to typ sieci komputerowej, której zasięg geograficzny wykracza poza granice pojedynczego miasta, państwa, a nawet kontynentu. WAN jest używana do łączenia lokalnych sieci, takich jak LAN (Local Area Network), w celu umożliwienia komunikacji na dużą odległość. Przykładem zastosowania sieci WAN są połączenia między biurami korporacji działających w różnych krajach, które wykorzystują takie technologie jak MPLS (Multi-Protocol Label Switching) czy VPN (Virtual Private Network) do zapewnienia bezpiecznego transportu danych. WAN jest również kluczowym elementem infrastruktury Internetu, gdzie różne dostawcy usług internetowych łączą swoje sieci, tworząc globalną sieć komunikacyjną. W kontekście standardów, WAN opiera się na różnych protokołach komunikacyjnych, takich jak TCP/IP, które pozwalają na niezawodne przesyłanie danych na dużych odległościach. Dobry projekt sieci WAN powinien zapewniać wysoką dostępność, bezpieczeństwo oraz odpowiednią przepustowość, co można osiągnąć poprzez zastosowanie technologii redundancji i optymalizacji tras.

Pytanie 21

Aby zmierzyć moc czynną urządzenia działającego w obwodzie prądu stałego metodą techniczną, jakie przyrządy należy zastosować?

A. woltomierz i amperomierz
B. watomierz
C. dwa woltomierze
D. dwa amperomierze
Pomiar mocy czynnej w obwodach prądu stałego jest kluczowym zagadnieniem w elektrotechnice, a zastosowanie woltomierza i amperomierza to standardowa metoda na jej określenie. Aby obliczyć moc czynną, wykorzystujemy wzór P = U * I, gdzie P to moc, U to napięcie, a I to natężenie prądu. Woltomierz służy do pomiaru napięcia na odbiorniku, natomiast amperomierz mierzy natężenie prądu przepływającego przez ten sam obwód. Praktyczne zastosowanie tej metody można zaobserwować w laboratoriach, gdzie inżynierowie i technicy często mierzą moc urządzeń, takich jak silniki elektryczne czy elementy grzejne, aby ocenić ich efektywność energetyczną. W branży energetycznej stosuje się również normy IEC 61010, które określają wymagania dotyczące bezpieczeństwa w urządzeniach pomiarowych. Właściwe zastosowanie woltomierza i amperomierza pozwala na precyzyjne monitorowanie i optymalizację zużycia energii w różnych zastosowaniach, co jest istotne z perspektywy zrównoważonego rozwoju i efektywności energetycznej.

Pytanie 22

Podczas konserwacji systemu sygnalizacji włamania i napadu nie jest konieczne sprawdzenie

A. działania obwodów sabotażowych
B. działania czujek alarmowych
C. poziomu naładowania akumulatora
D. wysokości zamontowania manipulatora
Wysokość zamontowania manipulatora nie jest elementem, który wpływa na funkcjonalność systemu sygnalizacji włamania i napadu, co czyni tę odpowiedź prawidłową. W ramach konserwacji systemu kluczowe jest sprawdzenie działania obwodów sabotażowych, poziomu naładowania akumulatora oraz czujek alarmowych. Obwody sabotażowe mają na celu zabezpieczenie urządzeń przed próbami ich usunięcia lub zniszczenia, co jest kluczowe dla utrzymania integralności systemu. Poziom naładowania akumulatora jest istotny, aby zapewnić ciągłość zasilania w przypadku awarii energetycznej, a czujki alarmowe są pierwszym ogniwem detekcji intruza. Dlatego w praktyce, podejście do konserwacji powinno uwzględniać te elementy w celu zapewnienia sprawności systemu. Zgodnie z normami branżowymi, regularne przeglądy tych komponentów powinny być integralną częścią procedur konserwacyjnych, co zapewnia bezpieczeństwo użytkowników oraz ich mienia.

