Wyniki egzaminu

Informacje o egzaminie:
  • Zawód: Technik urządzeń i systemów energetyki odnawialnej
  • Kwalifikacja: ELE.10 - Montaż i uruchamianie urządzeń i systemów energetyki odnawialnej
  • Data rozpoczęcia: 18 maja 2025 23:08
  • Data zakończenia: 18 maja 2025 23:39

Egzamin zdany!

Wynik: 28/40 punktów (70,0%)

Wymagane minimum: 20 punktów (50%)

Pochwal się swoim wynikiem!
Szczegółowe wyniki:
Pytanie 1

Podczas rocznego przeglądu zaleca się przeprowadzanie inspekcji stanu płynu solarnego. Który z parametrów płynu solarnego nie podlega ocenie?

A. Gęstość
B. Ilość
C. Barwa
D. Zapach
Zapach płynu solarnego nie jest standardowym parametrem, który podlega ocenie podczas corocznego przeglądu. Kluczowe aspekty, które są monitorowane, to barwa, gęstość oraz ilość płynu, ponieważ mają one bezpośredni wpływ na wydajność systemu solarnego. Barwa płynu może wskazywać na jego czystość, natomiast gęstość jest istotna dla oceny jego właściwości termicznych. Ilość płynu jest również kluczowa, ponieważ niewłaściwy poziom może prowadzić do nieprawidłowego działania systemu. Regularne sprawdzanie tych parametrów jest zgodne z praktykami branżowymi, które zalecają również wymianę płynu co kilka lat, w zależności od jego jakości. Wiedza na temat tych parametrów pozwala na bieżąco monitorować stan systemu solarnego, co przyczynia się do jego dłuższej żywotności i efektywności energetycznej.

Pytanie 2

Aby podłączyć wylot zimnego powietrza z parownika monoblokowej pompy ciepła typu powietrze-woda o współczynniku COP = 3,5, która podgrzewa wodę o mocy 7 kW, należy zastosować

A. rury miedzianej o średnicy 25 mm
B. rury stalowej o średnicy 125 mm
C. rury PVC o średnicy 125 mm
D. rury PVC o średnicy 20 mm
Rura PVC o średnicy 125 mm to całkiem dobry wybór do podłączenia wylotu zimnego powietrza z parownika w monoblokowej pompie ciepła powietrze-woda. Gdy projektujemy systemy HVAC, ważne, żeby materiały, które używamy, były zgodne z wymaganiami dotyczącymi przepływu powietrza i odporności na różne warunki atmosferyczne, a rura PVC właśnie takie właściwości ma. Średnica 125 mm powinna zapewnić odpowiedni przepływ powietrza, co jest kluczowe dla efektywności pompy ciepła, szczególnie gdy ma ona współczynnik COP na poziomie 3,5 i moc 7 kW. Warto pamiętać, żeby przy doborze materiałów do instalacji HVAC sprawdzić normy branżowe, jak PN-EN 1452, które precyzują wymagania dla rur w systemach hydraulicznych. Rury PVC są naprawdę niezawodne, łatwe do zamontowania i dobrze znoszą korozję. Przykładem ich zastosowania mogą być instalacje wentylacyjne czy klimatyzacyjne, gdzie odpowiedni przepływ powietrza przekłada się na komfort użytkowników i efektywność energetyczną całego systemu.

Pytanie 3

Podczas wyboru miejsca należy brać pod uwagę wytwarzanie infradźwięków (w zakresie od 1 do 20 Hz, poniżej progu słyszalności)

A. turbiny wodnej
B. elektrowni wiatrowej
C. pompy ciepła
D. biogazowni
Wytwarzanie infradźwięków, które występuje w zakresie poniżej 20 Hz, jest szczególnie istotnym zagadnieniem przy wyborze lokalizacji dla elektrowni wiatrowych. Elektrownie wiatrowe generują hałas w postaci infradźwięków, który może wpływać na otoczenie, w tym na zdrowie ludzi i zwierząt. Właściwe zaplanowanie lokalizacji elektrowni wiatrowej powinno uwzględniać nie tylko aspekty techniczne, takie jak dostępność wiatru, ale również potencjalny wpływ na środowisko. Przykładowo, w wielu krajach, takich jak Niemcy czy Dania, wprowadzono wytyczne dotyczące minimalnych odległości elektrowni wiatrowych od siedzib ludzkich, aby zminimalizować negatywne skutki akustyczne. Ponadto, stosowanie technologii redukcji hałasu oraz odpowiedni dobór lokalizacji, z daleka od gęsto zaludnionych obszarów, pozwala na zachowanie standardów ochrony środowiska, takich jak normy ISO 9613 dotyczące akustyki. Dlatego odpowiedni dobór lokalizacji jest kluczowy dla zminimalizowania wpływu infradźwięków na otoczenie.

Pytanie 4

Podczas serwisowania pompy cyrkulacyjnej w systemie solarnym zauważono, że urządzenie nie funkcjonuje z powodu uszkodzenia kondensatora. Co należy wykonać jako pierwsze przed jego wymianą?

A. odłączyć zasilanie elektryczne pompy
B. usunąć glikol z instalacji
C. zamknąć zawór przyłączeniowy wody do systemu
D. odkręcić złączki, aby wyciągnąć pompę z systemu
Zamknięcie zaworu doprowadzającego wodę do układu, zlanie glikolu z układu oraz odkręcenie śrubunków w celu demontażu pompy mogą wydawać się logicznymi krokami w procesie konserwacji, jednak nie biorą pod uwagę kluczowych zasad bezpieczeństwa związanych z pracą z urządzeniami elektrycznymi. Zamykanie zaworów w autonomicznych układach, takich jak systemy solarne, może pomóc w prewencji wycieków, ale nie eliminuje ryzyka porażenia prądem, które jest najważniejsze w kontekście pracy nad nienaładowanymi komponentami elektrycznymi. Praktyka zlania glikolu, chociaż może być częścią konserwacji, nie jest pierwszym krokiem, który powinien być podjęty, ponieważ nie zabezpiecza użytkownika przed potencjalnym zagrożeniem. Demontaż pompy bez wcześniejszego wyłączenia zasilania jest skrajnie niebezpieczny, ponieważ w przypadku przypadkowego uruchomienia silnika może dojść do poważnych obrażeń. Typowe błędy myślowe związane z takimi podjęciami mają swoje źródło w niedocenianiu ryzyka związanego z prądem elektrycznym i pomijaniu procedur związanych z bezpieczeństwem pracy. Każdy profesjonalista powinien kierować się zasadą, że najpierw należy zapewnić bezpieczeństwo, a dopiero później przystąpić do działań konserwacyjnych, co jest fundamentem dobrych praktyk w branży instalacyjnej.

Pytanie 5

Korzystając z danych zamieszczonych w tabeli, wskaż kolektor słoneczny o najwyższej sprawności optycznej.

Rodzaj parametruKolektor 1Kolektor 2Kolektor 3Kolektor 4
Transmisyjność pokrywy przezroczystej0,920,920,860,86
Emisyjność absorbera0,050,850,120,05
Absorpcyjność absorbera0,950,850,950,04

A. Kolektor 2.
B. Kolektor 3.
C. Kolektor 1.
D. Kolektor 4.
Kolektor 1 został wybrany jako ten o najwyższej sprawności optycznej, co jest wynikiem starannej analizy trzech kluczowych parametrów: transmisyjności pokrywy przezroczystej, emisyjności absorbera oraz absorpcyjności absorbera. W praktyce, wysoka transmisyjność oznacza, że większa ilość promieniowania słonecznego przenika przez pokrywę do wnętrza kolektora, co zwiększa efektywność jego działania. Emisyjność absorbera odnosi się do zdolności materiału do emitowania energii cieplnej; niski współczynnik emisyjności jest pożądany, ponieważ minimalizuje straty ciepła. Absorpcja energii słonecznej przez absorber jest kluczowa dla efektywności kolektora. Kolektor 1 osiąga najwyższe wartości w tych trzech kategoriach, co czyni go idealnym wyborem do zastosowań, takich jak ogrzewanie wody użytkowej czy wspomaganie systemów grzewczych w budynkach. W odniesieniu do standardów branżowych, takie podejście do oceny kolektorów słonecznych jest zgodne z normami IEC i ISO, które promują efektywność i zrównoważony rozwój technologii odnawialnych.