Pytanie 23

Aby przeprowadzić demontaż uszkodzonego regulatora PID zamontowanego na szynie DIN, należy postępować zgodnie z poniższą kolejnością:

A. odkręcić przewody, odpiąć regulator z szyny, odłączyć zasilanie
B. odłączyć zasilanie, odpiąć regulator z szyny, odkręcić przewody
C. odłączyć zasilanie, odkręcić przewody, odpiąć regulator z szyny
D. odpiąć regulator z szyny, odłączyć zasilanie, odkręcić przewody
Poprawna odpowiedź opiera się na zasadach bezpieczeństwa oraz najlepszych praktykach w pracy z urządzeniami elektrycznymi. Pierwszym krokiem jest odłączenie napięcia, co jest kluczowe dla zapewnienia bezpieczeństwa podczas demontażu. W przeciwnym razie istnieje ryzyko porażenia prądem, co może prowadzić do poważnych obrażeń. Następnie, odkręcenie przewodów jest niezbędne, aby uniknąć ich uszkodzenia w trakcie usuwania regulatora PID. W momencie, gdy przewody są odkręcone, można bezpiecznie odpiąć regulator z szyny DIN. Proces ten jest zgodny z normami BHP (Bezpieczeństwa i Higieny Pracy), które stanowią fundament w każdej branży zajmującej się instalacjami elektrycznymi. Zastosowanie odpowiedniej kolejności działań minimalizuje ryzyko awarii sprzętu oraz zwiększa ogólną efektywność pracy. Przykładem praktycznym może być serwisowanie systemów automatyki przemysłowej, gdzie błędne podejście do demontażu może prowadzić do przestojów w produkcji.

Pytanie 24

Jaką kluczową rolę w tunerze satelitarnym pełni moduł CI (Common Interface)?

A. Daje możliwość aktualizacji oprogramowania tunera.
B. Funkcjonuje jako czytnik kart dostępu.
C. Pozwala na podłączenie pamięci zewnętrznej.
D. Służy do łączenia urządzeń audio-video.
Moduł CI (Common Interface) w tunerze satelitarnym pełni kluczową rolę jako czytnik kart kodowych, co umożliwia dostęp do zaszyfrowanych kanałów telewizyjnych. System ten pozwala na korzystanie z różnych usług dostarczanych przez operatorów telewizji, którzy wykorzystują karty dostępu, aby chronić swoje treści przed nieautoryzowanym dostępem. W praktyce oznacza to, że użytkownik może włożyć kartę z subskrypcją do modułu CI, co umożliwia dekodowanie sygnału i tym samym oglądanie programów telewizyjnych. Moduł CI jest zgodny z różnymi standardami, takimi jak DVB (Digital Video Broadcasting), co zapewnia jego szeroką kompatybilność z wieloma modelami tunerów i telewizorów. Dzięki temu rozwiązaniu, użytkownicy nie są zmuszeni do korzystania z zewnętrznych dekoderów, co upraszcza instalację i obsługę ich systemów telewizyjnych. Warto również zauważyć, że metoda ta jest stosowana nie tylko w telewizji satelitarnej, ale również w kablowej, co czyni ją uniwersalnym rozwiązaniem w branży telekomunikacyjnej.

Pytanie 25

Wtórnik emiterowy to wzmacniacz z tranzystorem w układzie

A. wspólnego emitera
B. wspólnego kolektora
C. wspólnej bazy
D. wspólnego źródła
Wtórnik emiterowy, który często nazywamy wzmacniaczem w konfiguracji wspólnego kolektora, to jeden z fundamentalnych typów wzmacniaczy tranzystorowych. Co jest w nim fajne? To, że sygnał wyjściowy bierzemy z kolektora, a nie z emitera. Dzięki temu ten wzmacniacz świetnie nadaje się do sytuacji, gdzie potrzebujemy zwiększyć prąd, ale nie chcemy za bardzo podnosić napięcia sygnału. W praktyce często spotyka się go w interfejsach sygnałowych, gdzie łączy się różne elementy obwodu. Przydatne jest to, że ma niski opór wyjściowy i dużą impedancję wejściową, więc zazwyczaj wykorzystuje się go jako bufor między różnymi etapami układów elektronicznych. W dziedzinie audio ten typ wzmacniacza pozwala świetnie wzmocnić sygnał bez wpływania na jego jakość. Z mojego doświadczenia, stosowanie wtórnika emiterowego pomaga też w eliminacji zakłóceń i zniekształceń, co jest mega istotne w aplikacjach, gdzie precyzja ma znaczenie.

Pytanie 26

Temperatura złącza diody osiąga 80 °C przy mocy strat wynoszącej 100 mW, a temperatura otoczenia wynosi 20 °C. Jaką całkowitą rezystancję termiczną ma ta dioda od złącza przez obudowę do otoczenia?

A. 1 000 K/W
B. 800 K/W
C. 200 K/W
D. 600 K/W
Poprawna odpowiedź wynika z zastosowania podstawowych zasad obliczania rezystancji termicznej, która jest kluczowym parametrem w kontekście zarządzania ciepłem w komponentach elektronicznych. Aby obliczyć rezystancję termiczną, używamy wzoru: Rth = (Tj - Ta) / P, gdzie Tj to temperatura złącza, Ta to temperatura otoczenia, a P to moc strat. W naszym przypadku mamy Tj = 80 °C, Ta = 20 °C oraz P = 100 mW. Wstawiając te wartości do wzoru, otrzymujemy: Rth = (80 °C - 20 °C) / 0,1 W = 600 K/W. W praktyce, ta wiedza jest niezwykle istotna w projektowaniu układów elektronicznych, gdzie odpowiednie odprowadzanie ciepła wpływa na stabilność i żywotność komponentów. W przypadku diod, zrozumienie rezystancji termicznej pozwala inżynierom na dobór odpowiednich materiałów i metod chłodzenia, co jest zgodne z najlepszymi praktykami w inżynierii elektrycznej.

Pytanie 27

HDMI to standard wykorzystywany do przesyłania sygnału

A. cyfrowego dźwięku
B. analogowego obrazu i dźwięku
C. analogowego obrazu
D. cyfrowego wideo i dźwięku
HDMI, czyli High-Definition Multimedia Interface, to standardowy interfejs stworzony do przesyłania sygnałów wysokiej jakości audio i wideo w postaci cyfrowej. Umożliwia on jednoczesne przesyłanie wielu kanałów audio oraz obrazu w rozdzielczości HD i wyższej. W praktyce oznacza to, że podłączając urządzenie, takie jak telewizor czy monitor, do źródła sygnału, na przykład odtwarzacza Blu-ray czy komputera, użytkownik może cieszyć się krystalicznie czystym dźwiękiem i obrazem bez strat jakości. HDMI stało się de facto standardem w elektronice użytkowej, a jego wszechstronność znajduje zastosowanie w telewizorach, projektorach, konsolach do gier oraz systemach kina domowego. Dodatkowo, HDMI obsługuje różne technologie, takie jak CEC (Consumer Electronics Control), które pozwala na sterowanie wieloma urządzeniami za pomocą jednego pilota. Warto również wspomnieć o różnych wersjach HDMI, które oferują różne możliwości, między innymi obsługę 4K czy HDR, co dodatkowo zwiększa jego użyteczność w nowoczesnych zastosowaniach multimedialnych.

Pytanie 28

W urządzeniu elektronicznym doszło do uszkodzenia kondensatora ceramicznego o oznaczeniu 104 100 V. Jaki kondensator należy zastosować w jego miejsce?

A. 1000 nF 1000 V
B. 100 nF 100 V
C. 10 nF 1000 V
D. 10 nF 100 V
Odpowiedź "100 nF 100 V" jest poprawna, ponieważ kondensator oznaczony jako "104 100 V" wskazuje na pojemność 100 nF i maksymalne napięcie robocze 100 V. Oznaczenie "104" oznacza, że dwie pierwsze cyfry to znaczące liczby (10), a trzecia cyfra to mnożnik, który w tym przypadku wynosi 10^4 pF, co daje 100000 pF, co po przeliczeniu daje 100 nF. Napięcie znamionowe wynosi 100 V, co jest zgodne z wymaganiami dla aplikacji elektronicznych. W praktycznych zastosowaniach kondensatory ceramiczne o pojemności 100 nF są powszechnie stosowane w filtrach, układach czasowych oraz w obwodach zasilających, gdzie stabilność i niskie straty są kluczowe. Warto pamiętać, że dobór kondensatora powinien być zgodny z normami branżowymi, takimi jak IEC 60384, które określają parametry bezpieczeństwa i jakości dla komponentów elektronicznych.