Pytanie 6

Która z poniższych turbin wodnych znajduje zastosowanie przy spadzie wody przekraczającym 500 m?

A. Francisa
B. Deriaza
C. Peltona
D. Kaplana
Turbina Peltona jest właściwym wyborem w przypadku elektrowni wodnych, gdzie spad wody przekracza 500 m. Jej konstrukcja, która wykorzystuje energię kinetyczną wody poprzez dysze kierujące strumień wody na łopatki turbiny, sprawia, że jest ona niezwykle efektywna w takich warunkach. Przykładem zastosowania turbiny Peltona są elektrownie górskie, które wykorzystują duży spad wody, co pozwala na produkcję znacznych ilości energii elektrycznej. W praktyce, turbina Peltona jest często wybierana w projektach, gdzie transport wody z dużych wysokości do turbin jest kluczowy, umożliwiając osiągnięcie wysokiej sprawności konwersji energii. Warto także zauważyć, że turbiny Peltona są zgodne z najlepszymi praktykami w projektowaniu hydroelektrowni, które podkreślają znaczenie dopasowania rodzaju turbiny do warunków hydroenergetycznych, co w efekcie przyczynia się do optymalizacji wydajności energetycznej.

Pytanie 7

Osoba inwestująca w system fotowoltaiczny, który ma zapewnić energię elektryczną dla domu jednorodzinnego i umożliwić sprzedaż nadwyżki prądu do sieci energetycznej, powinna dysponować

A. akumulatorem, inwerterem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
B. odbiornikiem energii, akumulatorem, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
C. akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, panelami fotowoltaicznymi
D. odbiornikiem energii, akumulatorem, inwerterem, kontrolerem ładowania, licznikiem energii elektrycznej wyprodukowanej, licznikiem energii zużytej, panelami fotowoltaicznymi
Odpowiedź ta jest prawidłowa, ponieważ zawiera wszystkie niezbędne elementy potrzebne do stworzenia efektywnego systemu fotowoltaicznego, który zaspokaja potrzeby energetyczne domu jednorodzinnego oraz umożliwia sprzedaż nadmiaru energii do sieci. Odbiornik energii jest kluczowy, ponieważ to on wykorzystuje energię wytwarzaną przez panele fotowoltaiczne. Akumulator jest niezbędny do magazynowania nadwyżek energii, co pozwala na jej wykorzystanie w czasie, gdy produkcja energii jest niższa, na przykład w nocy. Inwerter konwertuje prąd stały generowany przez panele na prąd zmienny, co jest wymagane do zasilania urządzeń domowych oraz wprowadzenia energii do sieci. Kontroler ładowania dba o prawidłowe ładowanie akumulatora, co zwiększa jego żywotność i efektywność. Liczniki energii umożliwiają ścisłe monitorowanie zarówno energii wyprodukowanej, jak i zużytej, co jest istotne dla rozliczeń z lokalnym dostawcą energii. Przykładem zastosowania takiego systemu może być dom, który w ciągu dnia produkuje więcej energii, niż zużywa, a nadwyżkę sprzedaje, co zmniejsza koszty rachunków za prąd oraz przyczynia się do ochrony środowiska poprzez wykorzystanie odnawialnych źródeł energii.

Pytanie 8

Aby naprawić pęknięcie na prostym odcinku poziomego wymiennika gruntowego wykonanego z rur polietylenowych, należy zastosować mufę

A. zgrzewaną
B. spawaną
C. gwintowaną
D. lutowaną
Mufa zgrzewana jest odpowiednią metodą naprawy pęknięć w systemach wymienników gruntowych wykonanych z rur polietylenowych. Proces zgrzewania polega na podgrzewaniu końców rur, które następnie są ze sobą łączone pod wpływem ciśnienia. Taki sposób łączenia zapewnia trwałość i szczelność, co jest kluczowe w przypadku systemów, które są poddawane różnym warunkom atmosferycznym oraz ciśnieniowym. Zgrzewanie polietylenu jest uznawane za jedną z najlepszych praktyk w branży, ponieważ eliminuje ryzyko wycieków i zapewnia długotrwałą wytrzymałość połączenia. W praktyce stosuje się zgrzewanie w wielu zastosowaniach, od instalacji wodociągowych po systemy grzewcze, co potwierdza jego uniwersalność i niezawodność. Dobrą praktyką jest również przeprowadzenie testów szczelności po zakończeniu procesu zgrzewania, co dodatkowo potwierdza jakość wykonanej naprawy.

Pytanie 9

Kotły wykorzystujące paliwa stałe, takie jak pellet, klasyfikowane są jako kotły

A. niskotemperaturowe wodne.
B. wodnego wysokotemperaturowego.
C. ciśnieniowe wodne.
D. kondensacyjne.
Wybór kotłów wodnych ciśnieniowych, wysokotemperaturowych czy kondensacyjnych jako odpowiedzi na pytanie o kotły na paliwa stałe, takie jak pellet, jest mylny i wynika z niepełnego zrozumienia zasad działania tych systemów. Kotły wodne ciśnieniowe są projektowane do pracy pod dużym ciśnieniem, co jest typowe dla tradycyjnych systemów ogrzewania, ale nie pasuje do charakterystyki kotłów na paliwa stałe, które zazwyczaj pracują w niższych ciśnieniach. Z kolei kotły wysokotemperaturowe funkcjonują w znacznie wyższych zakresach temperatur, co czyni je nieefektywnymi w przypadku pelletu, który najlepiej sprawdza się w niskotemperaturowych aplikacjach. Kotły kondensacyjne, chociaż efektywne w wykorzystaniu energii, są dedykowane do gazu lub oleju, a nie do paliw stałych, co dodatkowo podkreśla niewłaściwy dobór odpowiedzi. Zrozumienie różnic między tymi rodzajami kotłów jest kluczowe, aby uniknąć nieporozumień w planowaniu systemów grzewczych. Kluczowym błędem myślowym jest założenie, że wszystkie kotły wodne działają na tych samych zasadach, co prowadzi do wyboru niewłaściwego rozwiązania technologicznego, które nie tylko zmniejsza efektywność energetyczną, ale również może skutkować problemami w eksploatacji i zwiększonymi kosztami operacyjnymi.

Pytanie 10

Rura łącząca kocioł c.o. na drewno kawałkowe z otwartym naczyniem wzbiorczym ma charakterystykę

A. odpowietrzająca
B. bezpieczeństwa
C. sygnalizacyjna
D. przelewowa
Wybór odpowiedzi, które nie dotyczą funkcji rury bezpieczeństwa, wynika z nieporozumienia dotyczącego roli poszczególnych elementów instalacji grzewczej. Rura przelewowa, choć również istotna, ma za zadanie odprowadzenie nadmiaru wody z naczynia wzbiorczego, jednak nie pełni funkcji zabezpieczającej w kontekście ciśnienia w systemie. Pojęcie sygnalizacyjne odnosi się zazwyczaj do elementów, które monitorują parametry pracy systemu, ale nie mają one wpływu na bezpieczeństwo jego użytkowania. Odpowiedź dotycząca rury odpowietrzającej jest kolejnym błędnym podejściem, gdyż jej funkcja sprowadza się do umożliwienia wyrównania ciśnienia w obiegu, zwłaszcza w momentach, gdy system napełnia się wodą lub podczas jego pracy. Ważne jest zrozumienie, że wszystkie wymienione funkcje mają swoje miejsce w instalacji, jednak tylko rura bezpieczeństwa jest bezpośrednio odpowiedzialna za ochranianie systemu przed nadmiernym ciśnieniem, co czyni ją kluczowym elementem w kontekście bezpieczeństwa. W praktyce, pominięcie rury bezpieczeństwa może prowadzić do niebezpiecznych sytuacji, w tym eksplozji kotła, co ilustruje, jak istotne jest właściwe zrozumienie funkcji i przeznaczenia każdego z komponentów w instalacji centralnego ogrzewania, zgodnie z normami i dobrymi praktykami branżowymi.

Pytanie 11

Według norm dotyczących poprawnego instalowania kolektora gruntowego poziomego, należy go umieścić

A. na terenie niepodlegającym zabudowie
B. pod konstrukcją budynku
C. pod miejscem parkingowym
D. na obszarze zurbanizowanym
Kolektor gruntowy poziomy powinien być montowany na obszarze wolnym od zabudowań ze względu na optymalizację wydajności systemu oraz ograniczenie zakłóceń w jego pracy. Takie usytuowanie pozwala na efektywne wykorzystanie energii geotermalnej, gdyż nie ma przeszkód, które mogłyby ograniczać dostęp do ciepła zgromadzonego w gruncie. W praktyce, umieszczając kolektor w otwartym terenie, operatorzy systemów grzewczych mogą zapewnić lepszy obieg powietrza oraz możliwość łatwiejszego dostępu do urządzeń w przypadku ewentualnych napraw lub konserwacji. Ponadto, zgodnie z wytycznymi branżowymi, zaleca się, aby instalacje gruntowe były oddalone od budynków oraz innych obiektów, co pozwala uniknąć potencjalnych problemów związanych z oddziaływaniem cieplnym na strukturę budynku. Dobre praktyki wskazują również, że powinno się unikać zasiągania zgody na prowadzenie prac instalacyjnych w obszarach mocno zabudowanych, gdzie możliwości montażu są ograniczone oraz może występować ryzyko uszkodzenia infrastruktury.

Pytanie 12

Jak należy przechowywać kolektory słoneczne?

A. w zamkniętych pomieszczeniach, umieszczone szybą w dół
B. w zamkniętych pomieszczeniach, umieszczone szybą do góry
C. pod wiatą, umieszczone szybą do góry
D. pod wiatą, umieszczone szybą w dół
Kolektory słoneczne fajnie jest przechowywać w zamkniętych pomieszczeniach, w pozycji szybą do góry. Dzięki temu są mniej narażone na działanie różnych warunków atmosferycznych i uszkodzenia. Jak się je trzyma w suchym i wentylowanym miejscu, to zmniejsza się ryzyko kondensacji i korozji, co jest bardzo ważne, bo wilgoć może zniszczyć te urządzenia. Ułożenie szybą do góry zapobiega zarysowaniom, co jest super ważne, zwłaszcza, że te kolektory są dosyć drogie. Wiele firm, które zajmują się energią odnawialną, sugeruje używanie specjalnych stojaków, żeby je lepiej zabezpieczyć. Dobrze jest też co jakiś czas sprawdzić ich stan, żeby wcześnie zauważyć ewentualne problemy. Wiedza na temat tego, jak dobrze przechowywać kolektory, jest kluczowa dla ich długiego życia i efektywności.

Pytanie 13

Podczas sporządzania przedmiaru robót dla systemów wodociągowych, długość rur określa się w metrach?

A. z wyłączeniem długości łączników oraz armatury
B. wliczając armaturę z kołnierzami
C. a liczba podejść ustalana jest wspólnie dla zimnej i ciepłej wody
D. bez wyłączania długości łączników oraz armatury łączonej lutowaniem lub gwintowaniem
W przypadku przedmiaru robót dla instalacji wodociągowych istotne jest zrozumienie, że długość rurociągów powinna być mierzona zgodnie z ustalonymi normami i praktykami branżowymi. Nieprawidłowe podejście do obliczeń, takie jak uwzględnianie długości łączników oraz armatury, prowadzi do nieprawidłowych wyników i zaburzenia całego procesu planowania materiałowego. Podejście, które polega na ustalaniu ilości podejść dla wody zimnej i ciepłej razem, pomija różnice w wymaganiach instalacyjnych oraz charakterystykach materiałowych obu systemów. Każdy system wodociągowy ma swoje unikalne cechy, które powinny być analizowane oddzielnie, aby zapewnić ich prawidłowe funkcjonowanie. Dodatkowo, wliczanie armatury kołnierzowej w długość rurociągu jest również błędnym podejściem, gdyż armatura ta często nie jest integralną częścią systemu rurociągów, a jedynie jego uzupełnieniem. W praktyce, przy obliczaniu długości dla projektów hydraulicznych, należy brać pod uwagę jedynie odcinki rur, aby uniknąć nieścisłości i zapewnić prawidłowe wykonanie instalacji. Takie błędy mogą prowadzić do nieefektywności w wykorzystaniu materiałów oraz problemów z późniejszym użytkowaniem instalacji, co jest sprzeczne z zasadami efektywności i trwałości projektów budowlanych.

Pytanie 14

Pompa ciepła typu sprężarkowego określana jest jako rewersyjna, gdy jest zainstalowana w obiekcie

A. ma sprężarkę umieszczoną na zewnątrz budynku
B. może zimą pełnić funkcje grzewcze, a latem chłodnicze
C. ma modulowaną moc grzewczą sprężarki
D. ma 4 wymienniki ciepła
Sprężarkowa pompa ciepła nazywana jest rewersyjną, ponieważ może w zależności od potrzeb zmieniać kierunek przepływu czynnika chłodniczego, co pozwala jej pełnić różne funkcje: zimą jako urządzenie grzewcze, a latem jako system chłodzący. W praktyce oznacza to, że pompa ciepła może efektywnie wykorzystać energię z otoczenia do ogrzewania pomieszczeń, pobierając ciepło z powietrza, gruntu lub wody, a w okresie letnim może tę energię odprowadzać, schładzając budynek. Współczesne systemy oparte na tej technologii są zgodne z normami efektywności energetycznej, co czyni je ekologicznymi i ekonomicznymi rozwiązaniami. Przykładem zastosowania mogą być budynki mieszkalne, biura czy obiekty przemysłowe, które dzięki zastosowaniu rewersyjnych pomp ciepła mogą zredukować koszty eksploatacji oraz emisję dwutlenku węgla. Warto zauważyć, że rewersyjne pompy ciepła przyczyniają się do zrównoważonego rozwoju, co jest istotne w kontekście globalnych wyzwań związanych ze zmianami klimatycznymi.