Pytanie 29

Aby zrealizować pomiar efektywności energetycznej zasilacza stabilizowanego pracującego w trybie ciągłym, należy użyć dwóch

A. amperomierzy
B. watomierzy
C. omomierzy
D. woltomierzy
Wybór watomierzy jako narzędzi do pomiaru sprawności energetycznej zasilacza stabilizowanego o działaniu ciągłym jest uzasadniony ich specyficzną funkcjonalnością. Watomierz pozwala na bezpośredni pomiar mocy czynnej, co jest kluczowe w ocenie efektywności energetycznej urządzeń elektrycznych. Mierząc moc, można obliczyć sprawność, dzieląc moc wyjściową przez moc wejściową zasilacza. Przykładowo, w zastosowaniach przemysłowych, gdzie zasilacze są używane do zasilania silników czy systemów automatyki, stosowanie watomierzy pozwala na monitorowanie zużycia energii i identyfikację potencjalnych oszczędności. Zgodnie z najlepszymi praktykami branżowymi, regularne pomiary i analiza sprawności energetycznej mogą prowadzić do optymalizacji kosztów operacyjnych oraz zmniejszenia wpływu na środowisko.

Pytanie 30

Adresy fizyczne MAC w sieciach komputerowych są początkowo przydzielane przez

A. dostawcę usług internetowych
B. zarządcę sieci lokalnej
C. producenta karty sieciowej
D. indywidualnego użytkownika sieci
Adresy fizyczne MAC (Media Access Control) są unikalnymi identyfikatorami przypisywanymi do interfejsów sieciowych urządzeń. Te adresy są nadawane przez producenta karty sieciowej i są zapisywane w trwałej pamięci sprzętowej urządzenia, co zapewnia ich unikalność i stałość. Adres MAC składa się z 48-bitowego numeru, który jest zazwyczaj przedstawiany w postaci 12-cyfrowego heksadecymalnego ciągu, podzielonego na sześć par. Standard IEEE 802.3 definiuje sposób komunikacji w sieciach lokalnych oraz znaczenie adresów MAC. Przykładem zastosowania adresów MAC jest ich użycie w protokołach takich jak Ethernet, gdzie umożliwiają one identyfikację urządzeń w sieci i kierowanie danych w odpowiednie miejsca. W praktyce, jeśli dwa urządzenia chcą wymienić informacje w sieci lokalnej, adres MAC jednego z nich będzie wskazywał, do którego urządzenia mają być przekazywane dane, co jest kluczowe dla poprawnego działania komunikacji w sieci.

Pytanie 31

W systemie z wzmacniaczem oraz głośnikiem kluczowe jest z perspektywy efektywności układu, aby impedancja głośnika

A. była jak najmniejsza
B. przekraczała impedancję wyjściową wzmacniacza
C. była jak największa
D. była równa impedancji wyjściowej wzmacniacza
Poprawną odpowiedzią jest "równa impedancji wyjściowej wzmacniacza", gdyż zasadniczym celem w projektowaniu systemów audio jest osiągnięcie maksymalnej efektywności energetycznej. Zasada dopasowania impedancji wskazuje, że impedancja głośnika powinna być zgodna z impedancją wyjściową wzmacniacza, co minimalizuje straty energii. W praktyce, jeśli impedancja głośnika jest na poziomie 8 Ohm, a wzmacniacz ma impedancję wyjściową również 8 Ohm, to cała moc wyjściowa wzmacniacza zostanie przekazana do głośnika, co zapewnia optymalne wykorzystanie energii i jakość dźwięku. Niedopasowanie impedancji prowadzi do strat mocy, co skutkuje niższą głośnością oraz zniekształceniami dźwięku. Dlatego ważne jest, aby przy wyborze głośników do wzmacniaczy, uwzględniać parametry techniczne, takie jak impedancja, zgodnie z zaleceniami producentów sprzętu audio. Warto również pamiętać, że standardy branżowe, takie jak AES (Audio Engineering Society), promują stosowanie dopasowania impedancji dla poprawy jakości dźwięku w systemach audio.

Pytanie 32

Układ do pomiaru, który umożliwia dokładne ustalanie małych i bardzo małych rezystancji, to mostek

A. Thomsona
B. Wheatstone’a
C. Wiena
D. Maxwella
Mostek Thomsona jest zaawansowanym układem pomiarowym, który wykorzystywany jest do precyzyjnego pomiaru małych i bardzo małych rezystancji. Jego działanie opiera się na wykorzystaniu zjawiska odbicia prądu oraz równowagi w układzie, co pozwala na uzyskanie bardzo wysokiej dokładności pomiaru. W praktyce mostek Thomsona znajduje zastosowanie w laboratoriach badawczych, przemysłowych oraz w produkcji elektroniki, gdzie wymagana jest ocena materiałów o niskiej rezystancji, takich jak superprzewodniki czy czułe elementy elektroniczne. Jego konstrukcja umożliwia kompensację wpływu temperatury i innych czynników zewnętrznych, co jest kluczowe w kontekście pomiarów w trudnych warunkach. W praktycznych zastosowaniach, mostek Thomsona jest również wykorzystywany do kalibracji innych urządzeń pomiarowych, co podkreśla jego znaczenie w standardach branżowych oraz dobrych praktykach pomiarowych.

Pytanie 33

Uchyb regulacji wynoszący 0 umożliwia działanie regulatora typu

A. ciągłym typu PI
B. ciągłym typu PD
C. nieciągłym, dwupołożeniowym
D. nieciągłym, trójpołożeniowym
Odpowiedź "ciągłym typu PI" jest prawidłowa, ponieważ regulator PI (proporcjonalno-całkujący) jest idealnym rozwiązaniem dla systemów, w których uchyb regulacji (czyli różnica między wartością zadaną a wartością rzeczywistą) równy 0 wskazuje na stabilność układu. Regulator PI działa poprzez wykorzystanie składowej proporcjonalnej oraz całkującej, co pozwala na efektywne eliminowanie uchybu ustalonego w systemach zamkniętej pętli. Przykładem zastosowania regulatorów PI może być kontrola temperatury w piecach przemysłowych, gdzie precyzyjne utrzymywanie zadanej temperatury jest kluczowe dla jakości produkcji. Regulatory PI są stosowane w branżach takich jak automatyka przemysłowa, procesy chemiczne oraz w systemach HVAC. Dzięki swojej prostocie i efektywności, są szeroko stosowane w praktyce inżynieryjnej, zgodnie z najlepszymi praktykami branżowymi, w tym normami IEC 61131 dla systemów automatyki. Warto również zauważyć, że regulacja PI jest często preferowana w układach o małej dynamice, gdzie szybkość reakcji nie jest kluczowym czynnikiem.

Pytanie 34

W trakcie regularnych przeglądów nie przeprowadza się

A. pomiarów weryfikacyjnych
B. oceny stanu technicznego
C. analizy funkcjonowania urządzeń
D. instalacji nowych urządzeń
Instalacja nowych urządzeń nie jest częścią zakresu działań związanych z okresowymi przeglądami. Okresowe przeglądy są kluczowym procesem w zarządzaniu i konserwacji urządzeń technicznych, mającym na celu zapewnienie ich prawidłowego funkcjonowania oraz bezpieczeństwa użytkowników. W ich ramach dokonuje się analizy działania istniejących urządzeń, które obejmuje ocenę efektywności ich pracy oraz identyfikację potencjalnych problemów mogących wpłynąć na ich funkcjonowanie. Przykładem może być regularne sprawdzanie i kalibracja czujników w systemach automatyki przemysłowej, co pozwala na utrzymanie ich w optymalnym stanie. Niezwykle istotnym aspektem przeglądów jest także ocena stanu technicznego, która umożliwia wczesne wykrywanie uszkodzeń lub zużycia komponentów. Pomiary sprawdzające, takie jak testy wydajności czy pomiary napięcia, są kluczowe w zapewnieniu, że urządzenia działają zgodnie z wymaganiami norm i standardów bezpieczeństwa. W związku z tym, instalacja nowych urządzeń powinna być planowana jako osobny proces, związany z modernizacją lub rozbudową infrastruktury, a nie jako część rutynowych przeglądów.