Pytanie 15

Głównym celem instalacji fotowoltaicznej typu on-grid jest produkcja energii elektrycznej

A. w lokalizacjach, gdzie nie ma dostępu do sieci elektrycznych
B. wyłącznie na potrzeby własne, bez podłączenia do sieci
C. na potrzeby własne oraz do sieci elektrycznej
D. do przechowywania w akumulatorach
Instalacja fotowoltaiczna typu on-grid jest zaprojektowana przede wszystkim do wytwarzania energii elektrycznej, która może być wykorzystywana zarówno do zaspokajania własnych potrzeb energetycznych użytkownika, jak i do zasilania sieci elektrycznej. W przypadku tego systemu energię elektryczną wytwarza się na podstawie promieniowania słonecznego, a nadmiar wyprodukowanej energii jest przesyłany do lokalnej sieci energetycznej. Dzięki temu użytkownik może korzystać z energii z paneli słonecznych, a jednocześnie wygenerować dodatkowy zysk poprzez sprzedaż nadwyżki energii. Wiele krajów stosuje systemy net meteringu, które pozwalają na rozliczanie energii, co sprawia, że instalacje on-grid stają się ekonomicznie opłacalne. Dodatkowo, te instalacje są zgodne z aktualnymi standardami branżowymi, co zapewnia ich efektywność oraz bezpieczeństwo. Przykładem może być instalacja domowa, gdzie energia z paneli zasila urządzenia elektryczne, a nadmiar energii jest oddawany do sieci, co przyczynia się do zmniejszenia rachunków za energię i korzystania z odnawialnych źródeł energii.

Pytanie 16

Jak nazywa się jednostka określająca zużycie energii elektrycznej?

A. kWh
B. h/kW
C. KW/h
D. kW
Poprawna odpowiedź to kWh, czyli kilowatogodzina, która jest standardową jednostką stosowaną do pomiaru zużycia energii elektrycznej. Jednostka ta wskazuje, ile energii zużywa urządzenie o mocy jednego kilowata przez jedną godzinę. Przykładowo, jeśli żarówka o mocy 100 W działa przez 10 godzin, zużyje 1 kWh energii (100 W * 10 h = 1000 W = 1 kWh). W praktyce, wiedza na temat zużycia energii elektrycznej jest kluczowa dla efektywnego zarządzania energią zarówno w domach, jak i w przedsiębiorstwach. Umożliwia to nie tylko lepsze planowanie budżetu na energię, ale także identyfikację możliwości oszczędności. W branży energetycznej, przy pomiarach zużycia energii, kWh jest uznawana za normę, co jest potwierdzone m.in. przez Międzynarodową Organizację Normalizacyjną (ISO). Warto również zwrócić uwagę, że zrozumienie jednostek zużycia energii jest istotne w kontekście zrównoważonego rozwoju i ochrony środowiska.

Pytanie 17

Jaką kwotę stanowi kosztorysowa wartość robocizny montażu systemu solarnego i wymiennika, gdyby pracował jeden monter oraz jego asystent, zakładając stawkę 50,00 zł za godzinę pracy montera oraz 25,00 zł za godzinę pracy pomocnika? Czas robocizny wynosi 3 godziny.

A. 225,00 zł
B. 75,00 zł
C. 150,00 zł
D. 175,00 zł
Odpowiedź to 225,00 zł. Skąd to się bierze? Musimy obliczyć koszty robocizny związane z montażem grupy solarnej. Mamy tutaj montera, którego stawka to 50,00 zł za godzinę i pomocnika, który zarabia 25,00 zł za godzinę. Całkowity czas pracy to 3 godziny, które dzielimy między tych dwóch pracowników. Obliczając to: 3 godziny pracy montera kosztują nas 150,00 zł, a 3 godziny pracy pomocnika to dodatkowe 75,00 zł. Jak to podsumujemy: 150,00 zł + 75,00 zł daje nam 225,00 zł. W branży remontowo-budowlanej takiej wiedzy nie można zlekceważyć. Wiedza o kosztach jest kluczowa, bo pozwala na przygotowanie ofert i budżetów projektowych. Pamiętaj, że precyzyjne obliczenia, zwłaszcza w projektach solarnych, mają ogromne znaczenie dla rentowności i konkurencyjności na rynku.

Pytanie 18

W jaki sposób definiuje się współczynnik COP?

A. moc chłodniczą, którą pompa ciepła osiąga w najbardziej trudnych warunkach
B. stosunek ilości ciepła generowanego przez pompę ciepła do ilości zużytej energii elektrycznej
C. ciepło parowania w danej temperaturze oraz przy odpowiednim ciśnieniu
D. wydajność chłodniczą, wyrażoną w procentach lub jako wartość bezwymiarowa
Współczynnik COP (Coefficient of Performance) to kluczowy wskaźnik efektywności pompy ciepła, który określa, jak skutecznie urządzenie przekształca energię elektryczną w ciepło. Odpowiedź wskazująca na stosunek ilości ciepła wytwarzanego przez pompę ciepła do ilości pobranej energii elektrycznej jest poprawna, ponieważ dokładnie odzwierciedla zasadę funkcjonowania tego urządzenia. W praktyce, wysokie wartości COP są pożądane, ponieważ oznaczają większą efektywność energetyczną, co prowadzi do mniejszych kosztów eksploatacji oraz mniejszego wpływu na środowisko. Przykładowo, pompa ciepła o współczynniku COP równym 4 potrafi wygenerować 4 jednostki ciepła przy zużyciu 1 jednostki energii elektrycznej. Takie wskaźniki są istotne w kontekście norm i regulacji związanych z efektywnością energetyczną, takich jak dyrektywy Unii Europejskiej dotyczące energooszczędności, które promują stosowanie rozwiązań o wysokiej efektywności. Zrozumienie COP pozwala na optymalizację użytkowania pomp ciepła oraz lepsze planowanie systemów ogrzewania i chłodzenia w budynkach.

Pytanie 19

Aby zabezpieczyć obieg grzewczy w sytuacji, gdy ciśnienie w instalacji solarnej zbyt mocno wzrasta, co powinno się zastosować?

A. podgrzewacz wody
B. zawór bezpieczeństwa
C. regulator temperatury
D. grupę pompową
Zawór bezpieczeństwa to mega ważny element, jeśli chodzi o ochronę instalacji solarnej przed zbyt wysokim ciśnieniem. Kiedy ciśnienie w układzie wzrasta ponad dopuszczalny poziom, zawór automatycznie się otwiera, wypuszczając nadmiar wody albo pary. W ten sposób zapobiega się wszelkim awariom, co jest kluczowe dla bezpieczeństwa. Normy branżowe, takie jak PN-EN 12828, jasno mówią, jak istotne jest to zabezpieczenie w systemach grzewczych. Na przykład, w instalacji solarnej w domu, zawór bezpieczeństwa działa jak tarcza chroniąca system i ludzi w środku przed nieprzyjemnościami. A tak swoją drogą, pamiętaj, żeby regularnie sprawdzać zawory bezpieczeństwa – to nie tylko kwestia przepisów, ale też bezpieczeństwa całej instalacji.

Pytanie 20

Montaż paneli słonecznych na płaskim dachu został zrealizowany przez jednego instalatora oraz dwóch asystentów. Wartość stawki instalatora wynosi 50,00 zł za każdą godzinę pracy, a stawka asystenta to 20,00 zł. Jaką łączną wartość robocizny można oszacować, jeśli całkowity czas pracy wynosi 8 godzin?

A. 560,00 zł
B. 720,00 zł
C. 90,00 zł
D. 960,00 zł
W przypadku wskazania nieprawidłowej wartości kosztorysowej, warto zrozumieć, jakie błędne założenia mogły prowadzić do takiego wniosku. Wiele osób może pominąć kluczowy element, jakim jest różnica w stawkach roboczych pomiędzy instalatorem a pomocnikami. Wybierając odpowiedź 560,00 zł, można zakładać, że osoba obliczyła jedynie koszty pracy pomocników, co jest dużym uproszczeniem. Koszt samej pracy pomocników wyniósłby 320,00 zł, co nie jest zgodne z całościowym podejściem do wyceny robocizny. Z kolei wybór 90,00 zł może wynikać z mylnego obliczenia, bazującego na niepełnym zestawieniu stawek lub liczby pracowników. Inna możliwość to błędne mnożenie stawki godzinowej przez liczbę godzin bez uwzględnienia faktu, że dwóch pomocników pracowało równocześnie. W przypadku wyboru wartości 960,00 zł można zauważyć, że osoba ta mogła pomylić się w obliczeniach, doliczając za dużo godzin lub stawkę dla każdego z pracowników. Kluczowe jest zrozumienie, że dokładna wycena robocizny wymaga analizy wszystkich elementów składających się na koszt, w tym różnicy w stawkach oraz liczby pracowników zaangażowanych w dany projekt. Przy obliczaniu kosztów robocizny należy kierować się zasadą dokładności, co pozwala na uniknięcie nieporozumień i błędów w przyszłych projektach.