Pytanie 35

Elementem systemu alarmowego jest

A. czujka PIR
B. unifon
C. elektrozaczep
D. konwerter
Czujka PIR (Passive Infrared Sensor) jest kluczowym podzespołem systemów alarmowych, odpowiedzialnym za wykrywanie ruchu poprzez monitorowanie zmian w promieniowaniu podczerwonym emitowanym przez obiekty znajdujące się w jej zasięgu. Działa na zasadzie detekcji ciepła emitowanego przez ludzi i zwierzęta, co sprawia, że jest niezwykle skuteczna w zabezpieczaniu różnych obiektów. Przykładem zastosowania czujek PIR jest ich montaż w strefach wejściowych do budynków, gdzie mogą wykrywać intruzów przed wejściem do środka. Standardy ISO 9001 oraz EN 50131 wskazują na znaczenie takich czujników w systemach zabezpieczeń, gwarantując ich niezawodność i efektywność. Dobrą praktyką jest również ich integracja z systemami alarmowymi, co pozwala na automatyczne uruchamianie alarmów w przypadku detekcji ruchu, co znacząco zwiększa bezpieczeństwo obiektu.

Pytanie 36

Jakiego przyrządu pomiarowego powinno się użyć do zmierzenia wartości skutecznej napięcia prostokątnego o częstotliwości 100 Hz?

A. Woltomierza AC z opcją TRUE RMS
B. Woltomierza AC bez opcji TRUE RMS
C. Galwanometru do pomiaru napięcia zmiennego
D. Galwanometru do pomiaru napięcia stałego
Woltomierz AC z funkcją TRUE RMS jest odpowiednim narzędziem do pomiaru wartości skutecznej napięcia przebiegu prostokątnego, zwłaszcza przy częstotliwości 100 Hz. Funkcja TRUE RMS (Root Mean Square) pozwala na dokładne określenie wartości skutecznej napięcia, niezależnie od kształtu jego przebiegu. W przypadku przebiegów prostokątnych, które mają wyraźnie zdefiniowane wartości szczytowe, tradycyjne woltomierze AC bez funkcji TRUE RMS mogą dawać zafałszowane wyniki, ponieważ są zaprojektowane do pomiaru przebiegów sinusoidalnych. Użycie woltomierza z funkcją TRUE RMS jest zgodne z najlepszymi praktykami w pomiarach elektrycznych, co zapewnia rzetelność wyników. Przykładowo, w zastosowaniach przemysłowych, gdzie często spotyka się różnorodne kształty przebiegów napięcia, posługiwanie się woltomierzem TRUE RMS jest kluczowe dla precyzyjnej analizy parametrów elektrycznych urządzeń, takich jak silniki elektryczne czy generatory. Takie podejście zwiększa efektywność diagnostyki i pozwala na lepsze zarządzanie energią.

Pytanie 37

Rozpoczynając wymianę przekaźnika w obwodzie sterującym, pierwszym krokiem powinno być

A. zdjąć przekaźnik z szyny TH-35
B. odłączyć przewody podłączone do styków przekaźnika
C. odłączyć przewody podłączone do cewki przekaźnika
D. wyłączyć napięcie w obwodzie sterowania
Wyłączenie napięcia w obwodzie sterowania przed przystąpieniem do wymiany przekaźnika jest kluczowym krokiem w zapewnieniu bezpieczeństwa pracy z urządzeniami elektrycznymi. Wszelkie prace w obrębie instalacji elektrycznych powinny być zgodne z zasadami BHP, które nakazują zawsze zaczynać od odłączenia zasilania. Przykładowo, wyłączając napięcie, minimalizujemy ryzyko porażenia prądem, które może wystąpić, gdy nieświadomie dotkniemy przewodów pod napięciem. Zgodnie z normą PN-EN 50110-1, każdy operator powinien być świadomy niebezpieczeństw związanych z pracą przy urządzeniach elektrycznych i stosować odpowiednie procedury. Dodatkowo, wyłączenie zasilania pozwala na spokojne i dokładne przeprowadzenie wymiany przekaźnika, co jest kluczowe dla prawidłowego funkcjonowania całego systemu. Nieprzestrzeganie tej zasady może prowadzić do poważnych uszkodzeń urządzeń oraz zagrażać zdrowiu osób pracujących w pobliżu.