Pytanie 21

Stacja napełniająca zasilana energią słoneczną działa z prędkością 3 dm³/s. Jaką maksymalną objętość może napełnić w przeciągu dwóch godzin?

A. 10,80 m³
B. 6,00 m³
C. 32,40 m³
D. 21,60 m³
Stacja napełniająca o wydajności 3 dm³/s oznacza, że jest w stanie napełnić 3 decymetry sześcienne w każdą sekundę. Przez dwie godziny, co równa się 7200 sekund, całkowita objętość napełniona wynosi 3 dm³/s × 7200 s = 21600 dm³, co po przeliczeniu na metry sześcienne daje 21,6 m³. Zrozumienie przeliczeń jednostek objętości jest kluczowe w inżynierii i zarządzaniu projektami, gdzie precyzyjne obliczenia są niezbędne do efektywnego planowania. W praktyce, obliczenie przepływu cieczy i wydajności urządzeń jest stosowane w systemach hydraulicznych, instalacjach wodociągowych oraz wielu innych branżach, gdzie zarządzanie zasobami wodnymi jest priorytetem. Dobre praktyki inżynieryjne zalecają regularne monitorowanie wydajności systemów napełniających, aby zapewnić ich optymalną efektywność oraz zminimalizować straty. Warto również znać normy dotyczące zużycia wody i energii, co jest istotne w kontekście zrównoważonego rozwoju.

Pytanie 22

Jakie urządzenie wykorzystuje się do mierzenia przepływu płynu solarnego w systemie?

A. rotametr
B. refraktometr
C. areometr
D. manometr
Rotametr to urządzenie pomiarowe, które służy do określania przepływu płynów w instalacjach, w tym również w systemach solarnych. Jego działanie opiera się na zasadzie zmiany poziomu cieczy w stożkowym rurze, co pozwala na wizualne odczytanie przepływu. Rotametry charakteryzują się wysoką dokładnością oraz prostotą obsługi, co czyni je idealnym narzędziem w branży energetyki odnawialnej. Przykładowe zastosowanie rotametrów znajduje miejsce w monitorowaniu przepływu cieczy w układach chłodzenia, gdzie precyzyjne pomiary są kluczowe dla wydajności systemu. Dodatkowo, w kontekście instalacji solarnych, rotametry mogą być używane do kontroli przepływu cieczy solarnej, co bezpośrednio wpływa na efektywność wymiany ciepła i ogólną wydajność systemu. Warto zauważyć, że zgodnie z aktualnymi standardami branżowymi, rotametry powinny być regularnie kalibrowane, aby zapewnić ich dokładność i niezawodność w długoterminowym użytkowaniu.

Pytanie 23

Jakie urządzenie służy do pomiaru temperatury zamarzania mieszanki glikolowej w systemie solarnym?

A. decibelometr.
B. glukometr.
C. higrometr.
D. refraktometr.
Refraktometr to naprawdę ważne narzędzie, zwłaszcza przy analizie stężenia roztworów. W kontekście systemów solarnych, gdzie korzystamy z glikolu, to jest niezbędne, bo te mieszanki zapobiegają zamarzaniu. Działa to tak, że mierzy współczynnik załamania światła, co pozwala dokładnie określić, jak mocny jest roztwór. Im więcej glikolu w mieszance, tym niższa temperatura zamarzania, a to ma spore znaczenie w chłodniejszych warunkach. Z mojego doświadczenia wynika, że inżynierowie regularnie używają refraktometrów, żeby monitorować i dostosowywać stężenie roztworu. Dzięki temu wszystko działa lepiej i dłużej. Fajnie jest, gdy takie pomiary stają się rutyną, bo można szybko wychwycić potencjalne problemy z zamarzaniem płynu, co w efekcie zmniejsza ryzyko awarii.

Pytanie 24

Na aksonometrycznym widoku instalacji ogrzewczej w skali 1:100 miedziany pion ma długość 20 cm. Jaką ilość przewodów miedzianych trzeba nabyć do montażu tego pionu?

A. 2 m
B. 200 m
C. 20 m
D. 0,2 m
Odpowiedź 20 m jest poprawna, ponieważ w rzucie aksonometrycznym przy skali 1:100 każdy 1 cm na rysunku odpowiada 100 cm w rzeczywistości. Zatem, jeśli długość miedzianego pionu na rzucie wynosi 20 cm, to w rzeczywistości jego długość wynosi 20 cm x 100 = 2000 cm, co przekłada się na 20 m. W praktyce, przy montażu instalacji grzewczej, ważne jest, aby dokładnie obliczyć długości potrzebnych przewodów, aby uniknąć niedoborów materiałów i zapewnić sprawny proces instalacji. Dobre praktyki w branży zalecają także uwzględnienie dodatkowych długości na zakręty, połączenia oraz ewentualne błędy pomiarowe, co jest istotne w kontekście precyzyjnych obliczeń. Zrozumienie skali i przeliczeń jest kluczowe dla efektywnego planowania oraz realizacji instalacji, co może wpłynąć na jej efektywność energetyczną oraz koszty eksploatacji.

Pytanie 25

Dokumentacja robót budowlanych nie obejmuje

A. strony tytułowej.
B. przypisów dokumentacji robót.
C. cen jednostkowych.
D. wykazów działów dokumentacji robót.
Przedmiar robót budowlanych jest kluczowym dokumentem w procesie realizacji projektów budowlanych, który służy do szczegółowego przedstawienia zakresu prac do wykonania. Wiele osób błędnie sądzi, że przedmiar powinien zawierać ceny jednostkowe, co jest nieścisłe. Ceny jednostkowe są elementem kosztorysu, który jest odrębnym dokumentem, mającym na celu oszacowanie całkowitych kosztów realizacji projektu. Przygotowanie przedmiaru robót powinno koncentrować się na zestawieniu i szczegółowym opisaniu robót, ich ilości oraz charakterystyki technicznej, co pozwala na precyzyjne zdefiniowanie zakresu projektu. Często mylone są również pojęcia karty tytułowej i tabeli przedmiaru. Karta tytułowa jest istotnym elementem, który identyfikuje projekt, natomiast tabela przedmiaru służy do zorganizowania poszczególnych pozycji robót. Zrozumienie, że przedmiar nie obejmuje cen jednostkowych, jest kluczowe dla skutecznego zarządzania projektem. Właściwe oddzielenie tych dwóch dokumentów wspiera precyzyjne planowanie oraz oszczędności związane z realizacją projektów budowlanych. W branży budowlanej stosowanie przedmiaru robót jako narzędzia komunikacji między inwestorem a wykonawcą jest normą, a niewłaściwe podejście do tego dokumentu może prowadzić do nieporozumień i problemów w trakcie realizacji inwestycji.

Pytanie 26

Zestaw solarny składa się z: panelu słonecznego, kontrolera ładowania oraz dwóch akumulatorów połączonych w szereg. Napięcie nominalne każdego akumulatora wynosi 12 V. Aby użyć tego zestawu do zasilania urządzeń w jednofazowej sieci elektrycznej o napięciu 230 V, należy połączyć wyjście akumulatorów z

A. instalacją w budynku o napięciu 230 V
B. przetwornicą 12 V DC/230 V AC
C. przetwornicą 24 V DC/230 V AC
D. prostownikiem dwupołówkowym 230 V
Przetwornica 24 V DC/230 V AC to odpowiednie urządzenie do konwersji napięcia z akumulatorów na poziom wymagany do zasilania urządzeń w sieci jednofazowej. W opisanym przypadku, dwa akumulatory o napięciu 12 V połączone szeregowo tworzą system o napięciu 24 V. Przetwornica umożliwia przekształcenie tego napięcia stałego (DC) na napięcie zmienne (AC) o standardowej wartości 230 V, co jest niezbędne do zasilania większości typowych urządzeń elektrycznych. Przykładowe zastosowanie to zasilanie sprzętu AGD, oświetlenia czy elektroniki w domach, które nie są podłączone do sieci elektroenergetycznej. Dobrą praktyką jest stosowanie przetwornic o odpowiedniej mocy, co zapewnia stabilność pracy i efektywność energetyczną. Warto również zaznaczyć, że nowoczesne przetwornice często posiadają dodatkowe funkcje, takie jak monitoring stanu akumulatora, co pozwala na lepsze zarządzanie energią i wydłużenie żywotności systemu.

Pytanie 27

Minimalna przestrzeń między sąsiadującymi turbinami w elektrowniach wiatrowych, mierzona w średnicach wirnika turbiny, powinna wynosić przynajmniej

A. 10
B. 5
C. 15
D. 20
Wybór większych wartości minimalnej odległości między turbinami, takich jak 10, 15 czy 20 średnic wirnika, może wydawać się odpowiedni na pierwszy rzut oka, jednak w rzeczywistości prowadzi do wielu nieefektywności. Przede wszystkim, przy nadmiernym zwiększeniu odległości, zespół turbin traci na efektywności operacyjnej. Wiatr jest zasobem, który powinien być wykorzystywany w sposób maksymalny, a zbyt duże odległości między turbinami skutkują niepotrzebnym marnowaniem potencjału energetycznego obszaru. Dodatkowo, zbyt duża odległość zwiększa koszty instalacji i budowy farmy wiatrowej, co w dłuższej perspektywie wpływa na opłacalność inwestycji. Należy także zauważyć, że w praktyce wiele farm wiatrowych może wykazywać większą gęstość instalacji, a ich rozmieszczenie jest optymalizowane w oparciu o lokalne warunki wiatrowe. Typowym błędem myślowym jest założenie, że większa odległość automatycznie zapewni lepsze wyniki, co ignoruje fakt, że kluczowym czynnikiem jest efektywność energetyczna i odpowiednia interakcja między turbinami. Ostatecznie, zasady projektowania farm wiatrowych powinny być zgodne z aktualnymi normami branżowymi, które określają, że minimalna odległość wynosząca 5 średnic wirnika jest wystarczająca do zapewnienia zarówno optymalnej produkcji energii, jak i bezpieczeństwa operacyjnego.

Pytanie 28

Turbina wiatrowa typu VAWT charakteryzuje się osią obrotu

A. zmienną
B. pionową
C. poziomą
D. kośną
Turbina wiatrowa typu VAWT (Vertical Axis Wind Turbine) jest zaprojektowana w taki sposób, aby jej oś obrotu była pionowa. Taki układ konstrukcyjny ma kilka istotnych zalet, które czynią go atrakcyjnym rozwiązaniem w zastosowaniach wiatrowych. Przede wszystkim, pionowa oś obrotu pozwala na efektywniejsze wykorzystywanie wiatru z różnych kierunków, co jest szczególnie ważne w obszarach, gdzie kierunek wiatru jest zmienny. Dodatkowo, turbiny VAWT są mniej wrażliwe na turbulencje, co zwiększa ich wydajność w warunkach miejskich. Można je instalować w miejscach o ograniczonej przestrzeni, a ich konstrukcja zwykle nie wymaga skomplikowanych systemów kierowania, jak ma to miejsce w turbinach HAWT (Horizontal Axis Wind Turbines). Przykłady zastosowania turbin typu VAWT obejmują instalacje na dachach budynków oraz w parkach wiatrowych w miastach, gdzie tradycyjne turbiny mogą być mniej efektywne.

Pytanie 29

W instalacji elektrycznej łączącej inwerter z urządzeniem odbierającym prąd zmienny, kolor przewodu neutralnego powinien być

A. czerwony
B. czarny
C. niebieski
D. brązowy
Odpowiedź 'niebieski' jest poprawna, ponieważ kolor niebieski jest standardowym oznaczeniem dla przewodu neutralnego w instalacjach elektrycznych zgodnie z normą IEC 60446. Przewód neutralny odgrywa kluczową rolę w systemie elektrycznym, ponieważ zapewnia drogę powrotną dla prądu, co jest niezbędne do prawidłowego funkcjonowania obwodu. W systemie zasilania prądem zmiennym, przewód neutralny łączy się z ziemią w punkcie transformacji, co pomaga w stabilizacji napięcia oraz bezpieczeństwie użytkowania. Prawidłowe oznaczenie kolorystyczne przewodów jest istotne, aby uniknąć pomyłek podczas instalacji oraz konserwacji systemów elektrycznych. Przykładowo, w instalacjach domowych, przewód neutralny jest zazwyczaj łączony z gniazdkami, co pozwala na prawidłowe funkcjonowanie urządzeń elektrycznych. Warto również zaznaczyć, że inne kolory, takie jak brązowy (faza), czarny (faza) czy czerwony (w niektórych systemach staroświeckich jako faza), nie mogą być używane jako oznaczenie przewodu neutralnego, aby uniknąć niebezpiecznych sytuacji podczas pracy z instalacją.

Pytanie 30

Liczbę robót związanych z realizacją wykopu należy zapisać w obmiarze z odpowiednią jednostką

A. r-g
B. m3
C. m2
D. m-g
Poprawna odpowiedź to m3, ponieważ ilość robót związanych z wykonaniem wykopu odnosi się do objętości ziemi, którą należy usunąć. Objecie wykopu, niezależnie od jego kształtu, oblicza się w metrach sześciennych (m3). Przykładem może być wykop pod fundamenty budynku, gdzie konieczne jest obliczenie objętości ziemi do usunięcia, aby określić ilość materiałów, kosztów robocizny oraz czasu potrzebnego na wykonanie prac. W branży budowlanej zgodnie z dobrymi praktykami standardowe jednostki miary, takie jak m3, są kluczowe do precyzyjnego kalkulowania ilości materiałów i kosztów, które są istotne na każdym etapie inwestycji budowlanej. Efektywne zarządzanie projektem wymaga nie tylko znajomości jednostek, ale także umiejętności ich zastosowania w praktyce, co pozwala na optymalizację procesów budowlanych oraz minimalizację kosztów.

Pytanie 31

W elektrowni wodnej zainstalowany jest generator o mocy P=100 kW. Jaką częstotliwość powinno mieć napięcie, aby mogła ona współdziałać z Polskim Systemem Energetycznym?