Pytanie 38

Która z funkcji w oprogramowaniu EDA zajmuje się wyznaczaniem ścieżek przy projektowaniu układów PCB?

A. RuleCheck
B. Placing
C. Annotation
D. Routing
Routing to kluczowa funkcja w programach EDA (Electronic Design Automation), która odpowiada za wytyczanie ścieżek w projektowaniu obwodów drukowanych (PCB). Proces ten polega na automatycznym lub półautomatycznym tworzeniu połączeń między komponentami na płycie, zgodnie z określonymi regułami projektowymi i wymaganiami elektrycznymi. Dobrze zaprojektowany routing nie tylko zapewnia prawidłowe połączenia, ale również minimalizuje interferencje elektromagnetyczne, optymalizuje długości ścieżek oraz ułatwia proces produkcji. W praktyce, inżynierowie często korzystają z algorytmów routingu, które uwzględniają różne czynniki, takie jak szerokość ścieżek, odstępy między nimi, a także charakterystykę sygnałów. Zgodnie z najlepszymi praktykami, routing powinien być wykonywany z uwzględnieniem zasad projektowania, takich jak DFM (Design for Manufacturing) i DFT (Design for Testability), co przyczynia się do efektywności produkcji i późniejszej diagnostyki.

Pytanie 39

Jaki parametr fali nośnej zmienia się w trakcie modulacji AM sygnałem o częstotliwości 1 kHz?

A. Intensywność
B. Częstotliwość
C. Kąt fazowy
D. Częstotliwość kołowa
Modulacja amplitudy, czyli AM, to nic innego jak zmiana wysokości fali nośnej w zależności od sygnału, który chcemy przesłać. Kiedy mamy sygnał audio z częstotliwością 1 kHz, to amplituda fali nośnej dostosowuje się tak, aby pokazać zmiany w dźwięku, co ułatwia przesyłanie informacji. Na przykład, jeśli głośność sygnału audio się zmienia, to amplituda fali nośnej także zmienia się, co prowadzi do różnych poziomów sygnału radiowego. AM to jedna z najstarszych metod, którą stosujemy w radiu i pomaga nam efektywnie przesyłać dźwięk na długie odległości przy w miarę dobrej jakości. Warto pamiętać, że podczas modulacji AM kluczowe są zmiany amplitudy, które przenoszą informacje o sygnale audio, co jest mega ważne w radiach i komunikacji.

Pytanie 40

Kto głównie korzysta z instrukcji serwisowych?

A. osoby użytkujące sprzęt
B. osoby naprawiające uszkodzony sprzęt
C. osoby dostarczające sprzęt do klienta
D. osoby sprzedające sprzęt
Instrukcje serwisowe są kluczowym narzędziem dla osób zajmujących się naprawą uszkodzonego sprzętu. Zawierają one szczegółowe informacje dotyczące diagnozowania problemów, kroków do ich rozwiązania oraz specyfikacji technicznych, które są niezbędne do prawidłowej naprawy. Na przykład, w przypadku awarii sprzętu elektronicznego, technik korzysta z instrukcji serwisowych, aby zlokalizować usterkę, zrozumieć, jakie części należy wymienić oraz jakie narzędzia są potrzebne do przeprowadzenia naprawy. W branży zamiennej istnieje szereg standardów, jak ISO 9001, które promują dokumentację procedur serwisowych. Dobre praktyki w zakresie serwisowania sprzętu obejmują także regularne aktualizowanie instrukcji zgodnie z najnowszymi rozwiązaniami technicznymi oraz zapewnienie ich dostępności dla wszystkich techników. Posiadanie dobrze opracowanych instrukcji serwisowych wpływa na efektywność pracy, redukuje błędy oraz przyspiesza czas reakcji na awarie, co jest kluczowe w zachowaniu wysokiej jakości usług serwisowych.