A. 50 Hz
B. 80 Hz
C. 20 Hz
D. 70 Hz
Wybór odpowiedzi innej niż 50 Hz wskazuje na brak zrozumienia kluczowych zasad związanych z częstotliwością napięcia w systemach elektroenergetycznych. W Polsce, jak i w innych krajach europejskich, ustalono standardową częstotliwość 50 Hz, która jest kluczowa dla prawidłowego funkcjonowania sieci. Wybierając odpowiedzi takie jak 20 Hz, 80 Hz czy 70 Hz, można zakładać, że nie bierze się pod uwagę konsekwencji wynikających z niskiej lub wysokiej częstotliwości na stabilność systemu. Na przykład, częstotliwość 20 Hz jest znacznie poniżej wymaganego poziomu, co mogłoby prowadzić do problemów z synchronizacją z innymi źródłami energii oraz poważnych zakłóceń w dostawie prądu. Z kolei częstotliwości 80 Hz i 70 Hz są zbyt wysokie, co również wpływa negatywnie na urządzenia podłączone do sieci, mogąc prowadzić do ich uszkodzenia lub obniżenia efektywności. Zrozumienie, że generator musi być zgodny z normami systemu energetycznego, a także znajomość praktycznych zastosowań takich jak współpraca z innymi źródłami energii, jest kluczowe dla właściwego projektowania i eksploatacji systemów elektroenergetycznych. Wybory takie jak te wskazują na typowe błędy myślowe, gdzie brak jest wiedzy na temat norm i standardów branżowych, co może prowadzić do poważnych konsekwencji technicznych.

Pytanie 32

Gdzie w systemie grzewczym z kotłem posiadającym automatyczny podajnik paliwa powinno się zainstalować zabezpieczenie przed zbyt niskim poziomem wody?

A. Na powrocie, 10 cm ponad najwyższą częścią kotła
B. Na powrocie, 10 cm pod najwyższą częścią kotła
C. Na zasilaniu, 10 cm ponad najwyższą częścią kotła
D. Na zasilaniu, 10 cm pod najwyższą częścią kotła
Zamontowanie zabezpieczenia przed niskim poziomem wody w niewłaściwych miejscach, takich jak na powrocie 10 cm powyżej lub poniżej najwyższej części kotła, może prowadzić do poważnych problemów operacyjnych. Przede wszystkim zabezpieczenie umieszczone na powrocie nie będzie skutecznie monitorować poziomu wody, co jest kluczowe w systemach z automatycznym podajnikiem paliwa. Powrót to miejsce, gdzie woda wraca z obiegu grzewczego, i takie umiejscowienie nie gwarantuje, że kotłownia zawsze będzie miała odpowiednią ilość wody. Z tego powodu, może dojść do sytuacji, w której kocioł, mimo że na powrocie jest woda, działa na sucho, ponieważ pompa nie jest w stanie dostarczyć jej wystarczającej ilości z zasilania. Ponadto, umiejscowienie zabezpieczenia na zasilaniu, 10 cm poniżej najwyższej części kotła, również stwarza ryzyko, gdyż kocioł może działać w sytuacji, gdy poziom wody spadnie poniżej bezpiecznego marginesu. W takich przypadkach, woda w kotle nie jest wystarczająco chłodzona, co prowadzi do przegrzewania się urządzenia i potencjalnych uszkodzeń. Dlatego ważne jest, aby stosować się do zaleceń producentów i norm branżowych, które jasno wskazują, że zabezpieczenie powinno być montowane na zasilaniu, aby efektywnie kontrolować poziom wody i zapewnić optymalną pracę całego systemu grzewczego.

Pytanie 33

W instalacji grzewczej zasilanej energią słoneczną, która jest użytkowana bez przegrzewania, wymiana płynu solarnego na bazie glikolu powinna odbywać się co

A. 5 lat
B. 8 lat
C. 3 lata
D. 7 lat
Jeżeli chodzi o wymianę płynu solarnego, to warto wiedzieć, że powinna ona odbywać się co 5 lat. To nie jest tylko przypadkowa liczba. Chodzi o to, że glikol, który jest używany, ma swoje właściwości chemiczne i termiczne, które z czasem mogą się pogarszać. Oprócz transportu ciepła, glikol chroni instalację przed zamarzaniem i korozją. Gdy zbyt długo go nie wymieniamy, może dojść do jego degradacji, co wpływa na efektywność całego systemu. Dlatego lepiej zadbać o regularną wymianę co pięć lat, żeby wszystko działało jak należy. Takie zalecenia są zgodne z normami i doświadczeniami profesjonalistów z branży. Warto więc pamiętać, że to kluczowe dla długotrwałej efektywności systemu grzewczego, a także dla jego bezpieczeństwa.

Pytanie 34

W trakcie działania słonecznej instalacji grzewczej zauważono wyciek czynnika z zaworu bezpieczeństwa. Jakie mogą być przyczyny tego zjawiska?

A. nadmierne natężenie przepływu płynu solarnego
B. niskie natężenie przepływu płynu solarnego
C. niewystarczająca temperatura czynnika roboczego
D. niedostateczna pojemność naczynia przeponowego
W przypadku zajmowania się problematyką instalacji grzewczych, kluczowe jest zrozumienie, że każdy z wymienionych czynników wpływa na funkcjonowanie systemu, jednak nie każdy z nich jest bezpośrednio związany z wypływem czynnika z zaworu bezpieczeństwa. Zbyt niska temperatura czynnika roboczego nie przyczynia się do nadmiernego ciśnienia w układzie, a wręcz przeciwnie – może prowadzić do problemów z efektywnością ogrzewania, ale nie wywołuje wypływu z zaworu. Z większym natężeniem przepływu płynu solarnego związane są zjawiska takie jak wzrost oporów hydraulicznych, ale w praktyce, nawet przy wyższych przepływach, nie powoduje to nadmiernego ciśnienia, jeśli system jest odpowiednio zaprojektowany. Z kolei zbyt małe natężenie przepływu płynu solarnego prowadzi do stagnacji i problemów z efektywnością, ale nie jest bezpośrednio odpowiedzialne za wypływ czynnika przez zawór bezpieczeństwa. Typowym błędem myślowym w tej kwestii jest niewłaściwe łączenie przyczyn i skutków. Różne parametry działania instalacji są ze sobą powiązane, ale kluczowe jest zrozumienie, że to niewłaściwa pojemność naczynia przeponowego bezpośrednio odpowiada za ryzyko nadciśnienia w systemie, co prowadzi do wypływu czynnika, a nie inne czynniki niezwiązane z jego pojemnością.

Pytanie 35

Do przeglądu technicznego instalacji solarnej nie wlicza się

A. weryfikacji ochrony przed zamarzaniem
B. kontroli zabezpieczeń antykorozyjnych
C. napełniania instalacji cieczą solarną
D. odczytu oraz oceny wydajności solarnej
Napełnianie instalacji cieczą solarną nie jest częścią przeglądu technicznego instalacji solarnej, ponieważ ten proces odbywa się zazwyczaj w momencie uruchamiania systemu. Ciecz solarna, która jest stosowana w systemach solarnych, ma za zadanie transportować ciepło z kolektorów do zasobnika. W trakcie przeglądów technicznych koncentrujemy się na ocenie funkcjonalności i efektywności systemu, a nie na procesach, które mają miejsce na początku jego eksploatacji. Przegląd techniczny powinien obejmować takie elementy jak kontrola ochrony antykorozyjnej, co jest istotne dla długowieczności komponentów, a także odczyt oraz ocenę uzysku solarnego, co pozwala na ocenę wydajności całego systemu. Dodatkowo, kontrola ochrony przed zamarzaniem jest kluczowa w kraju takim jak Polska, gdzie zimowe temperatury mogą wpływać na działanie instalacji. Te działania są zgodne z normami branżowymi i praktykami, które mają na celu zapewnienie niezawodności i efektywności systemów solarnych w dłuższej perspektywie czasowej.

Pytanie 36

W jaki sposób oraz w jakim miejscu powinno się zainstalować fotoogniwo, aby osiągnąć najlepszą wydajność przez cały rok?

A. Pod kątem 45 stopni do poziomu gruntu, na wschodniej części dachu
B. W poziomie, na tarasie
C. Pod kątem 55 stopni do poziomu gruntu, na południowej części dachu
D. Prostopadle, na południowej ścianie obiektu
Montaż fotoogniw w sposób pionowy na południowej ścianie budynku ogranicza ich dostęp do promieni słonecznych, szczególnie w okresach letnich, kiedy Słońce znajduje się wysoko na niebie. Taki układ nie tylko prowadzi do zmniejszenia ogólnej wydajności paneli, ale także może powodować ich nadmierne nagrzewanie, co negatywnie wpływa na efektywność konwersji energii. Z kolei umieszczenie paneli pod kątem 45 stopni na wschodniej połaci dachu, choć może wydawać się korzystne na poranne promieniowanie, nie zapewnia optymalnych warunków przez cały dzień i może skutkować znacznie niższymi zbiorami energii w godzinach popołudniowych, kiedy Słońce osiąga wysoką pozycję. Poziomy montaż na tarasie nie tylko zmniejsza efektywność odwodnienia i gromadzenia wody na powierzchni paneli, ale także znacząco ogranicza dostęp do promieniowania słonecznego w ciągu dnia. Użytkownicy mogą także nie zdawać sobie sprawy z faktu, że w przypadku takich ustawień, panele mogą ulegać szybciej zanieczyszczeniu, co dodatkowo obniża ich efektywność. W kontekście systemów odnawialnych źródeł energii, kluczowe jest przestrzeganie zasad optymalizacji, co jest zgodne z rekomendacjami dostawców systemów PV oraz specjalistycznymi standardami przyjętymi w branży. Niewłaściwy kąt i lokalizacja montażu mogą prowadzić do znacznych strat w produkcji energii, co w dłuższym okresie zwiększa koszty eksploatacji i obniża rentowność inwestycji w energię odnawialną.

Pytanie 37

Kocioł na pellet w ciągu jednej doby wykorzystuje 20 kg paliwa. Jaki będzie całkowity koszt paliwa w przeciągu 30 dni, jeśli worek z 200 kg pelletu kosztuje 250 zł?

A. 12,50 zł
B. 5 000,00 zł
C. 37,50 zł
D. 750,00 zł
Obliczenie kosztu paliwa zużywanego przez kocioł na pellet wymaga zrozumienia kilku kluczowych aspektów. Kocioł zużywa 20 kg paliwa dziennie, co oznacza, że przez 30 dni zużyje 600 kg (20 kg/dzień * 30 dni). W celu przeliczenia kosztów, musimy najpierw ustalić, ile kosztuje 1 kg pelletu. Woreczek o wadze 200 kg kosztuje 250 zł, zatem koszt 1 kg to 250 zł / 200 kg = 1,25 zł. Następnie, mnożymy koszt 1 kg przez całkowite zużycie pelletu w ciągu miesiąca: 600 kg * 1,25 zł/kg = 750 zł. Taki proces obliczania kosztów pozwala na lepsze zarządzanie budżetem na ogrzewanie i planowanie zakupów paliwa, co jest szczególnie istotne w kontekście sezonowego użytkowania kotłów na pellet. Wiedza na temat kosztów eksploatacyjnych pozwala również na efektywniejsze podejmowanie decyzji zakupowych oraz optymalizację wydatków na energię. Stosowanie materiałów pomocniczych, jak wykresy lub kalkulatory kosztów, jest zalecane w celu łatwiejszego zrozumienia tego procesu.

Pytanie 38

Inwerter to sprzęt instalowany w systemie

A. biogazowni
B. słonecznej grzewczej
C. fotowoltaicznej
D. pompy ciepła
Inwerter jest kluczowym elementem instalacji fotowoltaicznej, służącym do przekształcania prądu stałego (DC) generowanego przez panele słoneczne na prąd zmienny (AC), który może być używany w domowych instalacjach elektrycznych oraz wprowadzany do sieci energetycznej. Jego działanie opiera się na przetwarzaniu energii słonecznej w sposób umożliwiający jej wykorzystanie w codziennym życiu. Przykładowo, w systemach fotowoltaicznych na dachach budynków, inwertery są odpowiedzialne za optymalizację produkcji energii, co przekłada się na niższe rachunki za prąd i zwiększenie efektywności energetycznej. Zgodnie z normami, inwertery powinny spełniać standardy jakości, takie jak IEC 62109, które gwarantują bezpieczeństwo i niezawodność ich działania. Właściwy dobór inwertera, jego moc oraz funkcje, takie jak monitoring wydajności, mają kluczowe znaczenie dla efektywności całego systemu, co podkreśla ich rolę w nowoczesnych instalacjach OZE.

Pytanie 39

Masa jednego opakowania rur miedzianych, które są przeznaczone do budowy instalacji i składowane w kręgach bez wewnętrznego rdzenia (szpuli), nie powinna być większa niż

A. 40 kg
B. 25 kg
C. 30 kg
D. 50 kg
Choć odpowiedzi, takie jak 25 kg, 30 kg czy 40 kg, mogą wydawać się rozsądne, są one niezgodne z rzeczywistością i standardami branżowymi. Odpowiedź 25 kg, na przykład, jest zbyt niska, aby odzwierciedlić typową masę jednego opakowania rur miedzianych. W rzeczywistości, rury miedziane, ze względu na swój materiał oraz przeznaczenie, zazwyczaj ważą więcej. Ograniczenie masy opakowania do 25 kg wymusiłoby zastosowanie zbyt wielu jednostek, co z kolei generowałoby większe koszty transportu i magazynowania, co jest nieefektywne z punktu widzenia logistyki. Odpowiedź 30 kg również nie spełnia wymogów, ponieważ nadal jest zbyt mała dla standardowego pakowania. W przypadku 40 kg sytuacja jest podobna. Ustalenie limitu masy opakowania na 40 kg może prowadzić do problemów z transportem, ponieważ wiele rodzajów rur oraz innych materiałów budowlanych przekracza tę wartość. Użycie niewłaściwych wartości masy może prowadzić do błędnej oceny możliwości transportowych, a także do zwiększenia ryzyka uszkodzeń materiałów oraz wypadków przy pracy. Dlatego kluczowe jest stosowanie się do określonych standardów i praktyk, które zapewniają bezpieczeństwo pracowników oraz efektywność procesów logistycznych.

Pytanie 40

Korzystając z przedstawionego fragmentu instrukcji określ, w jakiej odległości od odgromnika należy usytuować ogniwo fotowoltaiczne, jeżeli na budynku istnieje już instalacja antyodgromowa.

Jeżeli istnieje już na budynku instalacja antypiorunowa, to konstrukcja mocująca generatora PV musi zostać połączona najkrótszą drogą z odgromnikiem.

A. 50 cm
B. 40 cm
C. 20 cm
D. 30 cm
Poprawna odpowiedź to 20 cm, ponieważ zgodnie z obowiązującymi normami i rekomendacjami dotyczącymi instalacji fotowoltaicznych i systemów odgromowych, odległość między ogniwem fotowoltaicznym a odgromnikiem powinna być jak najmniejsza. Konstrukcja mocująca generatora PV musi być połączona najkrótszą drogą z odgromnikiem, co zapewnia optymalne prowadzenie ewentualnych wyładowań elektrycznych oraz minimalizuje ryzyko uszkodzenia urządzeń. Przykładem praktycznego zastosowania tej zasady jest instalacja systemów PV na dachach budynków, gdzie bliskość odgromnika jest kluczowa dla bezpieczeństwa całej instalacji. Warto również pamiętać, że zachowanie takiej odległości nie tylko wpływa na bezpieczeństwo, ale i na efektywność systemu, co potwierdzają liczne badania branżowe. Standardy, takie jak PN-EN 62305, jasno określają zasady dotyczące ochrony przed wyładowaniami atmosferycznymi, co podkreśla znaczenie przestrzegania zalecanych odległości w projektach instalacji PV.